Skip to main content

Plant Transformation Techniques: Agrobacterium- and Microparticle-Mediated Gene Transfer in Cereal Plants

  • Protocol
  • First Online:
Biolistic DNA Delivery in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2124))

Abstract

Biotechnological methods for targeted gene transfers into plants are key for successful breeding in the twenty-first century and thus essential for the survival of humanity. Two decades ago, genetic transformation of crop plants was not routine, and it was all but impossible with important cereals such as barley and wheat. The recent focus on crop plant genomics—yet based on the Arabidopsis toolbox—boosted the research for more efficient plant transformation protocols, thereby considerably widened the number of genetically tractable crops. Moreover, modern genome editing methods such as the CRISPR/Cas technique are game changers in plant breeding, though heavily dependent on technical optimization of plant transformation. Basically, there are two successful ways of introducing DNA into plant cells: one is making use of a living DNA vector, namely, microbes such as the soil bacterium Agrobacterium tumefaciens that infects plants and naturally transfers and subsequently integrates DNA into the plant genome. The other method uses a direct physical transfer of DNA by means of microinjection, microprojectile bombardment, or polymers such as polyethylene glycol. Both ways subsequently require sophisticated strategies for selecting and multiplying the transformed cells under tissue culture conditions to develop into a fully functional plant with the new desirable characteristics. Here we discuss practical and theoretical aspects of cereal crop plant transformation by Agrobacterium-mediated transformation and microparticle bombardment. Using immature embryos as explants, the efficiency of cereal transformation is compelling, reaching today up to 80% transformation efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fraley RT, Rogers SG, Horsch RB, Sanders PR, Flick JS, Adams SP, Bittner ML, Brand LA, Fink CL, Fry JS, Galluppi GR, Goldberg SB, Hoffmann NL, Woo SC (1983) Expression of bacterial genes in plant cells. Proc Natl Acad Sci U S A 80:4803–4807

    Article  CAS  Google Scholar 

  2. Herrera-Estrella L, Depicker A, Van Montagu M, Schell J (1983) Expression of chimaeric genes transferred into plant cells using a Ti-plasmid-derived vector. Nature 303:209–213

    Article  CAS  Google Scholar 

  3. Bevan M, Flavell R, Chilton M (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Nature 304:184–187

    Article  CAS  Google Scholar 

  4. Koncz C, Martini N, Mayerhofer R, Koncz-Kalman KH, Redei GP, Schell J (1989) High-frequency T-DNA-mediated gene tagging in plants. Proc Natl Acad Sci U S A 86:8467–8471

    Article  CAS  Google Scholar 

  5. Feldmann KA (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J 1:71–82

    Article  CAS  Google Scholar 

  6. Gordon JE, Christie PJ (2014) The Agrobacterium Ti Plasmids. Microbiol Spectr 2(6). https://doi.org/10.1128/microbiolspec.PLAS-0010-2013

  7. Raineri DM, Bottino P, Gordon MP, Nester EW (1990) Agrobacterium-mediated transformation of rice (Oryza sativa). Bio-Technol 8:33–38

    CAS  Google Scholar 

  8. Ishida Y, Saito H, Ohta S, Hiei H, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L) mediated by Agrobacterium tumefaciens. Nat Biotechnol 14:745–750

    Article  CAS  Google Scholar 

  9. Tingay S, McElroy D, Kalla R, Fieg S, Wang M, Thornton S, Brettell R (1997) Agrobacterium tumefaciens-mediated barley transformation. Plant J 11:1369–1376

    Article  CAS  Google Scholar 

  10. Mooney PA, Goodwin PB, Dennis ES, Llewellyn DJ (1991) Agrobacterium tumefaciens -gene transfer into wheat tissues. Plant Cell Tissue Organ Culture 25:209–218

    CAS  Google Scholar 

  11. Cheng M, Fry JE, Pang S, Zhou H, Hironaka CM, Duncan DR, Conner TW, Wan Y (1997) Plant Physiol 115:971–980

    Article  CAS  Google Scholar 

  12. Popelka JC, Altpeter F (2003) Agrobacterium tumefaciens-mediated genetic transformation of rye (Secale cereale L.). Mol Breed 11:203–211

    Article  CAS  Google Scholar 

  13. de Groot MJ, Bundock AP, Hooykaas PJJ, Beijersbergen AGM (1998) Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol 16:839–842

    Article  Google Scholar 

  14. Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJ (1995) Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J 14:3206–3214

    Article  CAS  Google Scholar 

  15. Cheng R, Ma R, Li K, Rong H, Lin X, Wang Z, Yang S, Ma Y (2012) Agrobacterium tumefaciens mediated transformation of marine microalgae Schizochytrium. Microbiol Res 167:179–186

    Article  CAS  Google Scholar 

  16. Kunik T, Tzfira T, Kapulnik Y, Gafni Y, Dingwall C, Citovsky V (2001) Genetic transformation of HeLa cells by Agrobacterium. Proc Natl Acad Sci U S A 98:1871–1876

    Article  CAS  Google Scholar 

  17. Keshavareddy G, Kumar ARV, Vemanna SR (2018) Methods of plant transformation—a review. Int J Curr Microbiol App Sci 7:2656–2668

    Article  Google Scholar 

  18. Zhou Y, Singh BR (2002) Red light stimulates flowering and anthocyanin biosynthesis in American cranberry. Plant Growth Regul 38:165–171

    Article  CAS  Google Scholar 

  19. Ugarte CC, Trupkin SA, Ghiglione H, Slafer G, Casal JJ (2010) Low red/far-red ratios delay spike and stem growth in wheat. J Exp Bot 61:3151–3162

    Article  CAS  Google Scholar 

  20. Imani J, Li L, Schäfer P, Kogel KH (2011) STARTS—a stable root transformation system for rapid functional analyses of proteins of the monocot model plant barley. Plant J 67:726–735

    Article  CAS  Google Scholar 

  21. Imani J, Berting A, Nitsche S, Schäfer S, Gerlich WH, Neumann KH (2002) The integration of a major hepatitis B virus gene into cell-cycle synchronized carrot cell suspension cultures and its expression in regenerated carrot plants. Plant Cell Tissue Organ Culture 71:157–164

    Article  CAS  Google Scholar 

  22. Lazo GR, Stein PA, Ludwig RA (1991) A DNA transformation-competent Arabidopsis genomic library in Agrobacterium. Biotechnology 9:963–967

    Article  CAS  Google Scholar 

  23. Monostori I, Heilmann M, Kocsy G, Rakszegi M, Ahres M, Altenbach SB, Szalai G, Pál M, Toldi D, Simon-Sarkadi L, Harnos N, Galiba G, Darko É (2018) LED lighting—modification of growth, metabolism, yield and flour composition in wheat by spectral quality and intensity. Front Plant Sci 9:605

    Article  Google Scholar 

  24. Hoekema A, Hirsch PR, Hooykaas PJJ, Schilperoort RA (1983) A binary plant vector strategy based on separation of vir- and T-region of the Agrobacterium tumefaciens Ti-plasmid. Nature 303:179–180

    Article  CAS  Google Scholar 

  25. Ditta G, Stanfield S, Corbin D, Helinski DR (1980) Broad host range DNA cloning system for Gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci U S A 77:7347–7351

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank E. Swidtschenko and C. Dechert for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Heinz Kogel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Imani, J., Kogel, KH. (2020). Plant Transformation Techniques: Agrobacterium- and Microparticle-Mediated Gene Transfer in Cereal Plants. In: Rustgi, S., Luo, H. (eds) Biolistic DNA Delivery in Plants. Methods in Molecular Biology, vol 2124. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0356-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0356-7_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0355-0

  • Online ISBN: 978-1-0716-0356-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics