Skip to main content

Knocking Down Long Noncoding RNAs Using Antisense Oligonucleotide Gapmers

  • Protocol
  • First Online:
Gapmers

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2176))

Abstract

Long noncoding RNAs (lncRNAs) are a class of RNA with 200 nucleotides or longer that are not translated into protein. lncRNAs are highly abundant; a study estimates that at least four times more lncRNAs are typically present than coding RNAs in humans. However, function of more than 95% of human lncRNAs are still unknown. Synthetic antisense oligonucleotides called gapmers are powerful tools for lncRNA loss-of-function studies. Gapmers contain a central DNA part, which activates RNase H-mediated RNA degradation, flanked by modified oligonucleotides, such as 2′-O-methyl RNA (2′OMe), 2′-O-methoxyethyl RNA (2′MOE), constrained ethyl nucleosides (cEt), and locked nucleic acids (LNAs). In contrast to siRNA or RNAi-based methods, antisense oligonucleotide gapmer-based knockdown is often more effective against nuclear-localized lncRNA targets, since RNase H is mainly localized in nuclei. As such, gapmers are also potentially a powerful tool for therapeutics targeting lncRNAs in various diseases, including cancer, cardiovascular diseases, lung fibrosis, and neurological/neuromuscular diseases. This chapter will discuss the development and applications of gapmers for lncRNA loss-of-function studies and tips to design effective antisense oligonucleotides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Costa FF (2010) Non-coding RNAs: meet thy masters. BioEssays 32(7):599–608

    CAS  PubMed  Google Scholar 

  2. Beermann J, Piccoli M-T, Viereck J et al (2016) Non-coding RNAs in development and disease: background, mechanisms, and therapeutic approaches. Physiol Rev 96(4):1297–1325

    CAS  PubMed  Google Scholar 

  3. Gomes AQ, Nolasco S, Soares H (2013) Non-coding RNAs: multi-tasking molecules in the cell. Int J Mol Sci 14(8):16010–16039

    PubMed  PubMed Central  Google Scholar 

  4. Krishnan P, Ghosh S, Graham K et al (2016) Piwi-interacting RNAs and PIWI genes as novel prognostic markers for breast cancer. Oncotarget 7(25):37944

    PubMed  PubMed Central  Google Scholar 

  5. Yin Q-F, Yang L, Zhang Y et al (2012) Long noncoding RNAs with snoRNA ends. Mol Cell 48(2):219–230

    CAS  PubMed  Google Scholar 

  6. Ho PY, Yu AM (2016) Bioengineering of noncoding RNAs for research agents and therapeutics. Wiley Interdiscip Rev RNA 7(2):186–197

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Esteller M (2011) Non-coding RNAs in human disease. Nat Rev Genet 12(12):861

    CAS  PubMed  Google Scholar 

  8. Engreitz JM, Ollikainen N, Guttman M (2016) Long non-coding RNAs: spatial amplifiers that control nuclear structure and gene expression. Nat Rev Mol Cell Biol 17(12):756

    CAS  PubMed  Google Scholar 

  9. Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10(3):155

    CAS  PubMed  Google Scholar 

  10. Volders PJ, Anckaert J, Verheggen K et al (2019) LNCipedia 5: towards a reference set of human long non-coding RNAs. Nucleic Acids Res 47(D1):D135–D139. https://doi.org/10.1093/nar/gky1031

    Article  CAS  PubMed  Google Scholar 

  11. Moran VA, Perera RJ, Khalil AM (2012) Emerging functional and mechanistic paradigms of mammalian long non-coding RNAs. Nucleic Acids Res 40(14):6391–6400

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chen L-L (2016) Linking long noncoding RNA localization and function. Trends Biochem Sci 41(9):761–772

    CAS  PubMed  Google Scholar 

  13. Cabili MN, Dunagin MC, McClanahan PD et al (2015) Localization and abundance analysis of human lncRNAs at single-cell and single-molecule resolution. Genome Biol 16(1):20

    PubMed  PubMed Central  Google Scholar 

  14. van Heesch S, van Iterson M, Jacobi J et al (2014) Extensive localization of long noncoding RNAs to the cytosol and mono-and polyribosomal complexes. Genome Biol 15(1):R6

    PubMed  PubMed Central  Google Scholar 

  15. Lennox KA, Behlke MA (2016) Mini-review: current strategies to knockdown long non-coding RNAs. J Rare Dis Res Treat 1:66–70

    Google Scholar 

  16. Lennox KA, Behlke MA (2015) Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. Nucleic Acids Res 44(2):863–877

    PubMed  PubMed Central  Google Scholar 

  17. Szafranski P, Karolak JA, Lanza D et al (2017) CRISPR/Cas9-mediated deletion of lncRNA Gm26878 in the distant Foxf1 enhancer region. Mamm Genome 28(7–8):275–282

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Yang J, Meng X, Pan J et al (2018) CRISPR/Cas9-mediated noncoding RNA editing in human cancers. RNA Biol 15(1):35–43

    PubMed  Google Scholar 

  19. Aparicio-Prat E, Arnan C, Sala I et al (2015) DECKO: single-oligo, dual-CRISPR deletion of genomic elements including long non-coding RNAs. BMC Genomics 16(1):846

    PubMed  PubMed Central  Google Scholar 

  20. Gutschner T (2015) Silencing long noncoding RNAs with genome-editing tools. In: Chromosomal mutagenesis. Springer, New York, pp 241–250

    Google Scholar 

  21. Koirala P, Zou D-H, Mo Y-Y (2016) Long non-coding RNAs as key regulators of cancer metastasis. J Cancer Metastasis Treat 2:1–10

    CAS  Google Scholar 

  22. Salehi M, Sharifi M, Bagheri M (2019) Knockdown of long noncoding RNA plasmacytoma variant translocation 1 with antisense locked nucleic acid GapmeRs exerts tumor-suppressive functions in human acute erythroleukemia cells through downregulation of C-MYC expression. Cancer Biother Radiopharm 34(6):371–379

    CAS  PubMed  Google Scholar 

  23. Inoue H, Hayase Y, Iwai S et al (1987) Sequence-dependent hydrolysis of RNA using modified oligonucleotide splints and RNase H. FEBS Lett 215(2):327–330. https://doi.org/10.1016/0014-5793(87)80171-0

    Article  CAS  PubMed  Google Scholar 

  24. GrÜnweiler A, Hartmann RK (2007) Locked nucleic acid oligonucleotides. BioDrugs 21(4):235–243

    Google Scholar 

  25. Gait MJ, Agrawal S (2019) Advances in nucleic acid therapeutics, vol 68. Royal Society of Chemistry, London

    Google Scholar 

  26. Nakamura H, Oda Y, Iwai S et al (1991) How does RNase H recognize a DNA. RNA hybrid? Proc Natl Acad Sci U S A 88(24):11535–11539

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Seth PP, Jazayeri A, Yu J et al (2012) Structure activity relationships of α-L-LNA modified phosphorothioate gapmer antisense oligonucleotides in animals. Mol Ther Nucleic Acids 1:e47

    PubMed  PubMed Central  Google Scholar 

  28. Lundin KE, Gissberg O, Smith CI (2015) Oligonucleotide therapies: the past and the present. Hum Gene Ther 26(8):475–485. https://doi.org/10.1089/hum.2015.070

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee JJ, Yokota T (2013) Antisense therapy in neurology. J Pers Med 3(3):144–176. https://doi.org/10.3390/jpm3030144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Matsui M, Corey DR (2017) Non-coding RNAs as drug targets. Nat Rev Drug Discov 16(3):167

    CAS  PubMed  Google Scholar 

  31. Khan H, Missailidis S (2008) Antisense Agents. In: Anticancer therapeutics, vol 317. Wiley, Chichester

    Google Scholar 

  32. Shen W, De Hoyos CL, Migawa MT et al (2019) Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index. Nat Biotechnol 37(6):640–650

    CAS  PubMed  Google Scholar 

  33. Naessens S, Ruysschaert L, Lefever S et al (2019) Antisense oligonucleotide-based downregulation of the G56R pathogenic variant causing NR2E3-associated autosomal dominant retinitis Pigmentosa. Genes 10(5):363

    CAS  PubMed Central  Google Scholar 

  34. Yoshida T, Naito Y, Yasuhara H et al (2019) Evaluation of off-target effects of gapmer antisense oligonucleotides using human cells. Genes Cells 24(12):827–835

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Markham NR, Zuker M (2008) UNAFold: software for nucleic acid folding and hybridization. Methods Mol Biol 453:3–31. https://doi.org/10.1007/978-1-60327-429-6_1

    Article  CAS  PubMed  Google Scholar 

  36. Paz I, Kosti I, Ares M Jr et al (2014) RBPmap: a web server for mapping binding sites of RNA-binding proteins. Nucleic Acids Res 42:W361–W367. https://doi.org/10.1093/nar/gku406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Pedersen L, Hagedorn PH, Lindholm MW et al (2014) A kinetic model explains why shorter and less affine enzyme-recruiting oligonucleotides can be more potent. Mol Ther Nucleic Acids 3:e149. https://doi.org/10.1038/mtna.2013.72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tolstrup N, Nielsen PS, Kolberg JG et al (2003) OligoDesign: optimal design of LNA (locked nucleic acid) oligonucleotide capture probes for gene expression profiling. Nucleic Acids Res 31(13):3758–3762

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Moreno PM, Ferreira AR, Salvador D et al (2018) Hydrogel-assisted antisense LNA Gapmer delivery for in situ gene silencing in spinal cord injury. Mol Ther Nucleic Acids 11:393–406

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Leti F, DiStefano J (2017) Long noncoding RNAs as diagnostic and therapeutic targets in type 2 diabetes and related complications. Genes 8(8):207

    PubMed Central  Google Scholar 

  41. Chung S, Nakagawa H, Uemura M et al (2011) Association of a novel long non-coding RNA in 8q24 with prostate cancer susceptibility. Cancer Sci 102(1):245–252

    CAS  PubMed  Google Scholar 

  42. Guan Y, Kuo W-L, Stilwell JL et al (2007) Amplification of PVT1 contributes to the pathophysiology of ovarian and breast cancer. Clin Cancer Res 13(19):5745–5755

    CAS  PubMed  Google Scholar 

  43. Panzitt K, Tschernatsch MM, Guelly C et al (2007) Characterization of HULC, a novel gene with striking up-regulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology 132(1):330–342

    CAS  PubMed  Google Scholar 

  44. Pibouin L, Villaudy J, Ferbus D et al (2002) Cloning of the mRNA of overexpression in colon carcinoma-1: a sequence overexpressed in a subset of colon carcinomas. Cancer Genet Cytogenet 133(1):55–60

    CAS  PubMed  Google Scholar 

  45. Bussire T, Gold G, Kvari E et al (2003) Stereologic analysis of neurofibrillary tangle formation in prefrontal cortex area 9 in aging and Alzheimer’s disease. Neuroscience 117(3):577–592

    CAS  Google Scholar 

  46. Lukiw W, Handley P, Wong L et al (1992) BC200 RNA in normal human neocortex, non-Alzheimer dementia (NAD), and senile dementia of the Alzheimer type (AD). Neurochem Res 17(6):591–597

    CAS  PubMed  Google Scholar 

  47. Nair M, Sagar V, Pilakka-Kanthikeel S (2016) Gene-expression reversal of lncRNAs and associated mRNAs expression in active vs latent HIV infection. Sci Rep 6:34862

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang Q, Chen C-Y, Yedavalli VS et al (2013) NEAT1 long noncoding RNA and paraspeckle bodies modulate HIV-1 posttranscriptional expression. MBio 4(1):e00596–e00512

