Skip to main content

Super-Resolution Imaging of Homologous Recombination Repair at Collapsed Replication Forks

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2153))

Abstract

Single-molecule super-resolution microscopy (SRM) combines single-molecule detection with spatial resolutions tenfold improved over conventional confocal microscopy. These two key advantages make it possible to visualize individual DNA replication and damage events within the cellular context of fixed cells. This in turn engenders the ability to decipher variations between individual replicative and damage species within a single nucleus, elucidating different subpopulations of stress and repair events. Here, we describe the protocol for combining SRM with novel labeling and damage assays to characterize DNA double-strand break (DSB) induction at stressed replication forks (RFs) and subsequent repair by homologous recombination (HR). These assays enable spatiotemporal mapping of DNA damage response and repair proteins to establish their in vivo function and interactions, as well as detailed characterization of specific dysfunctions in HR caused by drugs or mutations of interest.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Bates M, Huang B, Dempsey GT, Zhuang X (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317(5845):1749–1753

    Article  CAS  Google Scholar 

  2. Whelan DR et al (2018) Spatiotemporal dynamics of homologous recombination repair at single collapsed replication forks. Nat Commun 9(1):3882

    Article  Google Scholar 

  3. Saleh-Gohari N et al (2005) Spontaneous homologous recombination is induced by collapsed replication forks that are caused by endogenous DNA single-strand breaks. Mol Cell Biol 25(16):7158–7169

    Article  CAS  Google Scholar 

  4. Zeman MK, Cimprich KA (2014) Causes and consequences of replication stress. Nat Cell Biol 16(1):2–9

    Article  CAS  Google Scholar 

  5. Conlin MP et al (2017) DNA ligase IV guides end-processing choice during nonhomologous end joining. Cell Rep 20(12):2810–2819

    Article  CAS  Google Scholar 

  6. Liu LF et al (2000) Mechanism of action of camptothecin. Ann N Y Acad Sci 922(1):1–10

    Article  CAS  Google Scholar 

  7. Petermann E, Luis Orta M, Issaeva N, Schultz N, Helleday T (2010) Hydroxyurea-stalled replication forks become progressively inactivated and require two different RAD51-mediated pathways for restart and repair. Mol Cell 37(4):492–502

    Article  CAS  Google Scholar 

  8. Salic A, Mitchison TJ (2008) A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci 105(7):2415

    Article  CAS  Google Scholar 

  9. Daddacha W et al (2017) SAMHD1 promotes DNA end resection to facilitate DNA repair by homologous recombination. Cell Rep 20(8):1921–1935

    Article  CAS  Google Scholar 

  10. D’Alessandro G et al (2018) BRCA2 controls DNA:RNA hybrid level at DSBs by mediating RNase H2 recruitment. Nat Commun 9(1):5376

    Article  Google Scholar 

  11. Reid DA et al (2015) Organization and dynamics of the nonhomologous end-joining machinery during DNA double-strand break repair. Proc Natl Acad Sci U S A 112(20):E2575–E2584

    Article  CAS  Google Scholar 

  12. Yin YD, Rothenberg E (2016) Probing the spatial organization of molecular complexes using triple-pair-correlation. Sci Rep 6:30819

    Article  CAS  Google Scholar 

  13. Whelan DR, Holm T, Sauer M, Bell TDM (2014) Focus on super-resolution imaging with direct stochastic optical reconstruction microscopy (dSTORM). Aust J Chem 67(2):179–183

    Article  CAS  Google Scholar 

  14. Bermudez-Hernandez K et al (2017) A method for quantifying molecular interactions using stochastic modelling and super-resolution microscopy. Sci Rep 7(1):14882

    Article  Google Scholar 

  15. Schnitzbauer J et al (2018) Correlation analysis framework for localization-based superresolution microscopy. Proc Natl Acad Sci 115(13):3219

    Article  CAS  Google Scholar 

  16. Sage D et al (2019) Super-resolution fight club: assessment of 2D and 3D single-molecule localization microscopy software. Nat Methods 16(5):387–395

    Article  CAS  Google Scholar 

  17. Durisic N, Cuervo LL, Lakadamyali M (2014) Quantitative super-resolution microscopy: pitfalls and strategies for image analysis. Curr Opin Chem Biol 20:22–28

    Article  CAS  Google Scholar 

  18. Whelan DR, Bell TDM (2015) Super-resolution single-molecule localization microscopy: tricks of the trade. J Phys Chem Lett 6(3):374–382

    Article  CAS  Google Scholar 

  19. Whelan DR, Bell TDM (2015) Image artifacts in single molecule localization microscopy: why optimization of sample preparation protocols matters. Sci Rep 5:7924

    Article  CAS  Google Scholar 

Download references

Acknowledgments

D.R.W. would like to acknowledge support from a Bruce Stone Fellowship from the La Trobe Institute for Molecular Science and funding via the Bendigo Tertiary Education Anniversary Foundation. Research in the Rothenberg lab is supported by funds from the NIH R01 GM108119, American Cancer Society (ACS: 130304-RSG-16-241-01-DMC), the V Foundation for Cancer Research (D2018-020), and Fondation Leducq (17CVD02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donna R. Whelan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Whelan, D.R., Rothenberg, E. (2021). Super-Resolution Imaging of Homologous Recombination Repair at Collapsed Replication Forks. In: Aguilera, A., Carreira, A. (eds) Homologous Recombination. Methods in Molecular Biology, vol 2153. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0644-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0644-5_24

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0643-8

  • Online ISBN: 978-1-0716-0644-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics