Skip to main content

Accurate Scoring in Seconds with the Fragment Molecular Orbital and Density-Functional Tight-Binding Methods

  • Protocol
  • First Online:
Quantum Mechanics in Drug Discovery

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2114))

Abstract

The accurate evaluation of receptor-ligand interactions is an essential part of rational drug design. While quantum mechanical (QM) methods have been a promising means by which to achieve this, traditional QM is not applicable for large biological systems due to its high computational cost. Here, the fragment molecular orbital (FMO) method has been combined with the density-functional tight-binding (DFTB) method to compute energy calculations of biological systems in seconds. FMO-DFTB outperformed GBVI/WSA in identifying a set of 10 binders versus a background of 500 decoys applied to human k-opioid receptor. The significant increase in the speed and the high accuracy achieved with FMO-DFTB calculations allows FMO to be applied in areas of drug discovery that were not previously accessible to traditional QM methodologies. For the first time, it is now possible to perform FMO calculations in a high-throughput manner.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Heifetz A, Chudyk EI, Gleave L, Aldeghi M, Cherezov V, Fedorov DG, Biggin PC, Bodkin MJ (2016) The fragment molecular orbital method reveals new insight into the chemical nature of GPCR-ligand interactions. J Chem Inf Model 56:159–172

    Article  CAS  Google Scholar 

  2. Tong Y, Mei Y, Li YL, Ji CG, Zhang JZ (2010) Electrostatic polarization makes a substantial contribution to the free energy of avidin-biotin binding. J Am Chem Soc 132:5137–5142

    Article  CAS  Google Scholar 

  3. Raha K, Peters MB, Wang B, Yu N, Wollacott AM, Westerhoff LM, Merz KM Jr (2007) The role of quantum mechanics in structure-based drug design. Drug Discov Today 12:725–731

    Article  CAS  Google Scholar 

  4. Beratan DN, Liu C, Migliore A, Polizzi NF, Skourtis SS, Zhang P, Zhang Y (2015) Charge transfer in dynamical biosystems, or the treachery of (static) images. Acc Chem Res 48:474–481

    Article  CAS  Google Scholar 

  5. Bissantz C, Kuhn B, Stahl M (2010) A medicinal chemist’s guide to molecular interactions. J Med Chem 53:5061–5084

    Article  CAS  Google Scholar 

  6. Ozawa T, Okazaki K, Kitaura K (2011) CH/pi hydrogen bonds play a role in ligand recognition and equilibrium between active and inactive states of the beta2 adrenergic receptor: an ab initio fragment molecular orbital (FMO) study. Bioorg Med Chem 19:5231–5237

    Article  CAS  Google Scholar 

  7. Fedorov DG, Nagata T, Kitaura K (2012) Exploring chemistry with the fragment molecular orbital method. Phys Chem Chem Phys 14:7562–7577

    Article  CAS  Google Scholar 

  8. Lu Y-X, Zou J-W, Wang Y-H, Yu Q-S (2007) Substituent effects on noncovalent halogen/π interactions: theoretical study. Int J Quantum Chem 107:1479–1486

    Article  CAS  Google Scholar 

  9. Gallivan JP, Dougherty DA (1999) Cation-pi interactions in structural biology. Proc Natl Acad Sci U S A 96:9459–9464

    Article  CAS  Google Scholar 

  10. Johnston RC, Cheong PH (2013) C-H...O non-classical hydrogen bonding in the stereomechanics of organic transformations: theory and recognition. Org Biomol Chem 11:5057–5064

    Article  CAS  Google Scholar 

  11. Pace CN, Fu H, Fryar KL, Landua J, Trevino SR, Shirley BA, Hendricks MM, Iimura S, Gajiwala K, Scholtz JM, Grimsley GR (2011) Contribution of hydrophobic interactions to protein stability. J Mol Biol 408:514–528

    Article  CAS  Google Scholar 

  12. Popov P, Peng Y, Shen L, Stevens RC, Cherezov V, Liu ZJ, Katritch V (2018) Computational design of thermostabilizing point mutations for G protein-coupled receptors. elife 7:pii: e34729

    Article  Google Scholar 

  13. Fedorov DG, Kitaura K (2007) Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. J Phys Chem A 111:6904–6914

    Article  CAS  Google Scholar 

  14. Kitaura K, Ikeo E, Asada T, Nakano T, Uebayasi M (1999) Fragment molecular orbital method: an approximate computational method for large molecules. Chem Phys Lett 313:701–706

    Article  CAS  Google Scholar 

  15. Nishimoto Y, Fedorov DG, Irle S (2014) Density-functional tight-binding combined with the fragment molecular orbital method. J Chem Theory Comput 10:4801–4812

    Article  CAS  Google Scholar 

  16. Morao I, Fedorov DG, Robinson R, Southey M, Townsend-Nicholson A, Bodkin MJ, Heifetz A (2017) Rapid and accurate assessment of GPCR-ligand interactions Using the fragment molecular orbital-based density-functional tight-binding method. J Comput Chem 38:1987–1990

    Article  CAS  Google Scholar 

  17. Vuong VQ, Nishimoto Y, Fedorov DG, Sumpter BG, Niehaus TA, Irle S (2019) The fragment molecular orbital method based on long-range corrected density-functional tight-binding. J Chem Theory Comput 15:3008–3020

    Article  CAS  Google Scholar 

  18. Fedorov DG, Kitaura K (2018) Pair interaction energy decomposition analysis for density functional theory and density-functional tight-binding with an evaluation of energy fluctuations in molecular dynamics. J Phys Chem A 122:1781–1795

    Article  CAS  Google Scholar 

  19. Nishimoto Y, Nakata H, Fedorov DG, Irle S (2015) Large-scale quantum-mechanical molecular dynamics simulations using density-functional tight-binding combined with the fragment molecular orbital method. J Phys Chem Lett 6:5034–5039

    Article  CAS  Google Scholar 

  20. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  21. Kubillus M, Kubar T, Gaus M, Rezac J, Elstner M (2015) Parameterization of the DFTB3 method for Br, Ca, Cl, F, I, K and Na in organic and biological systems. J Chem Theory Comput 11(1):332–342

    Article  CAS  Google Scholar 

  22. Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, Liu W, Thompson AA, Huang XP, Carroll FI, Mascarella SW, Westkaemper RB, Mosier PD, Roth BL, Cherezov V, Stevens RC (2012) Structure of the human kappa-opioid receptor in complex with JDTic. Nature 485:327–332

    Article  CAS  Google Scholar 

  23. Kormos CM, Gichinga MG, Runyon SP, Thomas JB, Mascarella SW, Decker AM, Navarro HA, Carroll FI (2016) Design, synthesis, and pharmacological evaluation of JDTic analogs to examine the significance of replacement of the 3-hydroxyphenyl group with pyridine or thiophene bioisosteres. Bioorg Med Chem 24:3842–3848

    Article  CAS  Google Scholar 

  24. Clarke E, Jarvis CI, Goncalves MB, Kalindjian SB, Adams DR, Brown JT, Shiers JJ, Taddei DMA, Ravier E, Barlow S, Miller I, Smith V, Borthwick AD, Corcoran JPT (2018) Design and synthesis of a potent, highly selective, orally bioavailable, retinoic acid receptor alpha agonist. Bioorg Med Chem 26:798–814

    Article  CAS  Google Scholar 

Download references

Acknowledgments

I.M. would like to thank Dr. Balínt Aradi and the Bremen Center for Computational Materials Science for the kind permission to use the Slater-Koster files to run DFTB calculations. D.G.F. was supported by JSPS KAKENHI Grant 19H02682.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inaki Morao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Morao, I., Heifetz, A., Fedorov, D.G. (2020). Accurate Scoring in Seconds with the Fragment Molecular Orbital and Density-Functional Tight-Binding Methods. In: Heifetz, A. (eds) Quantum Mechanics in Drug Discovery. Methods in Molecular Biology, vol 2114. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0282-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0282-9_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0281-2

  • Online ISBN: 978-1-0716-0282-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics