Skip to main content

CRISPR-Cas9 Genome Editing in Human Cell Lines with Donor Vector Made by Gibson Assembly

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2115))

Abstract

CRISPR Cas9 genome editing allows researchers to modify genes in a multitude of ways including to obtain deletions, epitope-tagged loci, and knock-in mutations. Within 6 years of its initial application, CRISPR-Cas9 genome editing has been widely employed, but disadvantages to this method, such as low modification efficiencies and off-target effects, need careful consideration. Obtaining custom donor vectors can also be expensive and time-consuming. This chapter details strategies to overcome barriers to CRISPR-Cas9 genome editing as well as recent developments in employing this technique.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van Duijn E, Barbu IM, Barendregt A, Jore MM, Wiedenheft B, Lundgren M, Westra ER, Brouns SJ, Doudna JA, van der Oost J, Heck AJ (2012) Native tandem and ion mobility mass spectrometry highlight structural and modular similarities in clustered-regularly-interspaced shot-palindromic-repeats (CRISPR)-associated protein complexes from Escherichia coli and Pseudomonas aeruginosa. Mol Cell Proteomics 11:1430–1441

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Haurwitz RE, Sternberg SH, Doudna JA (2012) Csy4 relies on an unusual catalytic dyad to position and cleave CRISPR RNA. EMBO J 31:2824–2832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sternberg SH, Haurwitz RE, Doudna JA (2012) Mechanism of substrate selection by a highly specific CRISPR endoribonuclease. RNA 18:661–672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Sashital DG, Jinek M, Doudna JA (2011) An RNA-induced conformational change required for CRISPR RNA cleavage by the endoribonuclease Cse3. Nat Struct Mol Biol 18:680–687

    Article  CAS  PubMed  Google Scholar 

  6. Jore MM, Lundgren M, van Duijn E, Bultema JB, Westra ER, Waghmare SP, Wiedenheft B, Pul U, Wurm R, Wagner R, Beijer MR, Barendregt A, Zhou K, Snijders AP, Dickman MJ, Doudna JA, Boekema EJ, Heck AJ, van der Oost J, Brouns SJ (2011) Structural basis for CRISPR RNA-guided DNA recognition by cascade. Nat Struct Mol Biol 18:529–536

    Article  CAS  PubMed  Google Scholar 

  7. Haurwitz RE, Jinek M, Wiedenheft B, Zhou K, Doudna JA (2010) Sequence- and structure-specific RNA processing by a CRISPR endonuclease. Science 329:1355–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Wiedenheft B, Zhou K, Jinek M, Coyle SM, Ma W, Doudna JA (2009) Structural basis for DNase activity of a conserved protein implicated in CRISPR-mediated genome defense. Structure 17:904–912

    Article  CAS  PubMed  Google Scholar 

  9. Vazquez N, Sanchez L, Marks R, Martinez E, Fanniel V, Lopez A, Salinas A, Flores I, Hirschmann J, Gilkerson R, Schuenzel E, Dearth R, Halaby R, Innis-Whitehouse W, Keniry M (2018) A protocol for custom CRISPR Cas9 donor vector construction to truncate genes in mammalian cells using pcDNA3 backbone. BMC Mol Biol 19:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Lee JS, Kallehauge TB, Pedersen LE, Kildegaard HF (2015) Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Sci Rep 5:8572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. van Erp PB, Jackson RN, Carter J, Golden SM, Bailey S, Wiedenheft B (2015) Mechanism of CRISPR-RNA guided recognition of DNA targets in Escherichia coli. Nucleic Acids Res 43:8381–8391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Charpentier E (2015) CRISPR-Cas9: how research on a bacterial RNA-guided mechanism opened new perspectives in biotechnology and biomedicine. EMBO Mol Med 7:363–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rollins MF, Schuman JT, Paulus K, Bukhari HS, Wiedenheft B (2015) Mechanism of foreign DNA recognition by a CRISPR RNA-guided surveillance complex from Pseudomonas aeruginosa. Nucleic Acids Res 43:2216–2222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dyda F, Hickman AB (2015) Mechanism of spacer integration links the CRISPR/Cas system to transposition as a form of mobile DNA. Mob DNA 6:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Moore R, Spinhirne A, Lai MJ, Preisser S, Li Y, Kang T, Bleris L (2015) CRISPR-based self-cleaving mechanism for controllable gene delivery in human cells. Nucleic Acids Res 43:1297–1303

    Article  CAS  PubMed  Google Scholar 

  16. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153:910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Zhang Q, Rho M, Tang H, Doak TG, Ye Y (2013) CRISPR-Cas systems target a diverse collection of invasive mobile genetic elements in human microbiomes. Genome Biol 14:R40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tzur YB, Friedland AE, Nadarajan S, Church GM, Calarco JA, Colaiacovo MP (2013) Heritable custom genomic modifications in Caenorhabditis elegans via a CRISPR-Cas9 system. Genetics 195:1181–1185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Friedland AE, Tzur YB, Esvelt KM, Colaiacovo MP, Church GM, Calarco JA (2013) Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 10:741–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336–4343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327:167–170

    Article  CAS  PubMed  Google Scholar 

  24. Horvath P, Coute-Monvoisin AC, Romero DA, Boyaval P, Fremaux C, Barrangou R (2009) Comparative analysis of CRISPR loci in lactic acid bacteria genomes. Int J Food Microbiol 131:62–70

    Article  CAS  PubMed  Google Scholar 

  25. Sorek R, Kunin V, Hugenholtz P (2008) CRISPR—a widespread system that provides acquired resistance against phages in bacteria and archaea. Nat Rev Microbiol 6:181–186

    Article  CAS  PubMed  Google Scholar 

  26. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169:5429–5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang H, Li Z, Daczkowski CM, Gabel C, Mesecar AD, Chang L (2019) Structural basis for the inhibition of CRISPR-Cas12a by Anti-CRISPR proteins. Cell Host Microbe 25:e814–e826

    Article  CAS  Google Scholar 

  28. Wandera KG, Collins SP, Wimmer F, Marshall R, Noireaux V, Beisel CL (2019) An enhanced assay to characterize anti-CRISPR proteins using a cell-free transcription-translation system. Methods. https://doi.org/10.1016/j.ymeth.2019.05.014

  29. Hoffmann MD, Aschenbrenner S, Grosse S, Rapti K, Domenger C, Fakhiri J, Mastel M, Borner K, Eils R, Grimm D, Niopek D (2019) Cell-specific CRISPR-Cas9 activation by microRNA-dependent expression of anti-CRISPR proteins. Nucleic Acids Res 47:e75

    Article  PubMed  PubMed Central  Google Scholar 

  30. Babu M, Beloglazova N, Flick R, Graham C, Skarina T, Nocek B, Gagarinova A, Pogoutse O, Brown G, Binkowski A, Phanse S, Joachimiak A, Koonin EV, Savchenko A, Emili A, Greenblatt J, Edwards AM, Yakunin AF (2011) A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair. Mol Microbiol 79:484–502

    Article  CAS  PubMed  Google Scholar 

  31. Bikard D, Hatoum-Aslan A, Mucida D, Marraffini LA (2012) CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection. Cell Host Microbe 12:177–186

    Article  CAS  PubMed  Google Scholar 

  32. Hatoum-Aslan A, Marraffini LA (2014) Impact of CRISPR immunity on the emergence and virulence of bacterial pathogens. Curr Opin Microbiol 17:82–90

    Article  CAS  PubMed  Google Scholar 

  33. Sampson TR, Saroj SD, Llewellyn AC, Tzeng YL, Weiss DS (2013) A CRISPR/Cas system mediates bacterial innate immune evasion and virulence. Nature 497:254–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJ, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA, van der Oost J, Backofen R, Koonin EV (2015) An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 13:722–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Koonin EV, Makarova KS, Zhang F (2017) Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 37:67–78

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Tang Y, Fu Y (2018) Class 2 CRISPR/Cas: an expanding biotechnology toolbox for and beyond genome editing. Cell Biosci 8:59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xie K, Zhang J, Yang Y (2014) Genome-wide prediction of highly specific guide RNA spacers for CRISPR-Cas9-mediated genome editing in model plants and major crops. Mol Plant 7:923–926

    Article  CAS  PubMed  Google Scholar 

  39. Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  PubMed  Google Scholar 

  41. Fu Y, Foden JA, Khayter C, Maeder ML, Reyon D, Joung JK, Sander JD (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dow LE, Fisher J, O’Rourke KP, Muley A, Kastenhuber ER, Livshits G, Tschaharganeh DF, Socci ND, Lowe SW (2015) Inducible in vivo genome editing with CRISPR-Cas9. Nat Biotechnol 33:390–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Polstein LR, Gersbach CA (2015) A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat Chem Biol 11:198–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zetsche B, Volz SE, Zhang F (2015) A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat Biotechnol 33:139–142

    Article  CAS  PubMed  Google Scholar 

  45. Chiang TW, le Sage C, Larrieu D, Demir M, Jackson SP (2016) CRISPR-Cas9(D10A) nickase-based genotypic and phenotypic screening to enhance genome editing. Sci Rep 6:24356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. O’Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA (2014) Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516:263–266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Abudayyeh OO, Gootenberg JS, Konermann S, Joung J, Slaymaker IM, Cox DB, Shmakov S, Makarova KS, Semenova E, Minakhin L, Severinov K, Regev A, Lander ES, Koonin EV, Zhang F (2016) C2c2 is a single-component programmable RNA-guided RNA-targeting CRISPR effector. Science 353:aaf5573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Abudayyeh OO, Gootenberg JS, Essletzbichler P, Han S, Joung J, Belanto JJ, Verdine V, Cox DBT, Kellner MJ, Regev A, Lander ES, Voytas DF, Ting AY, Zhang F (2017) RNA targeting with CRISPR-Cas13. Nature 550:280–284

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Cox DBT, Gootenberg JS, Abudayyeh OO, Franklin B, Kellner MJ, Joung J, Zhang F (2017) RNA editing with CRISPR-Cas13. Science 358:1019–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Abudayyeh OO, Gootenberg JS, Franklin B, Koob J, Kellner MJ, Ladha A, Joung J, Kirchgatterer P, Cox DBT, Zhang F (2019) A cytosine deaminase for programmable single-base RNA editing. Science 365:382–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Klompe SE, Vo PLH, Halpin-Healy TS, Sternberg SH (2019) Transposon-encoded CRISPR-Cas systems direct RNA-guided DNA integration. Nature 571:219–225

    Article  CAS  PubMed  Google Scholar 

  52. Wienert B, Wyman SK, Richardson CD, Yeh CD, Akcakaya P, Porritt MJ, Morlock M, Vu JT, Kazane KR, Watry HL, Judge LM, Conklin BR, Maresca M, Corn JE (2019) Unbiased detection of CRISPR off-targets in vivo using DISCOVER-Seq. Science 364:286–289

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Trasanidou D, Geros AS, Mohanraju P, Nieuwenweg AC, Nobrega FL, Staals RHJ (2019) Keeping crispr in check: diverse mechanisms of phage-encoded anti-crisprs. FEMS Microbiol Lett 366:fnz098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Bondy-Denomy J, Davidson AR, Doudna JA, Fineran PC, Maxwell KL, Moineau S, Peng X, Sontheimer EJ, Wiedenheft B (2018) A unified resource for tracking anti-CRISPR names. CRISPR J 1:304–305

    Article  PubMed  Google Scholar 

  55. Bondy-Denomy J, Garcia B, Strum S, Du M, Rollins MF, Hidalgo-Reyes Y, Wiedenheft B, Maxwell KL, Davidson AR (2015) Multiple mechanisms for CRISPR-Cas inhibition by anti-CRISPR proteins. Nature 526:136–139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Lee J, Mir A, Edraki A, Garcia B, Amrani N, Lou HE, Gainetdinov I, Pawluk A, Ibraheim R, Gao XD, Liu P, Davidson AR, Maxwell KL, Sontheimer EJ (2018) Potent Cas9 inhibition in bacterial and human cells by AcrIIC4 and AcrIIC5 anti-CRISPR proteins. MBio 9:e02321-18

    Article  PubMed  PubMed Central  Google Scholar 

  57. Maxwell KL (2016) Phages fight back: inactivation of the CRISPR-Cas bacterial immune system by anti-CRISPR proteins. PLoS Pathog 12:e1005282

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Maxwell KL (2017) The anti-CRISPR story: a battle for survival. Mol Cell 68:8–14

    Article  CAS  PubMed  Google Scholar 

  59. Maxwell KL, Garcia B, Bondy-Denomy J, Bona D, Hidalgo-Reyes Y, Davidson AR (2016) The solution structure of an anti-CRISPR protein. Nat Commun 7:13134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pawluk A, Bondy-Denomy J, Cheung VH, Maxwell KL, Davidson AR (2014) A new group of phage anti-CRISPR genes inhibits the type I-E CRISPR-Cas system of Pseudomonas aeruginosa. MBio 5:e00896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Pawluk A, Davidson AR, Maxwell KL (2018) Anti-CRISPR: discovery, mechanism and function. Nat Rev Microbiol 16:12–17

    Article  CAS  PubMed  Google Scholar 

  62. Pawluk A, Shah M, Mejdani M, Calmettes C, Moraes TF, Davidson AR, Maxwell KL (2017) Disabling a type I-E CRISPR-Cas nuclease with a bacteriophage-encoded anti-CRISPR protein. MBio 8:e01751-17

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pawluk A, Staals RH, Taylor C, Watson BN, Saha S, Fineran PC, Maxwell KL, Davidson AR (2016) Inactivation of CRISPR-Cas systems by anti-CRISPR proteins in diverse bacterial species. Nat Microbiol 1:16085

    Article  CAS  PubMed  Google Scholar 

  64. Stanley SY, Maxwell KL (2018) Phage-encoded anti-CRISPR defenses. Annu Rev Genet 52:445–464

    Article  CAS  PubMed  Google Scholar 

  65. Gangopadhyay SA, Cox KJ, Manna D, Lim D, Maji B, Zhou Q, Choudhary A (2019) Precision control of CRISPR-Cas9 using small molecules and light. Biochemistry 58:234–244

    Article  CAS  PubMed  Google Scholar 

  66. Kocak DD, Josephs EA, Bhandarkar V, Adkar SS, Kwon JB, Gersbach CA (2019) Increasing the specificity of CRISPR systems with engineered RNA secondary structures. Nat Biotechnol 37:657–666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Raikwar SP, Kikkeri NS, Sakuru R, Saeed D, Zahoor H, Premkumar K, Mentor S, Thangavel R, Dubova I, Ahmed ME, Selvakumar GP, Kempuraj D, Zaheer S, Iyer SS, Zaheer A (2019) Next generation precision medicine: CRISPR-mediated genome editing for the treatment of neurodegenerative disorders. J Neuroimmune Pharmacol. https://doi.org/10.1007/s11481-019-09849-y

    Article  PubMed  PubMed Central  Google Scholar 

  68. Schermer B, Benzing T (2019) Genome editing with CRISPR/Cas9: first steps towards a new era in medicine? Dtsch Med Wochenschr 144:276–281

    Article  PubMed  Google Scholar 

  69. Vaughan A, Yang IA (2019) CRISPR-Cas9 technology: a new direction for personalized medicine in respiratory disease? Respirology 24:614–615

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan Keniry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sahoo, N., Cuello, V., Udawant, S., Litif, C., Mustard, J.A., Keniry, M. (2020). CRISPR-Cas9 Genome Editing in Human Cell Lines with Donor Vector Made by Gibson Assembly. In: Sioud, M. (eds) RNA Interference and CRISPR Technologies. Methods in Molecular Biology, vol 2115. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0290-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0290-4_20

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0289-8

  • Online ISBN: 978-1-0716-0290-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics