Skip to main content

Immunoinformatics and Epitope Prediction

  • Protocol
  • First Online:
Immunoinformatics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2131))

Abstract

With advancements in sequencing technologies, vast amount of experimental data has accumulated. Due to rapid progress in the development of bioinformatics tools and the accumulation of data, immunoinformatics or computational immunology emerged as a special branch of bioinformatics which utilizes bioinformatics approaches for understanding and interpreting immunological data. One extensively studied aspect of applied immunology involves using available databases and tools for prediction of B- and T-cell epitopes. B and T cells comprise two arms of adaptive immunity.

This chapter first reviews the methodology we used for computational identification of B- and T-cell epitopes against enterotoxigenic Escherichia coli (ETEC). Then we discuss other databases of epitopes and analysis tools for T-cell and B-cell epitope prediction and vaccine design. The predicted peptides were analyzed for conservation and population coverage. HLA distribution analysis for predicted epitopes identified efficient MHC binders. Epitopes were further tested using computational docking studies to bind in MHC-I molecule cleft. The predicted epitopes were conserved and covered more than 80% of the world population.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kazi A, Chuah C, Majeed ABA et al (2018) Current progress of immunoinformatics approach harnessed for cellular- and antibody-dependent vaccine design. Pathog Glob Health 112(3):123–131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Evans MC (2008) Recent advances in immunoinformatics: application of in silico tools to drug development. Curr Opin Drug Discov Deve l11(2):233–241

    Google Scholar 

  3. Walker RI (2015) An assessment of enterotoxigenic Escherichia coli and Shigella vaccine candidates for infants and children. Vaccine 33(8):954–965

    Article  CAS  PubMed  Google Scholar 

  4. Pizza M, Scarlato V, Masignani V et al (2000) Identification of vaccine candidates against serogroup B meningococcus by Whole-Genome sequencing. Science 287(5459):1816–1820

    Article  CAS  PubMed  Google Scholar 

  5. Moriel DG, Bertoldi I, Spagnuolo A et al (2010) Identification of protective and broadly conserved vaccine antigens from the genome of extraintestinal pathogenic Escherichia coli. Proc Natl Acad Sci U S A 107(20):9072–9077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McCarthy A, Lindsay J (2010) Genetic variation in Staphylococcus aureus surface and immune evasion genes is lineage associated: implications for vaccine design and host-pathogen interactions. BMC Microbiol 10(1):173

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Brocchieri L, Karlin S (2005) Protein length in eukaryotic and prokaryotic proteomes. Nucleic Acids Res 33(10):3390–3400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Butt AM, Nasrullah I, Tahir S et al (2012) Comparative genomics analysis of Mycobacterium ulcerans for the identification of putative essential genes and therapeutic candidates. PLoS One 7(8):e43080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Doytchinova I, Flower D (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 8(1):4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Yu NY, Wagner JR, Laird M et al (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26(13):1608–1615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Larsen MV, Lundegaard C, Lamberth K et al (2007) Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 8:424

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Tenzer S, Peters B, Bulik S et al (2005) Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cell Mol Life Sci 62(9):1025–1037

    Article  CAS  PubMed  Google Scholar 

  13. Guan P, Doytchinova IA, Zygouri C et al (2003) MHCPred: a server for quantitative prediction of peptide-MHC binding. Nucleic Acids Res 31(13):3621–3624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Thorpe C, Edwards L, Snelgrove R et al (2007) Discovery of a vaccine antigen that protects mice from Chlamydia pneumoniae infection. Vaccine 25(12):2252–2260

    Article  CAS  PubMed  Google Scholar 

  15. Bui HH, Sidney J, Dinh K et al (2006) Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics 7:153

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Harris JA, Roy K, Woo-Rasberry V et al (2011) Directed evaluation of enterotoxigenic Escherichia coli autotransporter proteins as putative vaccine candidates. PLoS Negl Trop Dis 5(12):e1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thevenet P, Shen Y, Maupetit J et al (2012) PEP-FOLD: an updated de novo structure prediction server for both linear and disulfide bonded cyclic peptides. Nucleic Acids Res 40(Web Server issue):W288–W293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Macindoe G, Mavridis L, Venkatraman V et al (2010) HexServer: an FFT-based protein docking server powered by graphics processors. Nucleic Acids Res 38(Web Server issue):W445–W449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. The PyMOL Molecular Graphics System (2010) Version 1.3r1. LLC, Schrodinger

    Google Scholar 

  20. Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51(10):2778–2786

    Article  CAS  PubMed  Google Scholar 

  21. El-Manzalawy Y, Dobbs D, Honavar V (2008) Predicting linear B-cell epitopes using string kernels. J Mol Recognit 21(4):243–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chen J, Liu H, Yang J et al (2007) Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids 33(3):423–428

    Article  CAS  PubMed  Google Scholar 

  23. Emini EA, Hughes JV, Perlow DS et al (1985) Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 55(3):836–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Karplus PA, Schulz GE (1985) Prediction of chain flexibility in proteins. Naturwissenschaften 72(4):212–213

    Article  CAS  Google Scholar 

  25. Parker JMR, Guo D, Hodges RS (1986) New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25(19):5425–5432

    Article  CAS  PubMed  Google Scholar 

  26. Ansari HR, Raghava GPS (2010) Identification of conformational B-cell Epitopes in an antigen from its primary sequence. Immunome Res 6:6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Saha S, Bhasin M, Raghava GPS (2005) Bcipep: a database of B-cell epitopes. BMC Genomics 6:79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Huang J, Honda W (2006) CED: a conformational epitope. BMC Immunol 7:7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schlessinger A, Ofran Y, Yachdav G et al (2006) Epitome: database of structure-inferred antigenic epitopes. Nucleic Acids Res 34:D777–D780

    Article  CAS  PubMed  Google Scholar 

  30. Odorico M, Pellequer JL (2003) BEPITOPE: predicting the location of continuous epitopes and patterns in proteins. J Mol Recognit 16(1):20–22

    Article  CAS  PubMed  Google Scholar 

  31. Saha S, Raghava GPS (2006) Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65(1):40–48

    Article  CAS  PubMed  Google Scholar 

  32. Kulkarni-Kale U, Raskar-Renuse S, Natekar-Kalantre G et al (2014) Antigen–antibody interaction database (AgAbDb): a compendium of antigen–antibody interactions. In: De R, Tomar N (eds) Immunoinformatics, Methods in molecular biology (methods and protocols), vol 1184. Humana Press, New York, pp 149–164

    Google Scholar 

  33. Jespersen MC, Peters B, Nielsen M et al (2017) BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res 45(W1):W24–W29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sweredoski MJ, Baldi P (2008) PEPITO: improved discontinuous B-cell epitope prediction using multiple distance thresholds and half sphere exposure. Bioinformatics 24(12):1459–1460

    Article  CAS  PubMed  Google Scholar 

  35. Ponomarenko J, Bui HH, Li W et al (2008) ElliPro: a new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics 9:514

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Rubinstein ND, Mayrose I, Martz E et al (2009) Epitopia: a web-server for predicting B-cell epitopes. BMC Bioinformatics 10:287

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Kringelum JV, Lundegaard C, Lund O et al (2012) Reliable B cell epitope predictions: impacts of method development and improved benchmarking. PLoS Comput Biol 8(12):e1002829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rammensee H, Bachmann J, Emmerich NP et al (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50(3–4):213–219

    Article  CAS  PubMed  Google Scholar 

  39. Lefranc MP (2001) IMGT, the international ImMunoGeneTics database. Nucleic Acids Res 29(1):207–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Sathiamurthy M, Hickman HD, Cavett JW et al (2003) Population of the HLA ligand database. Tissue Antigens 61(1):12–19

    Article  CAS  PubMed  Google Scholar 

  41. Toseland CP, Clayton DJ, McSparron H et al (2005) AntiJen: a quantitative immunology database integrating functional, thermodynamic, kinetic, biophysical, and cellular data. Immunome Res 1(1):4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Reche PA, Zhang H, Glutting JP et al (2005) EPIMHC: a curated database of MHC-binding peptides for customized computational vaccinology. Bioinformatics 21(9):2140–2141

    Article  CAS  PubMed  Google Scholar 

  43. Bhasin M, Raghava GP (2003) Prediction of promiscuous and high-affinity mutated MHC binders. Hybrid Hybridomics 22(4):229–234

    Article  CAS  PubMed  Google Scholar 

  44. Reche PA, Glutting JP, Zhang H et al (2004) Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics 56(6):405–419

    Article  CAS  PubMed  Google Scholar 

  45. Wan J, Liu W, Xu Q et al (2006) SVRMHC prediction server for MHC-binding peptides. BMC Bioinformatics 7:463

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Jurtz V, Paul S, Andreatta M et al (2017) NetMHCpan-4.0: improved peptide-MHC class i interaction predictions integrating eluted ligand and peptide binding affinity data. J Immunol 199(9):3360–3368

    Article  CAS  PubMed  Google Scholar 

  47. Mehla K, Ramana J (2016) Identification of epitope-based peptide vaccine candidates against enterotoxigenic Escherichia coli: a comparative genomics and immunoinformatics approach. Mol BioSyst 12(3):890–901

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ramana, J., Mehla, K. (2020). Immunoinformatics and Epitope Prediction. In: Tomar, N. (eds) Immunoinformatics. Methods in Molecular Biology, vol 2131. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0389-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0389-5_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0388-8

  • Online ISBN: 978-1-0716-0389-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics