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Abstract

Emergent coronaviruses such as MERS-CoV and SARS-CoV can cause significant morbidity and mortality
in infected individuals. Lung infection is a common clinical feature and contributes to disease severity as well
as viral transmission. Animal models are often required to study viral infections and therapies, especially
during an initial outbreak. Histopathology studies allow for identification of lesions and affected cell types
to better understand viral pathogenesis and clarify effective therapies. Use of immunostaining allows
detection of presumed viral receptors and viral tropism for cells can be evaluated to correlate with lesions.
In the lung, lesions and immunostaining can be qualitatively described to define the cell types, micro-
anatomic location, and type of changes seen. These features are important and necessary, but this approach
can have limitations when comparing treatment groups. Semiquantitative and quantitative tissue scores are
more rigorous as these provide the ability to statistically compare groups and increase the reproducibility
and rigor of the study. This review describes principles, approaches, and resources that can be useful to
evaluate coronavirus lung infection, focusing on MER-CoV infection as the principal example.
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1 Introduction

Emergent coronaviruses such as severe acute respiratory syndrome
(SARS-CoV) and Middle East respiratory syndrome (MERS-CoV)
have caused significant impacts on human health, especially during
their initial outbreaks [1, 2]. People infected with these corona-
viruses often have significant lung disease that contributes to clini-
cal morbidity and mortality [3–5]. Histopathologic examination
and immunostaining (e.g., immunohistochemistry) of lung tissues
are essential to better understand disease pathogenesis and evaluate
novel treatments of these current (and future) virus outbreaks
[6–10]. Here, we will focus on MERS-CoV infection to present
important principles for valid qualitative and quantitative evalua-
tion of infected lung tissues.
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1.1 Factors that

Influence Evaluation

Preparation of quality lung tissue samples is important for histo-
pathologic examination to optimize preservation of fine pulmonary
architecture and, in the case of immunostaining, antigenicity of
target epitopes [11–13]. A study by Engel and Moore identified
more than 60 variables in this time frame, beginning with proper
sample collection and handling and including multiple aspects of
tissue collection, fixation, processing, embedding, slide drying, and
storage [14]. Thus, attention to details and quality early will greatly
aid the subsequent evaluation, interpretation, and impact of tissue
examination.

To collect lungs for histology, samples should be harvested as
soon as possible following death to minimize autolysis [11]. Autol-
ysis (“self-digestion”) is a postmortem change characterized by
degradation of cellular constituents (DNA, RNA, protein) and
dissolution of the tissue [15]. Not only can this cause degradation
of epitopes and increased nonspecific staining with immunohisto-
chemistry, autolytic regions can be morphologically confused with
foci of necrosis and edema [15–17]. If animals will be euthanized, it
is preferable to select a method that does not target the lungs such
as an intravenous agent. Even use of inhalational overdose of car-
bon dioxide, as is commonly used in rodents, can potentially cause
minor edema/hemorrhage [11, 18, 19]. Evaluation of controls
should be standard to evaluate for antemortem or euthanasia-
related variables affecting lung evaluation. When examining
rodents versus lungs from larger animals or humans, sampling
becomes a relevant variable. For instance, mice have small lungs
that can be sectioned onto one glass slide for widespread evalua-
tion. Larger sized lungs cannot be sampled adequately using only
one slide without introducing sampling bias. Therefore, several
samples will need to be collected in larger lungs. The collection
method will need to be defined in the methods of publications and
should include collection site (standardized vs. lesions sites) and
total number, the latter of which depends on the size of the lungs,
distribution of lung lesions, and overarching goals of the study.

Proper and adequate fixation of the tissues is essential to retain
optimal tissue morphology and cellular antigenicity for immunos-
taining techniques [11, 20]. However, it is important to remember
that if lungs are to be assessed or scored for macroscopic (gross)
indicators of disease (such as color, surface texture, and consis-
tency), this must be done prior to fixation, which will affect all of
these parameters. Macroscopic evaluation and scoring can be a nice
tool to complement histopathology lesions [21, 22]. For tissues
that will be paraffin embedded, sections are typically fixed in 10%
neutral buffered formalin or 4% paraformaldehyde, though other
fixatives may be employed based on the desired analysis endpoints.
Collected lung samples can be placed in a minimum of 20:1 volume
of fixative:tissue with a maximal thickness of tissue of no more than
~5 mm in at least one dimension to be consistently fixed [20]. For
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rodents, inflation of the lungs via intratracheal instillation of fixative
is recommended to best preserve lung morphology and reduce
artifactual atelectasis [15]. However, this approach is contraindi-
cated for lung infection as this can alter the anatomic location of
inflammation and cellular debris [22]. The lungs and heart of
rodents can be removed en bloc for fixation. Freezing of tissue
may be an alternative approach to preserve specific antigens, but
this process typically results in suboptimal retention of cellular and
tissue architectural detail [11].

After processing to dehydrate the fixed lungs, samples must be
embedded and sectioned in a consistent manner. Due to the rela-
tively small size of mice, all lung lobes can be embedded en bloc
with the ventral lobar surfaces oriented down in the cassette, which
results in sections showing longitudinal views of major conducting
airways. An alternative approach for mice, or standard approach for
larger species, lung lobes can be collected as multiple sections that
fit into a cassette, with each sample embedded separately
[11]. Slides are typically stained with hematoxylin and eosin
(HE) for routine histologic evaluation. If immunostaining is
desired, it is essential to optimize and validate each new antibody
utilizing appropriate positive and negative controls to ensure accu-
rate staining results [20, 23]. Similarly, if special histochemical
stains will be employed, appropriate control slides and tissues
should also be utilized for each batch.

Awareness of normal anatomy and morphology is necessary to
recognize any type of change and when utilizing animal models of
human disease, this includes knowing differences between the spe-
cies [24, 25]. For example, there are a number of morphologic
differences between the respiratory tract structures of mice and
humans. Lobation is distinct, in that mice have four right lung
lobes (cranial, middle, caudal, and accessory) and only one left
lobe, while humans have three right lung lobes (upper, middle,
and lower) and two left lobes (upper and lower) [15, 22]. Rats and
mice lack intralobular septa, intrapulmonary bronchi, intrapulmon-
ary submucosal glands, and respiratory bronchioles. Mice also have
more club cells extending to the trachea, a thinner blood-gas
barrier, and a smaller alveolar diameter than humans
[11, 26]. These anatomic variations do not mean that rodents
cannot be very valuable models of lung disease; rather they are
highlighted here as an example of the type of knowledge necessary
for correct interpretation of experimental models.

Inclusion of experienced board-certified pathologists, who are
specially trained to examine and interpret tissues changes, as part of
the multidisciplinary team can greatly enhance the quality of tissue
evaluation [22, 27]. By histopathology, a skilled eye (ideally a
pathologist familiar with the model) can not only define the types
of inflammatory processes, but also corroborate these findings to
clinical signs and/or data from other analyses [22, 27–30]. In
addition, pathologists have knowledge of correct lesion
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nomenclature, as well as potential effects of such variables as strain-
related background lesions, husbandry, the microbiome, and diet
on the interpretation of results [25]. If pathologists are not
involved in designing translational experiments and interpreting
lesions in animal models, bias may be introduced and the accuracy
of the data and conclusions may be questionable. This approach,
which lacks the expertise of a pathologist trained in tissue interpre-
tation, has been labeled as “do-it-yourself pathology” and is linked
to multiple publications containing erroneous interpretations
[22, 25, 31, 32]. While observations made by biomedical personnel
may be biologically accurate in some cases, it is important to note
that tissue examination by non-pathologists (even those who are
“scientific experts” for a particular disease) is prone to false-positive
and false-negative errors and not recommended [33]. Ideally, tis-
sues should be examined by a pathologist familiar with histopathol-
ogy of the model (seeNote 1). It is recognized that not all labs have
access to pathologists for this role and in many situations a member
of the investigational team is assigned to the role. In these situa-
tions, if possible, it helps to have a pathologist review the study
findings prior to publication or have the examiner meet with a
pathologist to screen the slides and data for accuracy.

Lungs have unique features compared to other organs that are
important for consideration in designing experiments or when
making interpretations. For study of infectious diseases, distribu-
tion and histologic appearance of lung lesions depends on a variety
of factors including the viral inoculate concentration, route of
exposure, regional deposition, cellular uptake, chronicity, and
host immune response. For instance, inbred mouse strains can
have variably sized airways that may affect viral droplet delivery or
clinical disease manifestations such as airway obstruction
[34]. Inbred mouse strains can also exhibit biased (e.g.,
Th1 vs. Th2 immune responses) or deficient immune signaling
pathways that might influence infection susceptibility or severity
[35, 36]. Sex can also be an influencing factor for infection and
needs to be considered in the experimental design [37]. Even
actions as simple as laying an animal in lateral recumbency to
recover from anesthesia following viral inoculation may lead to
more prominent lesions in certain lobe(s) [22]. For many of these
features, inclusion of appropriate control animals (i.e., strain-, age-,
and sex-matched, housed under identical husbandry conditions
and free from confounding pathogens) is necessary and important
to tease out any lesions unrelated to the treatments. Unlike the
other organs in which the size is relatively static, the lung has
dynamic size changes during normal respiration. Handing of the
postmortem lung in a standardized manner is useful to prevent
postmortem atelectasis or variable inter-animal insufflation. Right
ventricular perfusion of fixative into the lungs prior to extraction
can help with fixation as well as insufflate the airspaces without
dislodging inflammation or mucocellular debris [22].
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1.2 Histopathology Histopathology is the microscopic examination of tissues for mor-
phologic or structural changes that differ from normal and these
changes are called lesions. Histopathology of coronavirus-infected
lung in humans and animal models can be a useful tool to help
define affected cells, illuminate the structural cause(s) of clinical
signs, and clarify potential therapies. During disease outbreaks,
clinical data including autopsy cases can be studied in parallel with
animal model investigations to better define lung disease pathogen-
esis and therapies. For instance, in 2012 the novel human corona-
virus known asMERS-CoVwas first isolated from a patient dying in
Saudi Arabia [2, 38]. In the region of the outbreak, local burial
rituals along with the requirement for high biosecurity constrained
autopsy studies from being performed until the first report in early
2016 [4]. Within a few years of the first reported MERS-CoV case
in humans in 2012, several animal models were being studied and
these models provided much of the initial critically important lung
pathology data [39–44].

Histopathologic examination of viral lung infection requires
awareness of any anticipated lesions from clinical or published
data, as it is available. Examples of MERS-CoV lesions are listed
in Table 1. For instance, acute diffuse alveolar damage (DAD) is a
common feature of MERS-CoV lung lesions and it is composed of
lesions such as edema, inflammation, and alveolar septal injury
[4, 48–50]. While awareness of reported lesions can help guide
the pathologist in examination, it is also useful to have a consistent
method for examination of experimental tissues to avoid uninten-
tional bias that might cause a failure to detection of unexpected
lesions [51]. Consistent examination of all tissues from control and
treatment groups can reduce the chances of mistakenly diagnosing
nonspecific model background phenotype as a MERS-CoV-specific

Table 1
Examples of lesions seen in MERS-CoV lung infections

Lesions Necrosis/cell death [45]

Edema [8, 21, 45]

Hyaline membranes/fibrin [21]

Inflammation [8]

Thrombi [8, 46]

Congestion [8]

Hemorrhage [45, 46]

Pneumonia [46, 47]

Type II hyperplasia [47]

Syncytia [47]
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lesion [22, 25, 29]. For instance, a lesion that is present in the
controls and treatment groups can be defined as a background
model/technique phenotype and should not be reported as a
MERS-CoV specific lesion. Masking of the pathologist to the
group assignments is useful to avoid observer bias and each type
of masking method has certain advantages and limitations (Table 2,
see Note 2) [22]. A common approach for histopathologic exami-
nation is to start at low magnification to screen for any obvious
lesions and assess quality of the tissue section (see Note 3). This
allows examination of microscopic structures such as airways,
alveoli, alveolar septa, air spaces, vessels, and pleura. Examination
at high magnification allows for screening of cellular and interstitial
components of each structure for lesions (e.g., injury, inflamma-
tion, necrosis). Most slides will be examined using HE, but addi-
tional stains can be used on serial sections to further define any
changes. For instance, mucus in goblet cells or secreted into air
spaces can be highlighted by special stains like Periodic acid Schiff
in glycogen-depleted tissues or Alcian blue [55, 56].

After the slides and stains have been examined for all groups,
the results will need to be prepared for publication. Qualitative
characterization of the findings is very important to understand
features of the disease including cellular tropism, anatomic predis-
position, and nature of lesions leading to clinical signs (see Note 4)
[10, 21]. Qualitative descriptions of lesions include type (e.g.,
epithelial sloughing/necrosis), location (e.g., alveoli), distribution
(e.g., locally extensive), inflammation (e.g., neutrophilic), and cell
types involved (e.g., type I pneumocytes). Qualitative features can
be sufficiently described in the text and exemplified in representa-
tive figures. Use of arrows and other forms of annotation are
valuable in figures to clarify and guide readers through the images.
High-quality descriptions will help the reader (including reviewers)
better understand what was seen and allow for others to reproduce
the study.

Table 2
Methods of masking to prevent observer bias [22, 52–54]

Method Approach Usage

Comprehensive Samples are labeled without group
identification (1, 2, 3, 4 . . .), minimal
background information provided

Allows for experienced observers to score
well-defined models, otherwise
susceptible to errors

Grouped Samples are labeled according to
de-identified groups (A1, A2, A3, B1,
B2, B3. . .)

Allows for masked evaluation of groups
while observer is informed about
experimental context

Post-
examination

Samples are examined in a transparent
manner to determine the type and scope
of tissue changes, samples are then
masked for scoring

Allows for full examination and disclosure
of experimental context; groups with
small N may let observer recall sample
group assignment
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1.3 Immunostaining Immunostaining (immunohistochemistry) is a valuable tool in viral
lung disease investigations as it can be used to study cellular locali-
zation of receptors and viral targets. For instance, detection of the
MERS-CoV receptor dipeptidyl peptidase 4 (DPP4) virus receptor
can give insights to cell tropism to help explain disease pathogenesis
[4, 6, 21, 42, 57–59].

There are several tissue handling (preanalytical) factors that can
significantly affect the quality and specificity of immunostaining
and its analysis. These have been discussed earlier sections of the
paper and in several reviews [20, 52, 60–63]. Similarly, there are
many factors during the staining procedure that itself can also
influence the results. Deparaffinization, lack of control tissues,
optimization/validation techniques, species, batch effects, and
chromogens can all influence the final quality and assessment of
immunostaining methods. Standard operating procedures for each
of the technical steps, if used by all biomedical staff, can signifi-
cantly mitigate many of these issues. Use of positive and negative
control tissues for each batch of immunostained tissues can help in
validating appropriate staining and also making clear any potential
nonspecific immunostaining. After the stained slides have been
examined for all groups, qualitative statements about the immu-
nostaining can be made and prepared for publication text and
images. Descriptive text of immunostaining (receptor or virus)
could include cell types (e.g., type I pneumocytes), cell integrity
(necrotic vs. intact cells), and subcellular location (e.g., diffuse
cytoplasmic). Demonstration of immunostaining using annotated
images can strengthen the qualitative data.

1.4 Scoring As shown above, qualitative descriptions of tissue changes are useful
and necessary, but they are less applicable in terms of group com-
parisons. More robust and reproducible methods are desirable and
these criteria can be sought in tissue scoring systems (semiquanti-
tative and quantitative) that produce data that allow for statistical
analyses for evaluation of group differences (see Note 5)
[52, 53]. Importantly, these scoring principles can be applied to
tissue lesions (gross and/or histopathologic) as well as immunos-
tained sections.

1.4.1 Nominal

Approaches

Nominal approaches do not score or make quantitative measure-
ments on tissue samples, but rather each sample is assigned to well-
defined categories [52, 54]. The numbers of samples assigned to
each category are recorded and evaluated with appropriate statisti-
cal tests. As a simple mock example, consider examining the lungs
of wild-type (WT) or mutated mice for the presence or absence of
edema, a common feature of DAD. Each mouse would be assigned
to either “no edema” (Fig. 1a) or “edema” (Fig. 1b, c) categories.
If 10 mice per group were evaluated, the WT group might have
nine with edema and one without, while the mutated group has
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three with edema and seven without. Evaluating these data using a
Fisher exact test results in a significant difference (P ¼ 0.02)
between WT and mutated mice. The presence of any lesion or
immunostaining can be similarly assessed in this manner, but it is
important to have clear guidelines or thresholds to distinguish the
categories.

1.4.2 Semiquantitative

Approaches

Semiquantitative approaches are used to transform qualitative tis-
sue changes into numerical scores using specific morphologic cri-
teria [52, 53]. Semiquantitative methods have several advantages in
that they can be done with minimal technical resources, quickly at
the microscope for small to medium studies, provide guidance for
future quantitative studies, and provide complementary data for
publication [52–54]. The most commonly used semiquantitative
methods produce ordinal scores. Ordinal implies there is an order
or progression of severity in the assigned grades that define each
score, with typically four to five grades being optimal (e.g., 0, 1,
2, 3, 4). Each grade should be well defined so there is minimal
ambiguity in assigning samples. Use of simple descriptive modifiers
such as normal, rare, mild, moderate, and severe is discouraged as
these have different meanings for each observer and thus limit
reproducibility of the scoring. As a mock example of ordinal

Fig. 1 Mock example of mouse lung lesions during MERS-CoV infection. (a) Normal bronchiole and alveolar
structures. (b, c) Pulmonary edema (pink color filling alveoli). (d, e) Hyaline membranes (red crescents lining
alveolar walls)
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scoring, WT and mutated mice might be evaluated for the extent of
hyaline membranes lining alveolar walls. The scoring grades might
look like: “0”—none, “1”— <25% (see Fig. 1d), “2”—26–50% (see
Fig. 1e), “3”—51–75%, and “4” >75% of alveolar walls in the lung
section. If the ordinal scoring for seven mice per group produced
the following results for WT (3, 3, 2, 3, 4, 3, 4) and mutated mice
(1, 2, 1, 1, 1, 1, 2), then the data can be statistically analyzed.
Importantly, ordinal scores do not meet the assumptions required
for parametric tests; thus nonparametric tests should be used
[33]. For the mock example, the difference between groups using
a Mann-Whitney U-test was significant (P ¼ 0.002).

1.4.3 Quantitative

Approaches

Quantitative methods are tissue techniques that measure specific
tissue components (length, area, volume, number, percentage, etc.)
[52]. Quantitative methods tend to have greater precision and
sensitivity than semiquantitative methods. These methods often
require high-quality images and specialized software to properly
analyze the tissues, which can make the methods costlier for some
labs than semiquantitative techniques. The growing interest in
automation and artificial intelligence may increase future efficiency
and cost-effectiveness of quantification of tissue parameters, espe-
cially for large projects [64–67].

Quantification of viral lesions and immunostaining in tissues is
an option; however, quantification is not commonly performed in
tissue sections due to potential confounding factors such as random
distribution of viral inoculum and difficulty in objectively quantify-
ing lesions. If choosing to perform quantitative scoring, evaluation
of clinically relevant anatomic compartments (airways or alveoli)
can help standardize the assessment. As a mock example, viral
immunostaining could be evaluated as a percent of cell number in
mouse bronchioles (Fig. 2a–c; 0%, 12.5%, and 43.8%, respectively)
or as an alternative one could also assess the area of immunostaining
as a percent of the bronchiolar epithelium area. In contrast, the
alveolar compartment can be more difficult to assess than airways
because of their thin walls, which makes evidence of necrosis/
sloughing or immunostaining a challenge. To normalize analysis,
one could assess the percent of alveoli with immunostaining
(Fig. 2d–e). However, this would likely require extensive time/
labor or specialized software. If quantitation is not feasible but is
an important variable, one could revert to semiquantitative scoring
to assess immunostaining as a percentage of affected alveolar walls.
Using the distribution scoring system defined for Fig. 1, one could
score the samples in Fig. 2d–e, as ordinal scores of 1 and 4, respec-
tively. While the mock example is simple, reality often paints a more
complex portrait of lesion or immunostaining distribution (Fig. 2f).

When it comes to tissue scoring, each project is unique. Inves-
tigators will have to evaluate the lung samples to determine the best
scoring approaches in relation to the breadth of lesions and goals of
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the project. Most importantly, any scoring that is performed should
be corroborated, when possible, with other data to validate the
findings [22, 52, 53]. For instance, if group A has more immunos-
taining than group B, this could be validated by ELISA or Western
blots of whole lung homogenates. Alternatively, lesion severity
could be corroborated to measurements of clinical data (see
Note 6). Validation can help give more confidence in the data
rigor and reproducibility.

1.4.4 Statistical Analyses Inappropriate use of paired t-tests and shopping for significance are
two issues that have slipped into the published literature and poten-
tially compromise the interpretation and reproducibility of studies
[33]. For the various scoring methods, statistical analyses of the
data should involve the collaborative expertise of a statistician to be
able to identify the most relevant tests to confidently evaluate for
group differences [22, 33, 52, 53].

2 Summary

Examination of infected lung tissues for histopathology and immu-
nostaining are common and needed approaches to study viral lung
infection, especially in emergent coronaviruses like MERS-CoV.

Fig. 2 Mock example of viral immunostaining during MERS-CoV infection. (a) No immunostaining in control
lung. (b, c) Immunostaining (black color) in airways. (d, e) Immunostaining in alveoli. (f) Immunostaining in
airway and alveoli
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Following the principles and concepts above will help guide and
lead studies to more valid and reproducible data.

3 Notes

1. Ideally a pathologist familiar with the model is available for the
lab to evaluate experimental tissues. If not, then a pathologist
collaborator should be sought to perform or review of the
results of examination prior to submission for publication.
This prevents publication of data that is flawed or needs
subsequent retraction.

2. Masking is important to prevent potential bias by the observer
pathologist (Table 2). For new projects, the post-examination
is preferred as this helps the pathologist understand the goals/
experimental design of the project as well as see quality and
scope of lesions/stains. For most other research projects where
the pathologist is familiar with the model, these can be masked
in grouped fashion to maximize the interpretative power of the
pathologist to screen for biologically relevant changes in a
group-specific manner. Comprehensive masking is often dis-
couraged as it effectively constrains the ability of the patholo-
gist in defining relevant versus unconnected data and therefore
limits the sensitivity and specificity of the pathology data.

3. Evaluation of slides from all treatment and control groups prior
to detailed examination is useful to give the pathologist an
overview and primer of the type, scope and severity of
lesions/stains.

4. Detailed examination of the tissues allows for extrapolation of
qualitative descriptive data. If there are questions regarding the
cells/tissues that can be addressed by specific stains—these
could be done at this time to corroborate/clarify descriptive
findings.

5. When biologically relevant lesions are defined in the project,
group-specific changes may be evaluated for by semiquantita-
tive or quantitative scores. Semiquantitative approaches are
often done initially and the results can be used as screening
tools to set up primary scoring approaches or be used as pri-
mary/supplemental data for reporting group differences in
lesions or stains. Quantitative approaches may be performed
by at the microscope (e.g., cell counts) or automated on digital
images by specialized software.

Regardless of the masking method (see Note 2), it is often
useful to score the slides in a randommasked fashion and in one
sitting to prevent diagnostic drift. After scoring, it is sometimes
beneficial to take scoring data to see if these same differences
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are morphologically detectable in the respective groups. If the
pathologist can see these differences, it gives further confidence
to the scoring approach and final interpretations. If not, it can
raise questions as to the scoring methods.

6. Effective reporting of pathology data requires transparency of
methods, numbers of animals, statistical analyses, etc. Produc-
ing graphs of scoring data with matching images that are
annotated can be very powerful tools in conveying the results
to readers.
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