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polyDFE: Inferring the Distribution of Fitness
Effects and Properties of Beneficial Mutations
from Polymorphism Data
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Abstract

The possible evolutionary trajectories a population can follow is determined by the fitness effects of new
mutations. Their relative frequencies are best specified through a distribution of fitness effects (DFE) that
spans deleterious, neutral, and beneficial mutations. As such, the DFE is key to several aspects of the
evolution of a population, and particularly the rate of adaptive molecular evolution (α). Inference of DFE
from patterns of polymorphism and divergence has been a longstanding goal of evolutionary genetics.

polyDFE provides a flexible statistical framework to estimate the DFE and α from site frequency
spectrum (SFS) data. Several probability distributions can be fitted to the data to model the DFE. The
method also jointly estimates a series of nuisance parameters that model the effect of unknown demography
as well data imperfections, in particular possible errors in polarizing SNPs. This chapter is organized as a
tutorial for polyDFE. We start by briefly reviewing the concept of DFE, α, and the principles underlying
the method, and then provide an example using central chimpanzees data (Tataru et al., Genetics 207
(3):1103–1119, 2017; Bataillon et al., Genome Biol Evol 7(4):1122–1132, 2015) to guide the user
through the different steps of an analysis: formatting the data as input to polyDFE, fitting different
models, obtaining estimates of parameters uncertainty and performing statistical tests, as well as model
averaging procedures to obtain robust estimates of model parameters.

Key words Distribution of fitness effects, Rate of adaptive molecular evolution, Beneficial mutations,
Polymorphism and divergence data

1 Introduction

The following tutorial requires the successful installation of
polyDFE-v1.1 (see manual for details on installation), and
basic skills in using the command line and R. The latest version of
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polyDFE, its manual as well as an R script postprocessing.R that
contains functionswhich facilitate post-processing of polyDFE output
files can be found on https://github.com/paula-tataru/polyDFE.

1.1 Modelling

the Properties

of Mutations

on Fitness

Genome and exome sequencing studies open the possibility to
survey systematically nucleotide variation in genomes. Several
model-based methods have been developed to infer the properties
of mutations from these surveys. In a nutshell, population genetics
models introduced in Chapter 1 can formalize a fundamental intui-
tion: the fitness effect of a new mutation will influence the fre-
quency at which it segregates in a population. More formally,
assuming a set of independent SNPs, mathematical expectations
can be obtained that relate mutation rates and the fitness effect of
mutations to observable quantities such as the number of SNPs that
are found at a given frequency (i.e., the counts of the site frequency
spectrum, SFS) in a sample of individuals that were re-sequenced or
genotyped [1].

The effects of new mutations on fitness are expected to vary
depending on the region where the mutation happens and what
types of changes are incurred by the mutation. We model the varia-
tion in effects of mutations by making a number of assumptions:

l We can make an a priori distinction between sites where only
neutrally evolving mutations are segregating and sites that har-
bor mutations potentially under selection. We refer to these as
neutral/selected sites, respectively.

l The number of mutations in a region of known length of
nucleotides arises randomly as a Poisson process with a certain
intensity that depends on the length of the region and the
mutation rate per nucleotide.

l Mutations that happen at neutral sites are lost or drift to fixation
solely due to genetic drift.

l Mutations happening at selected sites are ascribed a fitness effect
through a scaled selection coefficient. Each mutation at a
selected site is treated as exchangeable: no sites are identified a
priori as yielding mutations that are intrinsically good or bad for
fitness. The scaled selection coefficient 4Nes of a mutation is
drawn at random from an underlying distribution, also called
the distribution of fitness effects (DFE).

polyDFE performs maximum likelihood (ML) inference of
DFE parameters from polymorphism data. Various probability dis-
tributions have been used to model DFEs [2]. Currently, polyDFE
uses four types of distributions, referenced as models A through D
and described in detail in the polyDFE manual. In this chapter, we
focus solely on examples where models A and C are used.

Under model A, the DFE is given by a reflected and displaced Γ
distribution. This distribution is parameterized through a mean
scaled selection coefficient S, a shape b, and a maximum scaled

126 Paula Tataru and Thomas Bataillon

https://github.com/paula-tataru/polyDFE
https://doi.org/10.1007/978-1-0716-0199-0_1


selection coefficient Smax. This continuous distribution is theoreti-
cally motivated as the approximation for the DFE expected under
an explicit fitness landscape where fitness is determined by k traits
under stabilizing selection and where each mutation will pleiotro-
pically affect every trait [2]. In the general case where Smax is not
restricted to be 0, the DFE will comprise some beneficial muta-
tions, otherwise the DFE will only comprise deleterious mutations.

Under model C, the DFE is given by a mixture of two distribu-
tions. A proportion pb of mutations are favorable and their scaled
selection coefficient is drawn from an exponential distribution with
mean Sb, and the remaining 1� pb are deleterious mutations with
scaled selection coefficient drawn from a reflected Γ distribution
with mean Sd and shape b. If the proportion pb is restricted to be
0, the DFE will only comprise deleterious mutations. Note that the
DFEs containing only deleterious mutations obtained from either
model A (Smax¼0) or model C (pb¼0) are equivalent and are
given by a reflected Γ distribution.

When inferring DFEs from SFS data, a DFE with only deleteri-
ous mutations (henceforth a deleterious DFE) is typically assumed.
In order to obtain information about the selection coefficients of
beneficial mutations, available methods rely on the amount of
divergence data between the species of interest (ingroup) and an
outgroup. polyDFE departs from this approach as it allows the user
to obtain estimates of a DFE also containing beneficial mutations
(henceforth a full DFE) solely from SFS data. In doing so, poly-
DFE has the advantage of not assuming that the DFE is a constant in
both the ingroup and outgroup. The price to pay for relaxing this
assumption is that by only using the SFS, the ML estimates have
more sampling variance, reflecting the uncertainty due to reduced
amounts of data.

1.2 Calculating

the Rate of Adaptive

Evolution, α

Obtaining estimates of the DFE allows one to learn more about
factors governing the rate of adaptive molecular evolution, com-
monly defined as the proportion of fixed adaptive mutations, α.
Besides ML estimates of DFE, polyDFE can be used to obtain ML
estimates of α. Once the DFE is estimated, α can be obtained using
the divergence data as:

α ¼ expected number of beneficial substitutions
observed divergence selected counts

¼
observed divergence selected counts� expected number of neutral

and deleterious substitutions
observed divergence selected counts

,

where the expected number of neutral and deleterious substitutions
is obtained from the DFE [1].

Alternatively, α can be estimated without using the divergence
data by replacing the observed divergence selected counts with
expectations derived from the DFE [1]. The two different
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estimations of α are referred to αdiv and αdfe [1], to reflect the type
of data/information used.

Note that alternative statistics exist for measuring molecular
adaptation, such as ωA, the rate of adaptive evolution relative to the
mutation rate, orKaþ, the rate of adaptive amino acid substitutions
[3, 4]. These have different properties and might be better suited
for studying various aspects of adaptation [4]. Currently, polyDFE
only calculates α, but these statistics can also be obtained once the
DFE is estimated.

2 Pre-processing of the Data

2.1 The Type

of Information

Required by

polyDFE

polyDFE requires as input the derived SFS at both neutral and
selected sites. The input file can optionally also contain counts of
divergence.

When preparing the data, there are three elements that require
some careful attention:

l what is the length of the region that was called for the potential
occurrence of SNPs;

l how are SNPs polarized into an ancestral and a derived allele;

l how missing data is removed.

Software that enables SNP calling will also report the length of the
region, calculated as the number of nucleotide positions where
SNP calling could be performed. This length has to be then (cor-
rectly) divided between the data containing neutral sites and a priori
selected sites. For an example, see the end of Subheading 2.2.

polyDFE assumes that the SFS is derived (polarized) and the
given counts (see Subheading 2.2) are for derived SNP alleles.
Various methods are available to orient SNPs, including parsimony
and more rigorous probabilistic methods [5–7]. All methods
require access to at least one outgroup.

polyDFE cannot deal with missing data. If the SFS contains
missing data, several strategies can be used. If local linkage disequi-
librium is known, SNP imputation can be used to estimate the
missing genotypes. Alternatively, projection methods can be used
to down-sample the SNP data to build a complete SFS with a
reduced number of samples [8, 9].

2.2 Example of a

polyDFE
Input File

This tutorial uses central chimpanzee data [1, 10] to exemplify the
different steps of an analysis. The central chimpanzee data and all
additional files used here can be found on https://github.com/
StatisticalPopulationGenomics. Here is a snippet of the chimpan-
zee data found in the input file central_chimp_sfs:

128 Paula Tataru and Thomas Bataillon

https://github.com/StatisticalPopulationGenomics
https://github.com/StatisticalPopulationGenomics


The first non-empty non-comment line specifies sequentially
that there is only one (1) neutral and one (1) selected region and
that 24 haplotypes were re-sequenced to obtain the SFS data.

Note that polyDFE can, in principle, analyze jointly multiple
regions with different mutation rates that share the DFE para-
meters [1]. For the remainder of this chapter, we analyze data
pooled into a single SFS for neutral and selected sites. For details
on variability of mutation rates, see the polyDFE manual.

For each region (here two in total), the neutral followed by the
selected ones, there is one line of input that gives sequentially the
entries of the SFS, i.e. how many SNPs had the derived allele in
1 copy (14492 for the neutral region and 12645 for the selected
region), 2 copies (6138 for the neutral region and 4573 for the
selected region), up to 23 copies (845 for the neutral region and
469 for the selected region), followed by the length of the region
(4292115 for the neutral region and 16146528 for the selected
region), the divergence counts for the same region (44048 for the
neutral region and 26481 for the selected region) and the length of
the region where divergence data was obtained (4290192 for the
neutral region and 16139295 for the selected region). The pres-
ence of divergence data in the input file is optional. For further
details on the data format, see the polyDFE manual.

The central chimpanzee data was obtained from exome
sequencing. To divide it into a neutrally evolving region and one
potentially containing sites under selection, SNPs have been classi-
fied into synonymous and non-synonymous, with the first class
assumed to be neutral [10]. This is a general practice when working
with exome data. The length of the neutral (here, synonymous) and
selected (here, non-synonymous) regions is typically calculated
from the total length by using a proportionality principle where a
proportion of the sites are deemed, respectively, synonymous and
non-synonymous. Roughly we expect 3/4 of the sites in exome
regions to be non-synonymous, but there are more rigorous and
precise ways to calculate this quantity [11].

2.3 Note on SFS Data A priori, one expects an L or U shaped SFS, where a lot of derived
alleles are present in low frequencies and possibly a few more have
high frequencies, especially when beneficial mutations contribute
substantially to the SFS. This is borne out of population genetics
theory and the fact that we expect that at selected sites a substantial
fraction of the variation is deleterious to some degree. Large counts
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in intermediate frequencies are only caused by a significant amount
of balancing selection or by cryptic and highly pronounced genetic
differentiation in the sample of sequenced individuals.

3 Model Fitting with polyDFE

3.1 Specifying a DFE

Model to Fit Using

polyDFE

We use a series of examples to illustrate how to run polyDFE, and
how to specify two key things:

l the input file containing the data to be analyzed;

l the DFE model used for the analysis.

The aim of the analysis is to fit a series of models differing by:

l the type of DFE assumed;

l the presence or not of beneficial mutations in the DFE;

l the inclusion of two types of nuisance parameters that apply to
both neutral and selected sites:

– a polarization error Ean;

– a series of nuisance parameters ri, one for each class of fre-
quency in the SFS.

The polarization error Ean accounts for the fact that methods
for orienting the SNPs are not perfect and still leave errors in the
data, where the inferred derived allele is, in fact, the ancestral allele.
When Ean is set and fixed to 0, it is assumed that the data contains no
error. To the best of our knowledge, polyDFE is the only available
method that explicitly incorporates polarization error.

The nuisance parameters ri describe how the SFS can be dis-
torted by sampling, demography, and/or linkage, relative to what is
expected in a stable Wright-Fisher population at mutation-selection-
drift equilibrium. When these parameters are fixed to 1, it is assumed
that the data does not depart from standard expectations. For some
datasets, errors in the SNP orientation can be efficiently captured by
the distortion parameters ri [1, 12], but this is not always the case
[1]. We always recommend inferring a full model where all para-
meters are estimated and use hypothesis testing to decide whether
such additional parameters are needed or not (see Subheading 5.2).
To simply run polyDFE on the chimpanzee data using default set-
tings, the following command line can be used:

where

l -d central_chimp_sfs specifies that polyDFE runs on the
input file central_chimp_sfs.
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However, it is more useful to customize the behavior of
polyDFE through the command line arguments by specifying,
for example, which DFE model is used or which parameters
should be estimated or not:

where

l -m A specifies that model A will be used to infer the DFE.

l -i init_A.txt 1 specifies that the parameter configuration
with ID 1 from the initialization file init_A.txt should be
used. The initialization file is used to control which parameters
should polyDFE estimate and to provide their initial values used
during the estimation process. For example, polyDFE can be
forced to estimate a deleterious DFE. The init_A.txt file
provides examples on how parameters are set to be fixed or
estimated.

l -e specifies that the parameters’ initial values should be esti-
mated automatically, using a combination of approximate ana-
lytical results and a grid search. Using -e is highly recommended
when running an initial analysis.

l -b params_basinhop.txt 1 specifies polyDFE to run a more
involved likelihoodmaximization, see Subheading 3.2 for details.

l >central_chimp_A (the redirection command) specifies that
the output of polyDFE should be stored in the file
central_chimp_A.

To run a full analysis on a dataset, models with increasing com-
plexity (i.e. deleterious or full DFE, and allowing or not for nuisance
parameters) should be used, as specified using -i. The example file
run_polyDFE.txt contains all the command lines that allow a full
analysis of the example dataset using both estimation under models
A and C. As the true shape of the DFE is not known (i.e., is the DFE
in the form of an A or C model?), it is recommended to run poly-
DFE with multiple models and finally use hypothesis testing to find
the best fitting model (see Subheading 5.2).

If the input data also contains divergence counts, polyDFE
uses this information for estimation by default. To use exclusively
the SFS data during the estimation process, the command line
argument -w is used.

3.2 Note

on Likelihood

Maximization

One of the key issues in obtaining reliable ML estimates is to ensure
that the likelihood function is properly maximized over the space of
parameters. This is not trivial, and besides the limitations of the
method itself, this is what in practice will cause polyDFE to return
poor estimates.
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polyDFE implements multiple steps to ensure, as much as
possible, that good estimates are found.

1. The maximization algorithm requires initial values for the para-
meters, and these values can have a big effect on the estimates
found. They can be provided by the user in the initialization file
given through the command line argument -i, but for an
initial run of polyDFE, it is strongly recommended to use the
command line argument -e. This ensures that the maximiza-
tion is started with sensible parameter values.

2. Standard maximization algorithms allow parameters to take
any value over the whole real line. Many of the parameters
polyDFE estimates are constrained within a specific range.
For example, the shape b for the DFE distribution is con-
strained to be positive. To allow for such constraints, polyDFE
transforms the parameters from a given range to the whole real
line. The range of each parameter can be controlled through
the command line argument -r. polyDFE uses large ranges by
default, but providing a range that is tighter around the poten-
tial maximum could improve the maximization process. For
more details, see the polyDFE manual.

3. Standard maximization algorithms, including the ones used in
polyDFE, only ensure that a local maximum likelihood is found.
However, a better solution can possibly exist. To avoid that
polyDFE is stuck in a local solution, the basin hopping algorithm
[13] can be used. This is a stochastic algorithm that runs the
standard maximization algorithmmultiple times, using different
initial values for the parameters. polyDFE runs basin hopping
when the command line argument -b is provided, as in the
previous example. The basin hopping algorithm can be custo-
mized through a parameterization file. In the previous example,
we used -b params_basinhop.txt 1, which specified that
polyDFE should use the parameterization found in para-
ms_basinhop.txt with ID 1. The params_basinhop.txt
file provides examples on how the basin hopping algorithm can
be customized. For more details, see the polyDFE manual.

polyDFE uses maximization algorithms that rely on the gradient
of the likelihood. If a set of parameters truly has a locally maximum
likelihood, then the corresponding gradient is 0. If the gradient of
the best solution found is far away from 0, this is warning sign that a
good solution was not found. For different ways to change the run
of polyDFE to aim for a better gradient, see the polyDFE manual.

4 Post-Processing of the polyDFE Output

polyDFE is accompanied by an R script postprocessing.R con-
tains a series of functions written that parse the output of polyDFE
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and calculate other quantities of interest. We provide examples of
polyDFE output files, as well as how to use the R functions to parse
the output and perform hypothesis testing/model averaging on
DFE and α. The analysis found below is also provided as an example
file analysis.R.

4.1 Example of a

polyDFE
Output File

The output starts with a summary of how polyDFE was run, the
progression of the maximization procedure, the best estimates
found, various expectations under the best estimates (such as, the
expected SFS) and, finally, estimates of α.

Here is a snippet of the output file central_chimp_A created
in the previous example:

For more details on the misattributed polymorphism, see Sub-
heading 4.4.
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4.2 Merging

and Parsing Output

Files

The R functions from postprocessing.R can parse files contain-
ing multiple outputs from polyDFE, which enables an easier analy-
sis. For this, multiple output files can be merged, for example, as
follows:

The file run_polyDFE.txt contains the necessary polyDFE
commands to obtain all of the above output files, which contain
results for model A where:

l central_chimp_A_nor_noeps: ri parameters are fixed to
1 and Ean is fixed to 0;

l central_chimp_A_nor: ri parameters are fixed to 1, but Ean is
estimated;

l central_chimp_A_noeps: ri parameters are estimated, but
Ean is fixed to 0;

l central_chimp_A: both ri and Ean are estimated.

Corresponding files, as given in run_polyDFE.txt, can be
obtained for model C and for a deleterious DFEmodel. Restricting
either model A or model C to only deleterious mutations yields the
same type of DFE: a reflected Γ distribution.

The output file central_chimp_A.txt from above can be
parsed using the parseOutputR function (line 2) into a list where
each entry corresponds to a different run of polyDFE found in the
parsed file (line 3):

One entry in the list contains:

l the name of the input file polyDFE was run on (line 5),

l the DFE model used (line 6),

l the best likelihood found and corresponding gradient (line 7),

l the values of all parameters, including those that were not esti-
mated (line 8),
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l which parameters have been estimated (line 9),

l expectations for SFS and divergence (line 10),

l estimates for α (line 11).

We can also get an overview of the gradients obtained during
the optimization process:

The function getModelName (line 4) returns a string briefly
describing the estimated model: which DFE model was used and
whether the ri and Ean parameters were estimated (+) or not (-).
The runs using model A where Ean was not estimated (A+r- eps),
and models A and C where all parameters have been estimated
(A + r + eps, C + r + eps), have gradients that are larger than
0.001. For these, running additional iterations of basin-hopping
might lead to an improved solution (see Subheading 3.2).

4.3 Summarizing

the DFE Estimated by

polyDFE

The estimated DFEs under the different models can be discretized
using the getDiscretizedDFER function (lines 3–5), and then
plotted for visual comparison (lines 6–13). This is exemplified
below, where the DFE is binned in six classes of 4Nes values, as
shown in Fig. 1:
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Fig. 1 Estimated discretized DFEs for models A, A del (which contains only deleterious mutations) and C, where
the ri parameters were estimated (+ r) or not (� r) and Ean was estimated (+ eps) or not (� eps). The plot to
the right has the y-axis on log scale
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The majority of the mutations are typically deleterious and only
few mutations have beneficial effects (Fig. 1). To more easily com-
pare visually the discretized DFE, it can be useful to use a log-scale
on the y-axis for plotting (lines 10–13, Fig. 1).

To obtain a discretized DFE, the continuous DFE has to be
integrated. This is prone to numerical issues and sometimes the
resulting discretized DFE does not sum exactly to 1. When this is
the case, getDiscretizedDFE issues a warning.

4.4 Estimating α polyDFE automatically calculates and outputs α. If divergence data
was used when polyDFE was run, then both αdiv and αdfe are
estimated, otherwise only the latter is calculated:

When a strictly deleterious DFE model is estimated, as by
construction the DFE does not contain any beneficial mutations,
the estimated αdfe is 0:

α can also be calculated in R from the estimated DFE using the
function estimateAlpha (lines 5, 7). By default, αdfe is calculated
(line 5), but divergence data can be parsed in R using the function
parseDivergenceData (line 3) and provided to estimateAl-
pha (line 7), which then returns αdiv. We can compare the values
that polyDFE outputted with the estimates obtained in R (lines 4–
13). As polyDFE is implemented in C, the values for α returned by
polyDFE are typically slightly different than the ones calculated in
R (lines 8–13), though the difference should be minor:
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Divergence data can contain misattributed polymorphism:
SNPs that were misidentified as substitutions as they were fixed
within the sample [1]. When calculating αdiv, polyDFE automati-
cally corrects for this. Using R, this correction can be turned off
(line 4), but typically the difference in the estimated αdiv is not very
large (lines 3–7):

When calculating α, the expected number of substitutions that
are either non-beneficial (deleterious or neutral) or beneficial is
calculated. polyDFE and the R function estimateAlpha assume
that a mutation that has a positive selection coefficient is beneficial.
However, one could argue that a mutation with a very low positive
selection coefficient is effectively neutral and only mutations that
have a selection coefficient above a threshold Ssup should be consid-
ered as beneficial when calculating α [1, 12]. To obtain such
estimates of α, the supLimit can be changed in R (lines 2–4).
Setting a higher supLimit will mechanically decrease α, as fewer
substitutions will be considered beneficial (lines 2–10):

polyDFE: Inferring DFE and α from Polymorphism Data 137



5 Hypothesis Testing and Model Averaging

The estimation of DFE and α entails substantial statistical uncer-
tainty. We discuss how to obtain the sampling variance of parameter
estimates and approximate confidence intervals using a bootstrap
approach. We also outline how to perform hypothesis testing and
how to use model averaging as an alternative to the hard thresh-
olding inherent to hypothesis testing. The flexibility of polyDFE
allows performing model averaging with the advantage of generat-
ing parameter estimates where model uncertainty is also
incorporated.

5.1 Bootstrap-Based

Confidence Intervals

In principle, likelihood profiles can be obtained for one or more
parameters by fixing these parameters to a set of values and max-
imizing the likelihood for all other parameters. Using polyDFE,
this can be achieved by using the command line argument -i (see
Subheading 3.1). The profile likelihood can then be used to obtain
approximate confidence intervals for the parameters of interest.

In practice, we recommend to use a bootstrap approach:

1. Generate 100–500 bootstrap datasets.

2. Run polyDFE on these datasets.

3. Calculate the sampling distribution of the ML estimates
returned by polyDFE.

Although a crude likelihood profile can be obtained for a single
parameter with as few as 20–30 runs of polyDFE, the bootstrap
approach has the advantage of yielding sampling distributions for
all parameters of interest in one go, as well as capturing the patterns
of covariation between parameters.

Bootstraps are generated by re-sampling the data at the site
level. More specifically, bootstrap datasets are obtained by para-
metric bootstrapping and assuming that all counts in the SFS and,
possibly, divergence data are independent variables following a
Poisson distribution, with means given by the observed data. This
is in line with the modelling assumption that the number of muta-
tions in each SFS entry and, possibly, divergence data follows a
Poisson process. Using R, 500 bootstrap datasets can, for instance,
be obtained using the commands:

which generate 500 datasets each stored in files cental_-
chimp_sfs_j (line 1) and bootstrap_central_j (line 2),
with 1� j�500, respectively. The name of the output files can be
optionally specified through outputfile (line 2).
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To speed up the analysis when running polyDFE on bootstrap
data, the command line argument -i (see Subheading 3.1) can be
used to initialize the parameters to the values that were found when
running polyDFE on the full dataset. Using the R function cre-
ateInitLines (see the polyDFE manual for details), these values
from a polyDFE output file can be written automatically to an
initialization file that is then given to -i.

Once polyDFE is run on bootstrap data, confidence intervals
for parameters, expected SFS, and discretized DFE can be obtained
using the quantiles of the bootstrap distributions of the quantities
of interest [14].

5.2 Hypothesis

Testing

polyDFE returns ML estimates and therefore, likelihood ratio tests
(LRT) and the Akaike information criteria (AIC) can be used to
compare models.

The likelihood ratio test entails fitting two nested models using
polyDFE, where one reduced model is a special case of a more
general model. A p-value can be obtained by assuming that the log
of the ratio of the maximum likelihoods of the two models follows a
χ2 distribution parameterized by the difference in the number of
degrees of freedom (i.e., number of estimated parameters) between
the two models. A small p-value means that the reduced model is
rejected in favor of the more parameter-rich model.

For instance, one can formally test for the occurrence of bene-
ficial mutations by fitting two models A that differ by the maximum
allowed scaled selection coefficient Smax, where in the general
model Smax is freely estimated, while in the reduced model Smax is
fixed to 0 and thus a deleterious DFE is estimated. Similarly, this
can be done under model C by fixing the amount of beneficial
mutations pb to 0. Note that the two reduced models under models
A and C yield the same type of deleterious DFE, therefore testing
for the occurrence of beneficial mutations under model C can be
obtained by comparing the reduced model A with the general
model C.

Using LRT requires that models are nested, which does not
allow to test whether the full DFEmodel A or C fits the data better.
For this, the Akaike information criteria can be used

AIC ¼ 2m � 2 log ðLÞ
where m is the number of estimated parameters (or degrees of
freedom) and L is the maximum likelihood. Then the preferred
model is the one with the minimum AIC value.

To test for the occurrence of beneficial mutations under
model A, the p-values from the LRTs and AIC values can be
obtained using the R function compareModels as follows:
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The function sequentially compares model number j found in
central_chimp_A.txt with model number j found in cen-
tral_chimp_Del.txt (in the order of appearance in the files),
which vary in the estimation of ri and Ean, as detailed in Subheading
4.2 and run_polyDFE.txt.

The models found within central_chimp_A.txt and the
other output files are also nested. For example, for models number
3 and 4, the ri parameters were estimated, but Ean was either
estimated (model number 4) or fixed to 0 (model number 3).
The LRT for these two models can be obtained as follows:

The compareModels function automatically detects nested-
ness when the same DFE model was used. Recall that the deleteri-
ous DFEs obtained from either model A or model C are equivalent,
but as the deleterious model was obtained frommodel A, to test for
the occurrence of beneficial mutations under model C, nestedness
has to be enforced by setting nested ¼ TRUE:

As noted in Subheading 3.1, sometimes the ri parameters can
also account for polarization errors. This is the case here, as we can
observe that, when the ri parameters are not estimated and fixed to
1 (-r), the LRT and AIC indicate that inferring Ean (+eps) leads to
a better fit of the data. However, when the ri parameters are
estimated (+ r), Ean is not needed for fitting the data (- eps).
This is also supported by the estimated value of Ean, which is very
small when the ri parameters are estimated (+ r), but much larger
otherwise (Table 1):

Table 1
Model testing for ean 6¼ 0

ri fixed to 1 ri estimated

AIC AIC p-Value Ean AIC AIC p-Value Ean
- r - eps - r + eps + r - eps + r + eps

Model A 10473 10283 1.07e–43 0.011 481 484 2.68e–01 0.002

Model C 10114 9758 4.91e–80 0.016 475 478 5.23e–01 0.00012

Model del 13709 13562 2.51e–34 0.010 633 635 8.31e–01 0.00002

Note:-r: ri parameters are not estimated and fixed to 1,+r: ri parameters estimated,-eps: Ean is not estimated and

fixed to 0, + eps: Ean is estimated
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5.3 Model Averaging

with polyDFE
Using model averaging provides a way to obtain the most honest
estimates that account for model uncertainty. In particular, we can
have a series of estimates that can differ by the DFE model assumed
(A, B, C or D), whether or not distortions of the SFS are accounted
for and possibly whether errors happen when polarizing the SNPs.
One can choose the model most supported by the data using LRT
or AIC as described in Subheading 5.2, but model averaging has
the advantage of avoiding a strict thresholding where we decide
that a given model is the best and exclude all other competing
models. This might be necessary, for example, when the data con-
tain only limited information about the DFE [15, 16] and therefore
different models cannot be differentiated, due to AIC values that
are very close (see also Subheading 5.4).

In practice, the parameter of interest x (such as any DFE
parameter, α, entries in the discretized DFE or any other quantities)
is estimated as xj under each model j that has an AIC value of AICj.
These values are combined to yield a model-averaged estimate
where the contribution of each model is averaged using Akaike
weights [17]:

xavg ¼
P

j xj e
�1=2ΔAICj

P
j e

�1=2ΔAICj
ð1Þ

where ΔAICj is obtained as

ΔAICj ¼ AICj � min
j

ðAICj Þ:

When doing model averaging, models that are most sup-
ported by the data have a ΔAICj that is close to 0 and conse-
quently a weight that is close to 1, while models fitting badly
have high ΔAICj values and, accordingly, weights that shrink
towards 0.

The AIC weights can be calculated using the R function
getAICweights (line 3). Then the average value of, for example,
αdiv (lines 4, 5) and αdfe (lines 6, 7) can be calculated as follows:
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Note that getAICweights returns weights that are already
rescaled so that they sum to 1, so the average value of α does not
have to be normalized by the sum of the weights as in Eq. 1.

5.4 Note

on Divergence Data

One of the advantages of polyDFE is that it does not require the
use of divergence data for inferring the DFE and α. This is free of
the assumption that the ingroup and outgroup share the DFE,
which is needed when divergence data is used. Violating this
assumption can lead to biases in the estimates [1]. However, diver-
gence data is always available, as it is needed to orient the SNPs to
calculate the derived SFS (see Subheading 2.1). So then the ques-
tion arises on whether divergence data should be used or not in the
inference.

The impact of using divergence data can be observed when
investigating the AIC values (Table 2). When divergence data was
not used, they are much closer to each other: the best 6 models are
within an AIC difference of approximately 4, while when diver-
gence data is used, only the first two models have an AIC difference
of approximately 2, while the rest of the models have a much poorer
fit. This is because using less data for the inference makes it more
difficult to differentiate between the models. Using or not the
divergence data also has a big impact on the estimates of α
(Table 2):

The model-averaged αdfe (line 14) is estimated to be 0.388
when divergence data is not used, but only 0.225 when divergence
data is used.
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Deciding on whether or not divergence data should be used is
not necessarily straightforward. The previous approaches of LRT
and AIC are not applicable here, as we want to compare twomodels
that are fitted on different datasets. One way is to compare the

Table 2
Model comparison and estimates of α

df log lk Δ AIC αdiv αdfe

Using divergence data

C + r � eps 29 �208.94 0.00 0.179 0.179

C + r + eps 30 �209.14 2.41 0.197 0.197

A + r � eps 28 �212.52 5.17 0.838 0.837

A + r + eps 29 �213.13 8.39 0.836 0.835

A del + r � eps 27 �289.91 157.95 0.066 0.000

A del + r + eps 28 �289.94 159.99 0.066 0.000

C � r + eps 7 �4872.04 9282.21 0.767 0.767

C � r � eps 6 �5051.49 9639.10 0.798 0.800

A � r + eps 6 �5135.66 9807.44 0.929 0.928

A � r � eps 5 �5231.75 9997.62 0.927 0.927

A del � r + eps 5 �6776.33 13086.79 0.187 0.000

A del � r � eps 4 �6850.96 13234.05 0.178 0.000

Not using divergence data

A + r � eps 26 �196.05 0.00 0.770 0.741

A del + r � eps 25 �197.30 0.51 0.159 0.000

A del + r + eps 26 �196.90 1.71 0.167 0.000

A + r + eps 27 �196.07 2.04 0.770 0.741

C + r � eps 27 �196.13 2.16 0.385 0.308

C + r + eps 28 �196.33 4.56 0.580 0.514

C � r + eps 6 �4844.06 9256.02 0.787 0.945

C � r � eps 5 �4878.07 9322.04 0.814 0.970

A del � r + eps 4 �4881.24 9326.37 0.731 0.000

A � r + eps 5 �4881.24 9328.37 0.731 0.000

A � r � eps 4 �5199.53 9962.96 0.909 0.873

A del � r � eps 3 �5328.36 10218.61 0.652 0.000

Note: Results for models A, A del (which contains only deleterious mutations) and C, where the ri parameters were

estimated (+ r) or not (� r) and Ean was estimated (+ eps) or not (� eps)
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observed and expected SFS obtained under the estimated models.
The best models found in both cases contain estimated ri para-
meters, but an Ean that was fixed to 0. When divergence data was
used, the best model is model C, while when divergence data is not
used, the model of choice is model A (Table 2).

The observed SFS (line 1) is given as counts for the total length
of the region, while the expected one (lines 2–4) is given per site, so
before the comparison, the expected SFS has to be normalized
by the length of the region (lines 5, 6). Using a log scale on the
y-axis (lines 10, 11) and coloring the background in alternating
colors (lines 12–16) makes it easier to visually compare the SFS
for 1� i<n, where n is the sample size (line 7). Then the
expected SFS counts scan be plotted (lines 19, 20) next to the
observed SFS counts (line 21):

Visualizing the SFS (Fig. 2) can give insights into how well the
models fit the data, but it does not give any statistical measure on
how well the expected SFS matches the observed. To test that, we
can use a χ2 goodness-of-fit test (lines 4–6). This indicates that
both using the divergence data or not gives a good fit to the SFS,
and that, in general, the selected SFS is more difficult to fit well
(lines 8–10). The χ2 statistic could be used as a way to decide if
divergence data should be used or not (lines 11–13) which shows
that, overall, not using divergence data seems to give a closer fit to
the data:
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The above check can also be done using a model-averaged
expected SFS, as detailed in analysis.R. Doing so does not
change the above conclusion.

6 Conclusion

polyDFE provides a flexible likelihood framework to infer the DFE
and properties of beneficial mutations from SFS and possibly diver-
gence data. The estimation procedure accounts for uncertainty of
the models and data imperfection. polyDFE is continually devel-
oped further with updates posted on https://github.com/paula-
tataru/polyDFE and is currently being extended to test for hetero-
geneous DFE among species or gene categories within a single
species.
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(2017) Inference of distribution of fitness
effects and proportion of adaptive substitutions
from polymorphism data. Genetics 207
(3):1103–1119

2. Bataillon T, Bailey SF (2014) Effects of new
mutations on fitness: insights from models
and data. Ann New York Acad Sci 1320
(1):76–92

5 10 15 20

10
0

50
0

20
00

50
00

i

S
F

S

obs
expec with div
expec without div
neutral
selected

obs
ec withexpe h div
ec withexpe hout d
tralneut

ectedsele

Fig. 2 Observed and expected SFS for best fitted models when divergence data was used or not. The y-axis is
on log scale

polyDFE: Inferring DFE and α from Polymorphism Data 145

https://github.com/paula-tataru/polyDFE
https://github.com/paula-tataru/polyDFE


3. Gossmann TI, Song BH, Windsor AJ,
Mitchell-Olds T, Dixon CJ, Kapralov MV, Fila-
tov DA, Eyre-Walker A (2010) Genome wide
analyses reveal little evidence for adaptive evo-
lution in many plant species. Mol Biol Evol
27:1822–1832

4. Castellano D, Coronado-Zamora M, Campos
JL, Barbadilla A, Eyre-Walker A (2016) Adap-
tive evolution is substantially impeded by Hill-
Robertson interference inDrosophila. Mol Biol
Evol 33:442–455

5. Hernandez RD, Williamson SH, Bustamante
CD (2007) Context dependence, ancestral mis-
identification, and spurious signatures of natural
selection. Mol Biol Evol 24(8):1792–1800

6. Keightley PD, Campos JL, Booker TR, Char-
lesworth B (2016) Inferring the frequency
spectrum of derived variants to quantify adap-
tive molecular evolution in protein-coding
genes of Drosophila melanogaster. Genetics
203(2):975–984

7. Keightley PD, Jackson BC (2018) Inferring the
probability of the derived versus the ancestral
allelic state at a polymorphic site. Genetics 209
(3):897–906

8. Nielsen R, Bustamante C, Clark AG,
Glanowski S, Sackton TB, Hubisz MJ, Fledel-
Alon A, Tanenbaum DM, Civello D, White TJ,
Sninsky JJ, AdamsMD, Cargill M (2005) A scan
for positively selected genes in the genomes of
humans and chimpanzees. PLoS Biol 3(6):e170

9. James JE, Piganeau G, Eyre-Walker A (2016)
The rate of adaptive evolution in animal mito-
chondria. Mol Ecol 25(1):67–78

10. Bataillon T, Duan J, Hvilsom C, Jin X, Li Y,
Skov L, Glemin S, Munch K, Jiang T, Qian Y,
Hobolth A (2015) Inference of purifying and
positive selection in three subspecies of

chimpanzees (Pan troglodytes) from exome
sequencing. Genome Biol Evol 7
(4):1122–1132

11. Bierne N, Eyre-Walker A (2003) The prob-
lem of counting sites in the estimation of
the synonymous and nonsynonymous substi-
tution rates: implications for the correlation
between the synonymous substitution rate
and codon usage bias. Genetics 165
(3):1587–1597

12. Galtier N (2016) Adaptive protein evolution in
animals and the effective population size
hypothesis. PLoS Genet 12(1):e1005774

13. Wales DJ, Doye JP (1997) Global optimization
by basin-hopping and the lowest energy struc-
tures of Lennard-Jones clusters containing up
to 110 atoms. J Phys Chem A 101
(28):5111–5116

14. Efron B, Tibshirani RJ (1993) An introduction
to the bootstrap: monographs on statistics and
applied probability, vol 57. Chapman and
Hall/CRC, New York/London

15. Boyko AR, Williamson SH, Indap AR,
Degenhardt JD, Hernandez RD, Lohmueller
KE, Adams MD, Schmidt S, Sninsky JJ,
Sunyaev SR, White TJ (2008) Assessing the
evolutionary impact of amino acid mutations
in the human genome. PLoS Genet 4(5):
e1000083

16. Wilson DJ, Hernandez RD, Andolfatto P,
Przeworski M (2011) A population genetics-
phylogenetics approach to inferring natural
selection in coding sequences. PLoS Genet 7
(12):e1002395

17. Posada D, Buckley TR (2004) Model selection
and model averaging in phylogenetics: advan-
tages of Akaike information criterion and
Bayesian approaches over likelihood ratio
tests. Syst Biol 53(5):793–808

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution
and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative
Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use,
you will need to obtain permission directly from the copyright holder.

146 Paula Tataru and Thomas Bataillon

http://creativecommons.org/licenses/by/4.0/

	Chapter 6: polyDFE: Inferring the Distribution of Fitness Effects and Properties of Beneficial Mutations from Polymorphism Data
	1 Introduction
	1.1 Modelling the Properties of Mutations on Fitness
	1.2 Calculating the Rate of Adaptive Evolution, α

	2 Pre-processing of the Data
	2.1 The Type of Information Required by polyDFE
	2.2 Example of a polyDFE Input File
	2.3 Note on SFS Data

	3 Model Fitting with polyDFE
	3.1 Specifying a DFE Model to Fit Using polyDFE
	3.2 Note on Likelihood Maximization

	4 Post-Processing of the polyDFE Output
	4.1 Example of a polyDFE Output File
	4.2 Merging and Parsing Output Files
	4.3 Summarizing the DFE Estimated by polyDFE
	4.4 Estimating α

	5 Hypothesis Testing and Model Averaging
	5.1 Bootstrap-Based Confidence Intervals
	5.2 Hypothesis Testing
	5.3 Model Averaging with polyDFE
	5.4 Note on Divergence Data

	6 Conclusion
	References