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Ishii N, Ozaki K, Sato H et al (2006) Identification of a novel non-coding RNA, MIAT, that confers risk of myocardial infarction. J Hum Genet 51(12):1087

    CAS  PubMed  Google Scholar 

  50. Gutschner T, Hämmerle M, Diederichs S (2013) MALAT1—a paradigm for long noncoding RNA function in cancer. J Mol Med 91(7):791–801

    CAS  PubMed  Google Scholar 

  51. Liu J, Yao J, Li X et al (2014) Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death Dis 5(10):e1506

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Arun G, Diermeier SD, Spector DL (2018) Therapeutic targeting of long non-coding RNAs in cancer. Trends Mol Med 24(3):257–277

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Amodio N, Stamato MA, Juli G et al (2018) Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity. Leukemia 32(9):1948

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Castillo AS, Mateos CO, Riera MS et al (2019) Non-coding RNAs as key players for understanding oncogenic pathways in ovarian cancer: studying new therapeutic strategies. AACR, Philadelphia

    Google Scholar 

  55. Woo CJ, Maier VK, Davey R et al (2017) Gene activation of SMN by selective disruption of lncRNA-mediated recruitment of PRC2 for the treatment of spinal muscular atrophy. Proc Natl Acad Sci U S A 114(8):E1509–E1518

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Goodkey K, Aslesh T, Maruyama R et al (2018) Nusinersen in the treatment of spinal muscular atrophy. In: Exon skipping and inclusion therapies. Springer, New York, pp 69–76

    Google Scholar 

  57. Viereck J, Kumarswamy R, Foinquinos A et al (2016) Long noncoding RNA Chast promotes cardiac remodeling. Sci Transl Med 8(326):326ra322

    Google Scholar 

  58. Jiang D, Liang J (2019) A lncRNA Links TGF-β Signaling in Lung Fibrosis. Am J Respir Crit Care Med 200(2):123–125

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Echigoya Y, Nakamura A, Nagata T et al (2017) Effects of systemic multiexon skipping with peptide-conjugated morpholinos in the heart of a dog model of Duchenne muscular dystrophy. Proc Natl Acad Sci U S A 114(16):4213–4218. https://doi.org/10.1073/pnas.1613203114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Lu QL, Rabinowitz A, Chen YC et al (2005) Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci U S A 102(1):198–203. https://doi.org/10.1073/pnas.0406700102

    Article  CAS  PubMed  Google Scholar 

  61. Ezzat K, Aoki Y, Koo T et al (2015) Self-assembly into nanoparticles is essential for receptor mediated uptake of therapeutic antisense oligonucleotides. Nano Lett 15(7):4364–4373. https://doi.org/10.1021/acs.nanolett.5b00490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Walker I, Irwin WJ, Akhtar S (1995) Improved cellular delivery of antisense oligonucleotides using transferrin receptor antibody-oligonucleotide conjugates. Pharm Res 12(10):1548–1553

    CAS  PubMed  Google Scholar 

  63. Echigoya Y, Aoki Y, Miskew B et al (2015) Long-term efficacy of systemic multiexon skipping targeting dystrophin exons 45-55 with a cocktail of vivo-morpholinos in mdx52 mice. Mol Ther Nucleic Acids 4:e225. https://doi.org/10.1038/mtna.2014.76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is supported by Muscular Dystrophy Canada, the Friends of Garrett Cumming Research Fund, HM Toupin Neurological Science Research Fund, Canadian Institutes of Health Research (CIHR), Alberta Innovates: Health Solutions (AIHS), Canada Foundation for Innovation (CFI), Alberta Advanced Education and Technology, and Women and Children’s Health Research Institute (WCHRI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshifumi Yokota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Maruyama, R., Yokota, T. (2020). Knocking Down Long Noncoding RNAs Using Antisense Oligonucleotide Gapmers. In: Yokota, T., Maruyama, R. (eds) Gapmers. Methods in Molecular Biology, vol 2176. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0771-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0771-8_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0770-1

  • Online ISBN: 978-1-0716-0771-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics