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Abstract

Population structure is a commonplace feature of genetic variation data, and it has importance in numerous
application areas, including evolutionary genetics, conservation genetics, and human genetics. Understand-
ing the structure in a sample is necessary before more sophisticated analyses are undertaken. Here we
provide a protocol for running principal component analysis (PCA) and admixture proportion inference—
two of the most commonly used approaches in describing population structure. Along with hands-on
examples with CEPH-Human Genome Diversity Panel and pragmatic caveats, readers will learn to analyze
and visualize population structure on their own data.
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1 Introduction

Population structure is a commonplace feature of genetic variation
data, and it has importance in numerous application areas, includ-
ing evolutionary genetics, conservation genetics, and human genet-
ics. At a broad level, population structure is the existence of
differing levels of genetic relatedness among some subgroups
within a sample. This may arise for a variety of reasons, but a
common cause is that samples have been drawn from geographi-
cally isolated groups or different locales across a geographic contin-
uum. Regardless of the cause, understanding the structure in a
sample is necessary before more sophisticated analyses are under-
taken. For example, to infer divergence times between two popula-
tions requires knowing two populations even exist and which
individuals belong to each.
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Two of the most commonly used approaches to describe popula-
tion structure in a sample are principal component analysis [5, 16,23,
25] and admixture proportion inference [19, 26]. In brief, principal
component analysis reduces a multi-dimensional dataset to a much
smaller number of dimensions that allows for visual exploration and
compact quantitative summaries. In its application to genetic data,
the numerous genotypes observed per individual are reduced to a few
summary coordinates. With admixture proportion inference, indivi-
duals in a sample are modeled as having a proportion of their genome
derived from each of several source populations. The goal is to infer
the proportions of ancestry from each source population, and these
proportions can be used to produce compact visual summaries that
reveal the existence of population structure in a sample.

The history and basic behaviors of both these approaches have
been written about extensively, including by some of us, and so we
refer readers to several previous publications to learn the basic
background and interpretative nuances of these approaches and
their derivatives [1, 2,9, 10, 12, 17, 18, 20, 21, 23, 25-27, 29].
Here, in the spirit of this volume, we provide a protocol for running
these analyses and share some pragmatic caveats that do not always
arise in more abstract discussions regarding these methods.

2 Materials

The protocol we present is based on two pieces of software: (1) the
ADMIXTURE software that our team developed [2] for efficiently
estimating admixture proportions in the “Pritchard-Stephens-
Donnelly” model of admixture [19, 26]. (2) The smartpca soft-
ware developed by Nick Patterson and colleagues for carrying out
PCA [25]. Both of these pieces of software are used widely. We also
pair them with downstream tools for visualization, in particular pong
[3], for visualizing output of admixture proportion inferences, and
PCAviz [31], a novel R package for plotting PCA outputs. We also
use PLINK [6, 24] as a tool to perform some basic manipulations of
the data (see Chapter 3 for more background on PLINK).

The example data we use is derived from publicly available
single-nucleotide polymorphism (SNP) genotype data from the
CEPH-Human Genome Diversity Panel [4]. Specifically, we will
look at Illumina 650Y genotyping array data as first described by Li
etal. [15]. This sample is a global-scale sampling of human diversity
with 52 populations in total, and the raw files are available from the
following link: http: //hagsc.org/hgdp /files.html. These data have
been used in numerous subsequent publications and are an impor-
tant reference set.

A few technical details are that the genotypes were filtered with
a cutoff of 0.25 for the Illumina GenCall score [13] (a quality score
generated by the basic genotype calling software). Further, indivi-
duals with a genotype call rate <98.5% were removed, with the logic
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being that if a sample has many missing genotypes it may be due to
poor quality of the source DNA, and so none of the genotypes from
that individual should be trusted. Beyond this, to prepare the data,
we have filtered down the individuals to a set of 938 unrelated
individuals. We exclude related individuals as we are not interested
in population structure that is due to family relationships and meth-
ods such as PCA and ADMIXTURE can inadvertently mistake family
structure for population structure. The starting data are available as
plink-formatted files H938.bed H938.fam, H938.bim, and an
accompanying set of population identifiers H938. clst. txt in the
raw_input sub-directory of the companion data.

As a pragmatic side note, it is common (and recommended)
when carrying out analyses of population structure to merge one’s
data with other datasets that contain populations which may be
representative sources of admixing individuals. For example, in
analyzing a dataset with African American individuals, it can be
helpful to include datasets containing African and European indi-
viduals in the analysis. These datasets can be merged with your
dataset using software such as plink. However, when merging
several datasets, one should be aware of potential biases that can
be introduced due to strand flips (i.e., one dataset reports geno-
types on the “+” strand of the reference human genome, and
another on the “—” strand). One precautionary step to detect
strand flips is to group individuals by what dataset they derive
from and then produce a scatterplot of allele frequencies for pairs
of groups at a time. If strand flips are not being controlled correctly,
one will observe numerous variants on the y=1 — x line, where x is
the frequency in one dataset and y is the frequency in a second
dataset. (Note: This rule of thumb assumes levels of differentiation
are low between datasets, as is the case in human datasets in general,
but one should still keep this in mind interpreting results.)

3 Methods

3.1 Subsetting Data

In this section we walk you through an example analysis using
ADMIXTURE and smartpca. We assume the raw data files are in a
directory raw_input that is below our working directory and that
a second directory out exists in which outputs can be placed. If
following along in an R console, you should use the setwd( )
command to set the working directory correctly.

For running some simple examples below, we will first create a subset
of the HGDP sample that is restricted to only European populations.
The European populations in the HGDP have the labels “Adygei,”
“Basque,” “French,” “Italian,” “Orcadian,” “Russian,” “Sardinian”
and “Tuscan,” so we create a list of individuals matching these labels
using an awk command, and then use plink‘s ——keep option to
make a new dataset with output prefix “H938_Euro.”
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3.2 Filter Out SNPs to
Remove Linkage
Disequilibrium (LD)

3.3 Running
ADMIXTURE

3.3.1 An Example Run
with Visualization

awk ’$3=="Adygei"||$3=="French_Basque"||$3=="French"|| \
$3=="North_Italian"||$3=="0Orcadian"||$3=="Russian"|| \
$3=="Sardinian" | |$3=="Tuscan" {print $0}’ \
raw_input/H938.clst.txt > out/Euro.clst.txt

plink --bfile raw_input/H938 --keep out/Euro.clst.txt \
--make-bed --out out/H938_Euro

SNPs in high LD with each other contain redundant information.
More worrisome is the potential for some regions of the genome to
have a disproportionate influence on the results and thus distort the
representation of genome-wide structure. A nice empirical example
of the problem is in figure 5 of Tian et al. [30], where PC2 of the
genome-wide data is shown to be reflecting the variation in a
3.8 Mb region of chromosome 8 that is known to harbor an
inversion. A standard approach to address this issue is to filter out
SNPs based on pairwise LD to produce a reduced set of more
independent markers. Here we use plink’s commands to produce
a new LD-pruned dataset with output prefix H938_ Euro.
LDprune. The approach considers a chromosomal window of
50 SNPs at a time, and for any pair whose genotypes have an
association 72 value greater than 0.1, it removes a SNP from the
pair. Then the window is shifted by 10 SNPs and the procedure is
repeated:

plink --bfile out/H938_Euro --indep-pairwise 50 10 0.1
plink --bfile out/H938_Euro --extract plink.prune.in --make-bed
--out out/H938_Euro.LDprune

(Advanced note: For particularly sensitive results, we recom-
mend additional rounds of SNP filtering based on observed princi-
pal component loadings and/or population differentiation
statistics. For example, a robust approach is to filter out large
windows around any SNP with a high PCA loading, see ref. 22.)

The ADMIXTURE software (v 1.3.0 here) comes as a pre-compiled
binary executable file for either Linux or Mac operating systems. To
install, simply download the package and move the executable into
your standard execution path (e.g. “/usr/local/bin” on many
Linux systems). Once installed, it is straightforward to run ADMIX~
TURE with a fixed number of source populations, commonly
denoted by K. For example, to get started let’s run ADMIXTURE
with K=6:

admixture out/H938_Euro.LDprune.bed 6

ADMIXTURE is a maximum-likelihood based method, so as the
method runs, you will see updates to the log-likelihood as it con-
verges on a solution for the ancestry proportions and allele
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frequencies that maximize the likelihood function. The algorithm
will stop when the difference between successive iterations is small
(the “delta” value takes a small value). A final output is an estimated
Fgrvalue [11] between each of the source populations, based on
the inferred allele frequencies. These estimates reflect how differ-
entiated the source populations are, which is important for under-
standing whether the population structure observed in a sample is
substantial or not (values closer to 0O reflect less population
differentiation).

After running, ADMIXTURE produces two major output files.
The file with suffix . P contains an L x K table of the allele frequen-
cies inferred for each SNP in each population. The file with suffix
.Q contains an N x K table of inferred individual ancestry propor-
tions from the K ancestral populations, with one row per individual.

For our example dataset with K=6, this will be a file called
H938.LDprune.6.Q. This file can be used to generate a plot
showing individual ancestry (see Fig. 1). In R, this can be done
using the following commands:

library(RColorBrewer)
tbl <- read.table("out/H938_Euro.LDprune.6.Q")
par(mar = c(1.5, 4, 2.5, 2),cex.lab=0.75,cex.axis=0.6)
barplot (t(as.matrix(tbl)),
col = brewer.pal(6, "Setl"), ylab = "Anc. Proportions",
border = NA, space = 0
)

Each thin vertical line in the barplot represents one individual
and each color represents one inferred ancestral population. The
length of each color in a vertical bar represents the proportion of
that individual’s ancestry that is derived from the inferred ancestral
population corresponding to that color. The above image suggests
there are some genetic clusters in the data, but it’s not a well-
organized data display.
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l

Fig. 1 Initial rough plot of the ADMIXTURE results for K= 6 using R base graphics
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To improve the visualization, one can use a package dedicated
to plotting ancestry proportions [3, 14, 28]. Here we use a post-
processing tool, pong [ 3], which visualizes individual ancestry with
similarity between individuals within clusters. You will most likely
want to install pong on a local machine as it initializes a local web
server to display the results.

To run pong requires setting up a few files: (1) an ind2pop file
that maps individuals to populations; (2) a Qfilemap file that
points pong towards which “.Q” files to display; these are easy to
build up from the command-line using the Euro.clst.txt file
we built above, and an awk command to output tab-separated text
to a file with the Qfilemap suffix added to whatever file prefix
we’re using to organize our runs:

cut -d’ ’ -£f3 out/Euro.clst.txt > out/H938_Euro.ind2pop
FILEPREFIX=H938_Euro.LDPrune
K=6

awk -v K=$K -v file=$FILEPREFIX ’BEGIN{ \
printf ("ExampleRun\t%d\t%s.%d.Q\n" ,K,file,K)
}’ > out/$FILEPREFIX.Qfilemap

Note when building the .Qf ilemap one needs to use tabs to
separate the columns for pong to read the file correctly.
Then to run pong, we use the following command:

pong -m out/H938_Euro.LDprune.Qfilemap -i out/H938_Euro.ind2pop

We open a web browser to http://localhost: 4000/ to view the
results. Figure 2 shows an example of what you should see. From
this visualization, we can see the admixture model fits most indivi-
duals of the Adygei, Sardinian, Russian, French Basque samples as
being derived each from a single source population (represented by
purple, red, green, and yellow, respectively). The French, Tuscan,
and North Italian samples are generally estimated to have a majority
component of ancestry from a single source population (blue)
though with admixture with other sources. A first conclusion is
that the population labels do not capture the complexity of the

Fig. 2 Plot of the ADMIXTURE results for K= 6 using PONG
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population structure. There is apparent cryptic structure within
some samples (e.g., Orcadian) and minimal differentiation between
other samples (North Italian and Tuscan samples, for instance).
Because ADMIXTURE is a “greedy,” “hill-climbing” optimi-
zation algorithm it is good practice to do multiple runs from
different initial random starting points. We can do this by using
the -s flag to specify the random seed for each ADMIXTURE run.

K=6

prefix=H938_Euro.LDprune

# run admizture multiple times

for r in {1..10}

do

admixture -s ${RANDOM} out/H938_Euro.LDprune.bed $K
mv out/${prefix}.${K}.Q out/${prefix}.K${KIr${r}.Q

done

Pong has nice functionality for summarizing the output of the
multiple ADMIXTURE runs. It can collect similar solutions into
“modes” and display them in ranked order of the number of runs
supporting each. In the interactive version, you use the
check to highlight multimodality checkbox and whiten
populations with ancestry matrices agreeing with the major mode.
One can also click on and visualize only one cluster. Here we set up
the PONG input files and show an example output.

K=6

prefix=H938_Euro.LDprune

# create a pong parameter file

for r in {1..10}

do

awk -v K=$K -v r=$r -v file=${prefix}.K${K}r${r} ’BEGIN{ \
printf ("K\drid\t%d\t%s.Q\n" ,K,r ,K,file)

}> >> out/${prefix}.k6multiplerun.Qfilemap

done

# run pong

pong -m out/${prefix}.k6multiplerun.Qfilemap --greedy -s .95 \
-i out/H938_Euro.ind2pop

The resulting figure (Fig. 3) shows that six out of ten runs
converged to the same mode, which appears equivalent to our
initial run above. We observe the appearance of structure within
Sardinia in the second and third modes. The original run had North
Italian and Tuscan samples as a mostly unadmixed, while all three
minor modes model the two population as highly admixed. The
fourth mode (supported by just one run) inferred sub-structure
within the French Basque sample. This instability in the solution is a
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Fig. 3 PONG plot summarizing multiple ADMIXTURE runs with different random starting points. The top row
shows the major mode (supported by 6 out of 10 runs as indicated in the blue text). The next three rows show
three other solutions found by ADMIXTURE in 2, 1, and 1 runs, respectively

hint that the ADMIXTURE model with K= 6 is not a perfect fit to

this data.
3.3.2  Considering In a typical analysis, one wants to explore the sensitivity of the
Different Values of K results to the choice of K. One approach is to run ADMIXTURE

with various plausible values of K and compare the performance of
results visually and using cross-validation error rates. Here is a piece
of bash command-line code that will run ADMIXTURE for values of
K from 2 to 12, and that will build a file with a table of cross-
validation error rates per value of K.

# Run for different wvalues of K
prefix=H938_Euro.LDprune
Klow=1
Khigh=12
for ((K=$Klow;K<=$Khigh;K++)); \
do
admixture --cv out/$prefix.bed $K | tee log.S$prefix.${K}.out
done
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Then let’s compile results on cross-validation error across
values of K:

prefix=H938_Euro.LDprune

Klow=1

Khigh=12

echo ’# CV results’ > $prefix.CV.txt

for ((K=$Klow;K<=$Khigh;K++)); do
awk -v K=$K ’$1=="CV'"{print K,$4}’ out/log.$prefix.$K.out \
>> out/$prefix.CV.txt;

done

Now let’s inspect the outputs. First let’s make a plot of the
cross-validation error as a function of K (Fig. 4):

tbl <- read.table("out/H938_Euro.LDprune.CV.txt")

par(mar = c(4, 4, 2, 2),cex=0.7)

plot (tbl$Vi, tbl$V2, xlab = "K", ylab = "Cross-validation error"
pch = 16, type = "1")

The cross-validation error suggests a single source population
can model the data adequately and larger values of K lead to over-
fitting.

To inspect further, we can use the pong software to visualize
the ancestry components inferred at different K across several runs.
We need to set up some of the results and input files first.

056 060 0.64
| | |

Cross—validation error
|

0.52
|

Fig. 4 Cross-validation error as a function of K for the example dataset
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3.3.3 Some Advanced
Options

# Run for different values of K, each with 10 runs
prefix=H938_Euro.LDprune
for r in {1..10}; do for K in {2..12};
do
admixture -s ${RANDOM} out/${prefix}.bed $K
mv out/${prefix}.${K}.Q out/${prefix}.K${K}r${r}.qQ

done; done

# create {map file for pong

createQmap () {

local r=$1

local K=$2

awk -v K=$K -v r=$r -v file=${prefix} .K${K}r${r} ’BECIN{ \
printf ("K/dr/kd\t%d\t%s.Q\n" ,K,r ,K,file)

}> >> out/${prefix}.multiplerun.Qfilemap

}

export -f create(map
for K in {2..12}; do for r in {1..10}; do createQmap $r $K; \
done; done

#run pong
pong -m out/H938_Euro.LDprune.multiplerun.Qfilemap --greedy \
-s.95 -i out/H938_Euro.ind2pop

Here we find how as Kincreases through to K= 6, the Sardin-
ian, Basque, Adygei, and Russian samples are typically modeled as
descended from unique sources, and at K of 7, 8, 9 we find
structure within the Sardinian, Russian, Orcadian, and Basque
samples is revealed, though for each, the substructure is not very
stable (Fig. 5). The values of K= 10 and above make increasingly
finer scale divisions that are difficult to interpret, and the major
modes for K=7 and up only consist of one to three runs, suggest-
ing a very multi-modal likelihood surface and a poor resolution of
the population structure.

Opverall, it is interesting to note that the visual inspection of the
results suggests several “real” clusters in the data, supported by an
alignment of the clustering with known population labels, even
though the cross-validation supports a value of K= 1. This high-
lights a long-standing known issue with admixture modeling: the
selection of K is a difficult problem to automate in a way that is
robust.

Running ADMIXTURE with the -B option provides estimates of
standard errors on the ancestry proportion inferences. The -1 flag
runs ADMIXTURE with a penalized likelihood that favors more
sparse solutions (i.e., ancestry proportions that are closer to
zero). This is useful in settings where small, possibly erroneous
ancestry proportions may be overinterpreted. By using the -p
option, the population allele frequencies inferred from one dataset
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Fig. 5 Example PONG output showing results from across a range of K values (with ten ADMIXTURE runs per
K value)
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3.4 PCA with
SMARTPCA

3.4.1 Running PCA

can be provided as input for inference of admixture proportions in a
second dataset. This is useful when individuals of unknown ancestry
are being analyzed against the background of a reference sample
set. Please see the ADMIXTURE manual for a complete listing of
options and more detail, and we encourage testing these options in
test datasets such as the one provided here.

Comparing ADMIXTURE and PCA results often helps give insight
and confirmation regarding population structure in a sample. To
run PCA, a standard package that is well-suited for SNP data is the
smartpca package maintained by Nick Patterson and Alkes Price
(at  http://data.broadinstitute.org/alkesgroup /EIGENSOFT /).
To run it, we first set up a basic smartpca parameter file from
the command-line of a bash shell:

PREFIX=H938_Euro.LDprune

echo genotypename: out/$PREFIX.bed > out/$PREFIX.par
echo snpname: out/$PREFIX.bim >> out/$PREFIX.par

echo indivname: out/$PREFIX.PCA.fam >> out/$PREFIX.par
echo snpweightoutname: out/$PREFIX .snpeigs >> out/$PREFIX.par
echo evecoutname: out/$PREFIX.eigs >> out/$PREFIX.par
echo evaloutname: out/$PREFIX.eval >> out/$PREFIX.par
echo phylipoutname: out/$PREFIX.fst >> out/$PREFIX.par
echo numoutevec: 20 >> out/$PREFIX.par

echo numoutlieriter: O >> out/$PREFIX.par

echo outlieroutname: out/$PREFIX >> out/$PREFIX.par
echo altnormstyle: NO >> out/$PREFIX.par

echo missingmode: NO >> out/$PREFIX.par

echo nsnpldregress: 0 >> out/$PREFIX.par

echo noxdata: YES >> out/$PREFIX.par

echo nomalexhet: YES >> out/$PREFIX.par

This input parameter file runs smartpca in its most basic
mode (i.e., no automatic outlier removal or adjustments for LD—
features which you might want to explore later).

As a minor issue, smar tpca ignores individuals in the . fam file
if they are marked as missing in the phenotypes column. This awk
command provides a new . fam file that will automatically include
all individuals.

awk ’{print $1,$2,$3,84,$5,1}’ out/H938_Euro.LDprune.fam \
> out/H938_Euro.LDprune.PCA.fam

Now run smartpca with the following command.

smartpca -p ./out/H938_Euro.LDprune.par
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3.4.2 Plotting PCA
Results with PCAviz
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You will find the output files in the out sub-directory as speci-
fied in the parameter file.

The pcaviz package can be found at https://github.com/
NovembreLab/PCAviz. It provides a simple interface for quickly
creating plots from PCA results. It encodes several of our favored
best practices for plotting PCA (such as using abbreviations for
point characters and plotting median positions of each labelled
group). To install the package use:

install.packages("devtools")
devtools: :install_github("NovembreLab/PCAviz",
build_vignettes = TRUE)

The following command in R generates plots showing each
individual sample’s position in the PCA space and the median
position of each labelled group in PCA space:

library(PCAviz)

library(cowplot)

prefix <- "out/H938_Euro.LDprune"

nPCs <- 20

# Read in individual coordinates on PCs and eignvalues
PCA <- read.table(paste(prefix, ".eigs", sep = ""))
names (PCA) <- c("ID", paste("PC", (1:nPCs), sep = ""),

"case.control")
PCA <- PCA[, 1:(nPCs + 1)] # Remove case/control column
eig.val <- sqrt(unlist(read.table(

paste(prefix, ".eval", sep = "")))[1:nPCs])
sum.eig <- sum(unlist(read.table(
paste(prefix, ".eval", sep = ""))))

# Read in snp weightings matriz

snpeigs <- read.table(paste(prefix, ".snpeigs", sep = ""))
names (snpeigs) <- c("ID", "chr", "pos",
paste("PC", (1:nPCs), sep = ""))

snpeigs$chr <- factor(snpeigs$chr)
rownames (snpeigs) <- snpeigs$ID
snpeigs <- snpeigs[, -1]

# Note smartpca pushes the plink family and individual

# 1ds together so we need to extract out the ids afresh
tmp <- unlist(sapply(as.character(PCA$ID), strsplit, ":"))
ids <- tmp[seq(2, length(tmp), by = 2)]

PCA$ID <- ids

# Read in the group/cluster labels

clst <- read.table("out/Euro.clst.txt")

# Order them to match the ids of PCA object
clst_unord <- clst$V3[match(ids, clst$V2)]
PCA <- as.data.frame(PCA)

PCA <- cbind(PCA, clst_unord)

names (PCA) [ncol(PCA)] <- "sample"


https://github.com/NovembreLab/PCAviz
https://github.com/NovembreLab/PCAviz

80 Chi-Chun Liu et al.

# Build the PCAviz object
hgdp <- pcaviz(dat = PCA, sdev = eig.val,

var = sum.eig, rotation = snpeigs)
hgdp <- pcaviz_abbreviate_var(hgdp, "sample")

# Make PCA plots

geom.point.summary.params <- list(
shape = 16, stroke = 1, size = 5,
alpha = 1, show.legend = F

)

plotl <- plot(hgdp,
coords = paste0("PC", c(1, 2)), color = "sample",
geom.point.summary.params = geom.point.summary.params,
scale.pc.axes = 0.6

)

plot2 <- plot(hgdp,
coords = pasteO("PC", c(2, 3)), color = "sample",
geom.point.summary.params = geom.point.summary.params,
scale.pc.axes = 0.6

)

plot3 <- plot(hgdp,
coords = pasteO("PC", c(4, 5)), color = "sample",
geom.point.summary.params = geom.point.summary.params,
scale.pc.axes = 0.6

)

plot4 <- plot(hgdp,
coords = paste0("PC", c(5, 6)), color = "sample",
geom.point.summary.params = geom.point.summary.params,
scale.pc.axes = 0.6

)

plot_grid(plotl, plot2, plot3, plot4)

First one may notice several populations are separated with PC1
and PC2, with the more isolated populations being those that were
most distinguished from the others by ADMIXTURE (Fig. 6). PC4
distinguishes a subset of Orcadian individuals and PC5 distin-
guishes two Adygei individuals. PC6 corresponds to the cryptic
structure observed within Sardinians in the ADMIXTURE analysis.

As an alternative visualization, it can be helpful to see the
distribution of PC coordinates per population for each labeled
group in the data (see Fig. 7):

pcaviz_violin(hgdp, pc.dims = pasteO("PC", c(1:3)),
plot.grid.params = list(nrow = 3))

As mentioned above in the section on LD, it is useful to inspect
the PC loadings to ensure that they broadly represent variation
across the genome, rather than one or a small number of genomic
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Fig. 6 Pairwise plots of PC scores generated using the PCAviz package

regions [7] (see Fig. 8). SNPs that are selected in the same direction
as genome-wide structure can show high loadings, but what is
particularly pathological is if the only SNPs that show high loadings
are all concentrated in a single region of the genome, as might
occur if the PCA is explaining local genomic structure (such as an
inversion) rather than population structure.

for (i in 1:5) {

plotname <- paste("plot", i, sep = "")

plot <- pcaviz_loadingsplot (hgdp,
pc.dim = pasteO("PC", i),
min.rank = 0.8, gap = 200, color = '"chr",
geom.point.params = list(show.legend = FALSE)

) +
xlab("SNPs") + ylab(pasteO("PC", i, " loading"))
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Fig. 7 Violin plots of PC values generated using the PCAviz package (A: PC1, B: PC2, C: PC3)

assign(plotname, plot)
}
# grep common legend
plot <- pcaviz_loadingsplot (hgdp,
pc.dim = pasteO("PC", 1),
min.rank = 0.8, gap = 200, color
) +
guides(color = guide_legend(nrow = 2, byrow = TRUE)) +
theme (legend.position = "bottom",
legend. justification = "center")
plot_legend <- get_legend(plot)
# plot loadings
prow <- plot_grid(plotl, plot2, plot3, plot4, plot5,
nrow = 5, align = "vh")
plot_grid(prow, plot_legend, ncol = 1, rel_heights = c(1, .2))

"chr"
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Fig. 8 PC loading plots generated using the PCAviz package

The proportion of total variance explained by each PC is a
useful metric for understanding structure in a sample and for
evaluating how many PCs one might want to include in down-
stream analyses (see Fig. 9). This can be computed as 4,/ X ;4,, with
A; being eigenvalues in decreasing order, and is plotted below:

screeplot (hgdp, type = "pve") +
y1lim(0, 0.018) +
ylab(’Proportion of Variance Explained’) +
theme (axis.text.x = element_text(angle = 90, hjust = 1)) +
theme (axis.line = element_line(size = 1, linetype = "solid"))

The results show that the top PCs only explain a small fraction
of the variance (<1.5%) and that after about K= 6 the variance
explained per PC becomes relatively constant; roughly in line with
the visual inspection of the admixture results that revealed K=6
may be reasonable for this dataset.
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Fig. 9 Proportion of variance explained by each PC. Plot generated using the

PCAviz package

4 Discussion

Our protocol above is relatively straightforward and presents the
most basic implementation of these analyses. Each analysis software
(ADMIXTURE and smartpca)and each visualization package (pong
and PCAviz) contain numerous other options that may be suitable
for specific analyses and we encourage the readers to spend time in
the manuals of each. Nonetheless, what we have presented is a
useful start and a standard pipeline that we use in our research.
Two broad perspectives we find helpful to keep in mind are:
(1) How the admixture model and PCA framework are related to
each other indirectly as different forms of sparse factor analysis [8];
(2) How the PCA framework in particular can be considered as a
form of efficient data compression. Both of these perspectives can
be helpful in interpreting the outputs of the methods and for
appreciating how these approaches best serve as helpful visual
exploratory tools for analyzing structure in genetic data. These
methods are ultimately relatively simple statistical tools being used
to summarize complex realities. They are part of the toolkit for
analysis, and often are extremely useful for framing specific models
of population structure that can be further investigated using more
detailed and explicit approaches (such as those based on coalescent
or diffusion theory, Chapters 7 on MSMC and 8 on CoalHMM).
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