Skip to main content

Live-Cell Imaging of Zygotic Intracellular Structures and Early Embryo Pattern Formation in Arabidopsis thaliana

  • Protocol
  • First Online:
Plant Embryogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2122))

Abstract

Plant embryogenesis begins with fertilization and ends with the generation of the basic body plan of the future plant. Despite its importance, the dynamics of flowering plant ontogeny have long been a mystery, because the embryo develops deep in the maternal tissue. Recently, an embryonic live-cell imaging system was established in Arabidopsis thaliana by developing an in vitro ovule cultivation method and utilizing two-photon excitation microscopy (2PEM), which is suitable for deep imaging. This system enabled us to visualize intracellular dynamics during zygote polarization and monitor the cell division pattern during embryogenesis from the zygote until organ formation. In this chapter, we describe a method that allows for high-resolution imaging of cytoskeletal rearrangements in the zygote and long-term tracing of embryo patterning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sato A, Toyooka K, Okamoto T (2010) Asymmetric cell division of rice zygotes located in embryo sac and produced by in vitro fertilization. Sex Plant Reprod 23(3):211–217. https://doi.org/10.1007/s00497-009-0129-9

    Article  PubMed  Google Scholar 

  2. Sakakibara K, Reisewitz P, Aoyama T, Friedrich T, Ando S, Sato Y, Tamada Y, Nishiyama T, Hiwatashi Y, Kurata T, Ishikawa M, Deguchi H, Rensing SA, Werr W, Murata T, Hasebe M, Laux T (2014) WOX13-like genes are required for reprogramming of leaf and protoplast cells into stem cells in the moss Physcomitrella patens. Development 141(8):1660–1670. https://doi.org/10.1242/dev.097444

    Article  CAS  PubMed  Google Scholar 

  3. He YC, He YQ, Qu LH, Sun MX, Yang HY (2007) Tobacco zygotic embryogenesis in vitro: the original cell wall of the zygote is essential for maintenance of cell polarity, the apical-basal axis and typical suspensor formation. Plant J 49(3):515–527. https://doi.org/10.1111/j.1365-313X.2006.02970.x

    Article  CAS  PubMed  Google Scholar 

  4. Natesh S, Rau MA (1984) The embryo. In: Johri BM (ed) Embryology of angiosperms. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 377–443. https://doi.org/10.1007/978-3-642-69302-1_8

    Chapter  Google Scholar 

  5. Mansfield SG, Briarty LG, Erni S (1991) Early embryogenesis in Arabidopsis thaliana. I. The mature embryo sac. Can J Bot 69:447–460

    Article  Google Scholar 

  6. Juergens G, Mayer U (1994) Arabidopsis. In: Bard J (ed) Embryos: colour atlas of development. Wolfe, London

    Google Scholar 

  7. Mansfield SG, Briarty LG (1991) Early embryogenesis in Arabidopsis thaliana. II. The developing embryo. Can J Bot 69:461–476

    Article  Google Scholar 

  8. Yoshida S, Barbier de Reuille P, Lane B, Bassel GW, Prusinkiewicz P, Smith RS, Weijers D (2014) Genetic control of plant development by overriding a geometric division rule. Dev Cell 29(1):75–87. https://doi.org/10.1016/j.devcel.2014.02.002

    Article  CAS  PubMed  Google Scholar 

  9. Gooh K, Ueda M, Aruga K, Park J, Arata H, Higashiyama T, Kurihara D (2015) Live-cell imaging and optical manipulation of Arabidopsis early embryogenesis. Dev Cell 34(2):242–251. https://doi.org/10.1016/j.devcel.2015.06.008

    Article  CAS  PubMed  Google Scholar 

  10. Mizuta Y, Kurihara D, Higashiyama T (2015) Two-photon imaging with longer wavelength excitation in intact Arabidopsis tissues. Protoplasma 252(5):1231–1240. https://doi.org/10.1007/s00709-014-0754-5

    Article  CAS  PubMed  Google Scholar 

  11. Kurihara D, Kimata Y, Higashiyama T, Ueda M (2017) In vitro ovule cultivation for live-cell imaging of zygote polarization and embryo patterning in Arabidopsis thaliana. J Vis Exp 127. https://doi.org/10.3791/55975

  12. Kimata Y, Higaki T, Kawashima T, Kurihara D, Sato Y, Yamada T, Hasezawa S, Berger F, Higashiyama T, Ueda M (2016) Cytoskeleton dynamics control the first asymmetric cell division in Arabidopsis zygote. Proc Natl Acad Sci U S A 113(49):14157–14162. https://doi.org/10.1073/pnas.1613979113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Park J, Kurihara D, Higashiyama T, Arata H (2014) Fabrication of microcage arrays to fix plant ovules for long-term live imaging and observation. Sens Actuators B Chem 191:178–185. https://doi.org/10.1016/j.snb.2013.09.060

    Article  CAS  Google Scholar 

  14. Nambo M, Kurihara D, Yamada T, Nishiwaki-Ohkawa T, Kadofusa N, Kimata Y, Kuwata K, Umeda M, Ueda M (2016) Combination of synthetic chemistry and live-cell imaging identified a rapid cell division inhibitor in tobacco and Arabidopsis thaliana. Plant Cell Physiol 57(11):2255–2268. https://doi.org/10.1093/pcp/pcw140

    Article  CAS  PubMed  Google Scholar 

  15. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  CAS  Google Scholar 

  16. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

M.U., Y.K., and D.K. are supported by the Japan Society for the Promotion of Science (Grant-in-Aid for Scientific Research on Innovative Areas [JP17H05838 for M.U.], Grant-in-Aid for Challenging Exploratory Research [JP16K14753 for M.U.], Grant-in-Aid for JSPS Research Fellow [JP18J10512 for Y.K.], Grant-in-Aid for Scientific Research [B; JP17H03697 for D.K.], and Challenging Research [Exploratory; JP 18 K19331 for D.K.]). This work was supported by the Institute of Transformative Bio-Molecules of Nagoya University and the Japan Advanced Plant Science Network.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minako Ueda or Daisuke Kurihara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ueda, M., Kimata, Y., Kurihara, D. (2020). Live-Cell Imaging of Zygotic Intracellular Structures and Early Embryo Pattern Formation in Arabidopsis thaliana. In: Bayer, M. (eds) Plant Embryogenesis. Methods in Molecular Biology, vol 2122. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0342-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0342-0_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0341-3

  • Online ISBN: 978-1-0716-0342-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics