Skip to main content

CRISPR/Cas9 Gene Targeting in Primary Mouse Bone Marrow-Derived Macrophages

  • Protocol
  • First Online:
Cell Reprogramming for Immunotherapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2097))

Abstract

CRISPR-Cas9 technology allows for rapid, targeted genome editing at nearly any loci with limited off-target effects. Here, we describe a method for using retroviral transduction to deliver single-guide RNA to primary bone marrow-derived macrophages. This protocol allows for high-throughput reverse genetics assays in primary immune cells and is also compatible with retroviral systems for transgene expression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Danna K, Nathans D (1971) Specific cleavage of simian virus 40 DNA by restriction endonuclease of Hemophilus influenzae. Proc Natl Acad Sci U S A 68(12):2913–2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kelly TJ Jr, Smith HO (1970) A restriction enzyme from Hemophilus influenzae. II. J Mol Biol 51(2):393–409

    Article  CAS  PubMed  Google Scholar 

  3. Smith HO, Wilcox KW (1970) A restriction enzyme from Hemophilus influenzae. I Purification and general properties. J Mol Biol 51(2):379–391

    Article  CAS  PubMed  Google Scholar 

  4. Capecchi MR (1989) Altering the genome by homologous recombination. Science 244(4910):1288–1292

    Article  CAS  PubMed  Google Scholar 

  5. Smithies O, Gregg RG, Boggs SS, Koralewski MA, Kucherlapati RS (1985) Insertion of DNA sequences into the human chromosomal beta-globin locus by homologous recombination. Nature 317(6034):230–234

    Article  CAS  PubMed  Google Scholar 

  6. Thomas KR, Folger KR, Capecchi MR (1986) High frequency targeting of genes to specific sites in the mammalian genome. Cell 44(3):419–428

    Article  CAS  PubMed  Google Scholar 

  7. Lin FL, Sperle K, Sternberg N (1985) Recombination in mouse L cells between DNA introduced into cells and homologous chromosomal sequences. Proc Natl Acad Sci U S A 82(5):1391–1395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rouet P, Smih F, Jasin M (1994) Introduction of double-strand breaks into the genome of mouse cells by expression of a rare-cutting endonuclease. Mol Cell Biol 14(12):8096–8106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rudin N, Sugarman E, Haber JE (1989) Genetic and physical analysis of double-strand break repair and recombination in Saccharomyces cerevisiae. Genetics 122(3):519–534

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J, Kim YG, Chandrasegaran S (2001) Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 21(1):289–297. https://doi.org/10.1128/MCB.21.1.289-297.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 93(3):1156–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Porteus MH, Baltimore D (2003) Chimeric nucleases stimulate gene targeting in human cells. Science 300(5620):763. https://doi.org/10.1126/science.1078395

    Article  PubMed  Google Scholar 

  13. Urnov FD, Rebar EJ, Holmes MC, Zhang HS, Gregory PD (2010) Genome editing with engineered zinc finger nucleases. Nat Rev Genet 11(9):636–646. https://doi.org/10.1038/nrg2842

    Article  CAS  PubMed  Google Scholar 

  14. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U (2009) Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326(5959):1509–1512. https://doi.org/10.1126/science.1178811

    Article  CAS  PubMed  Google Scholar 

  15. Moscou MJ, Bogdanove AJ (2009) A simple cipher governs DNA recognition by TAL effectors. Science 326(5959):1501. https://doi.org/10.1126/science.1178817

    Article  CAS  PubMed  Google Scholar 

  16. Barrangou R, Fremaux C, Deveau H, Richards M, Boyaval P, Moineau S, Romero DA, Horvath P (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712. https://doi.org/10.1126/science.1138140

    Article  CAS  PubMed  Google Scholar 

  17. Garneau JE, Dupuis ME, Villion M, Romero DA, Barrangou R, Boyaval P, Fremaux C, Horvath P, Magadan AH, Moineau S (2010) The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature 468(7320):67–71. https://doi.org/10.1038/nature09523

    Article  CAS  PubMed  Google Scholar 

  18. Ishino Y, Shinagawa H, Makino K, Amemura M, Nakata A (1987) Nucleotide sequence of the iap gene, responsible for alkaline phosphatase isozyme conversion in Escherichia coli, and identification of the gene product. J Bacteriol 169(12):5429–5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jansen R, Embden JD, Gaastra W, Schouls LM (2002) Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol 43(6):1565–1575

    Article  CAS  PubMed  Google Scholar 

  20. Senoo-Matsuda N, Yasuda K, Tsuda M, Ohkubo T, Yoshimura S, Nakazawa H, Hartman PS, Ishii N (2001) A defect in the cytochrome b large subunit in complex II causes both superoxide anion overproduction and abnormal energy metabolism in Caenorhabditis elegans. J Biol Chem 276(45):41553–41558. https://doi.org/10.1074/jbc.M104718200

    Article  CAS  PubMed  Google Scholar 

  21. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. https://doi.org/10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Deltcheva E, Chylinski K, Sharma CM, Gonzales K, Chao Y, Pirzada ZA, Eckert MR, Vogel J, Charpentier E (2011) CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature 471(7340):602–607. https://doi.org/10.1038/nature09886

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Gasiunas G, Barrangou R, Horvath P, Siksnys V (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci U S A 109(39):E2579–E2586. https://doi.org/10.1073/pnas.1208507109

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337(6096):816–821. https://doi.org/10.1126/science.1225829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. elife 2:e00471. https://doi.org/10.7554/eLife.00471

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. https://doi.org/10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA, Mikkelson T, Heckl D, Ebert BL, Root DE, Doench JG, Zhang F (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343(6166):84–87. https://doi.org/10.1126/science.1247005

    Article  CAS  PubMed  Google Scholar 

  28. Wang T, Wei JJ, Sabatini DM, Lander ES (2014) Genetic screens in human cells using the CRISPR-Cas9 system. Science 343(6166):80–84. https://doi.org/10.1126/science.1246981

    Article  CAS  PubMed  Google Scholar 

  29. Wu X, Scott DA, Kriz AJ, Chiu AC, Hsu PD, Dadon DB, Cheng AW, Trevino AE, Konermann S, Chen S, Jaenisch R, Zhang F, Sharp PA (2014) Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat Biotechnol 32(7):670–676. https://doi.org/10.1038/nbt.2889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Platt RJ, Chen S, Zhou Y, Yim MJ, Swiech L, Kempton HR, Dahlman JE, Parnas O, Eisenhaure TM, Jovanovic M, Graham DB, Jhunjhunwala S, Heidenreich M, Xavier RJ, Langer R, Anderson DG, Hacohen N, Regev A, Feng G, Sharp PA, Zhang F (2014) CRISPR-Cas9 knockin mice for genome editing and cancer modeling. Cell 159(2):440–455. https://doi.org/10.1016/j.cell.2014.09.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Will Bailis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bailis, W. (2020). CRISPR/Cas9 Gene Targeting in Primary Mouse Bone Marrow-Derived Macrophages. In: Katz, S., Rabinovich, P. (eds) Cell Reprogramming for Immunotherapy. Methods in Molecular Biology, vol 2097. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0203-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0203-4_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0202-7

  • Online ISBN: 978-1-0716-0203-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics