
Chapter 3

Data Management and Summary Statistics with PLINK

Christopher C. Chang

Abstract

PLINK is a versatile program which supports data management, quality control, and common statistical
computations on matrices of genomic variant calls, in a computationally efficient manner. In population
genomics, it is frequently used to take care of the “basics,” so they do not need to be reimplemented when a
new type of analysis needs to be performed on such a matrix. I describe several of these basic operations, and
discuss uses and pitfalls.
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1 Introduction

Genotyping chips and sequencing machines produce data in a wide
variety of formats. However, they are all trying to measure the same
thing: what are the genome sequences of these organisms? These
sequences will tend to be 99%+ -identical between different organ-
isms of the same species, of course, but thanks tomutation and sexual
reproduction, interesting variation will remain, and it is this variation
that is the primary object of study for population genomics.

The most commonly studied type of variation is the “single
nucleotide polymorphism” (SNP), an isolated position in the
genome that noticeably varies between organisms of the same
species while adjacent positions remain identical. They account
for a large fraction of total variation, they are relatively easy to
detect with modern technologies, and they introduce fewer analyt-
ical difficulties than, e.g., genomic rearrangements. Thus, many
population-genomic datasets are in the form of a SNP � sample
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matrix. PLINK 1.0 [1] introduced a simple and efficient binary
encoding for biallelic-SNP � sample matrices which has become a
de facto standard (see Note 1).

PLINK itself also supports a variety of common data manage-
ment and quality control operations on such matrices, along with
some useful summary statistics; and the wider ecosystem of soft-
ware directly supporting the PLINK 1 binary format can handle
much more (see, e.g., the ADMIXTURE software discussed in
Chapter 4). In this chapter, I will cover the following:

l How to convert data into the PLINK 1 binary format.

l Filtering out samples and SNPs with too much missing data.

l Selecting a sample subset without very close relatives.

l Minor allele frequency reporting, and using MAFs to filter
out SNPs.

l Hardy–Weinberg equilibrium statistics, and filtering applications.

l Selecting a SNP subset in approximate linkage equilibrium.

l Principal component analysis.

l Sex validation and imputation.

l Reporting linkage disequilibrium statistics.

l Exporting data to other file formats.

2 Materials

You will want PLINK 1.9 and 2.0 [2] for everything that follows. If
they are already installed on your system, typing plink or plink2
with no additional command-line arguments into a bash
(or Windows cmd) shell should cause version information and
partial lists of supported commands to be printed:

~$ plink

PLINK v1.90b6.4 64-bit (7 Aug 2018) www.cog-genomics.org/plink/1.9/

(C) 2005-2017 Shaun Purcell, Christopher Chang GNU General Public License v3

plink [input flag(s)...] {command flag(s)...} {other flag(s)...}

plink --help {flag name(s)...}

Commands include --make-bed, --recode, --flip-scan, --merge-list,

--write-snplist, --list-duplicate-vars, --freqx, --missing, --test-mishap,

--hardy, --mendel, --ibc, --impute-sex, --indep-pairphase, --r2, --show-tags,

--blocks, --distance, --genome, --homozyg, --make-rel, --make-grm-gz,

--rel-cutoff, --cluster, --pca, --neighbour, --ibs-test, --regress-distance,

--model, --bd, --gxe, --logistic, --dosage, --lasso, --test-missing,

--make-perm-pheno, --unrelated-heritability, --tdt, --dfam, --qfam, --tucc,

--annotate, --clump, --gene-report, --meta-analysis, --epistasis,

--fast-epistasis, and --score.

’plink --help | more’ describes all functions (warning: long).
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If either is not already installed on your system, prebuilt bin-
aries for Linux, OS X, and Windows can be downloaded from

https://www.cog-genomics.org/plink/1.9/ and
https://www.cog-genomics.org/plink/2.0/
Alternatively, you can download the source code from
https://github.com/chrchang/plink-ng
and build the programs yourself. On some systems, you can

also easily install PLINK 1.9 from a package manager such as APT,
Bioconda, or Homebrew.

PLINK is designed to interoperate well with R, and this chapter
includes an R plotting command. On the off chance you do not
have R installed, it can be downloaded from

https://cran.r-project.org/mirrors.html
Sample datasets (based on 1000 Genomes phase 1 [3]) and

PLINK outputs for many operations described in this chapter can
be downloaded from the companion website.

3 Methods

3.1 Getting Started:

Importing

and Merging Data

A PLINK 1 binary fileset contains three files:

l A text file with the “.fam” extension, containing sample IDs and
possibly some pedigree information (sex, parental IDs). PLINK
sample IDs normally have two components: a family ID (“FID”)
in the first column and an individual ID (“IID”) in the second
column of the .fam file.

l A text file with the “.bim” extension, containing biallelic-variant
IDs, positions, and the two observed alleles for each variant.
(Alleles can contain more than one nucleotide; PLINK is
designed to work with SNP-like data, but it is not restricted to
just SNPs.) Usually, the less common allele is in the 5th column
and the more common one is in the 6th, but if your organism
has already been sequenced enough to have an official “reference
genome,” the 6th column may always contain the reference-
genome allele.

PLINK 1.9 refers to the 5th-column allele as “A1,” and the
6th-column allele as “A2.”

l A binary file with the “.bed” (seeNote 2) extension, containing a
compact representation of the variant � sample matrix. Logi-
cally, for an autosome in a diploid genome, each matrix entry is
either “0 copies of A2 allele,” “1 copy,” “2 copies,” or “NA.”

Sometimes, you will be given data in a different format, and/or
multiple filesets which should be merged into a single PLINK
binary fileset for more convenient analysis.
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3.1.1 Variant Call Format Genome sequencing data is frequently represented in Variant Call
Format (VCF) [4] or its binary counterpart BCF. In addition to
variants and genotype calls, these files may contain genotype and
mapping quality statistics, and many other tidbits of information.
However, in population genomics, you usually only need the var-
iants and genotype calls. These can be converted to PLINK-format
with a command like

plink --vcf original_data.vcf.gz \

--keep-allele-order \

--make-bed \

--out converted_data

which generates a {converted_data.bed, converted_data.bim,
converted_data.fam} fileset with the same genotype calls as origi-
nal_data.vcf.gz.

Let us walk through the pieces of the command line above.

l “–vcf original_data.vcf.gz” specifies that the primary source of
input data for this run is original_data.vcf.gz, and it is in VCF
format. The .gz at the end of the filename indicates that the file is
gzip-compressed; PLINK automatically decompresses the file in
this case.

l The backslash at the end of the first line indicates that we are not
done typing the command. It is not strictly necessary: you could
put all four flags on a single line instead. But the one-flag-per-
line style is usually more readable.

l “–keep-allele-order” tells PLINK 1 to keep the allele ordering in
the input file, because VCF files explicitly specify which allele is
in the species “reference genome” and which allele deviates from
it, and that information is useful at times. A2 is set to the
reference allele, and A1 is set to the alternate allele.

Without this flag, PLINK 1 automatically reorders the alleles
such that A2 is the most common (“major”) allele in the imme-
diate dataset, and A1 is the least common (“minor”). Thus, it is
normally unsafe to make assumptions about which allele is A1
and which is A2: if a particular allele is present at 48% frequency,
it is easy to imagine that allele having 51% frequency in one
dataset (and thus being “major” there) and 45% in another.
However, there are several ways to impose a specific ordering
when necessary; –ref-from-fa (PLINK 2 only) and –a2-allele are
generally the most useful.

l “–make-bed” is the command to generate a new PLINK1 binary
fileset. This is used a lot.

l “–out” lets you set the output filename prefix for the current
run. Without it, all output filenames would be of the form plink.
{extension} instead.
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You can find more documentation on each of these flags by
going to

https://www.cog-genomics.org/plink/1.9/
and typing the flag name into the “Quick index search” box at

the bottom of the left sidebar. Or you can run “plink –help [flag
name]” to get a quick summary. Both sources of documentation
also discuss some quality filters PLINK can apply, if very-low-qual-
ity genotype calls remain in the VCF file; the information on how
PLINK sample IDs are generated from VCF sample IDs may also
be relevant.

The command line

plink2 --vcf original_data.vcf.gz \

--make-bed \

--out converted_data

has the same effect. Note the lack of “–keep-allele-order”:
PLINK 2’s default assumption is that the 6th .bim column contains
reference-genome alleles, and you need to add “–maj-ref” to tell
PLINK 2 to reorder the alleles the same way PLINK 1 does. This
reflects the fact that reference genomes are more widely agreed on
and more stable than they were in 2007.

For brevity, we will ignore –keep-allele-order, –a2-allele, and
the like in the rest of this chapter, but be aware that allele order
matters sometimes. We will also just give the PLINK 1.9 form of a
command when either PLINK version can be used.

3.1.2 PLINK text ({.ped, .

map})

A significant number of older datasets are in PLINK’s original text
fileset format, where the .map file contains variant IDs and posi-
tions, and the .ped file stores both sample IDs/pedigree info and
genotype calls. These can be imported with

plink --file original_data \

--make-bed \

--out converted_data

Replace –file with –tfile to import a “transposed text” fileset ({.
tped, .tfam}).

3.1.3 Other Formats PLINK is capable of importing several other commonly used
genotype data formats. The necessary command lines are all very
similar; you usually just need to replace –vcf/–file with another flag.
Refer to

https://www.cog-genomics.org/plink/1.9/input and
https://www.cog-genomics.org/plink/2.0/input
for details.
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3.1.4 Alternate

Chromosome/Contig Sets

Unless you specify otherwise, PLINK interprets chromosome
codes as if you were working with human data: 1–22 (or “chr1”–
“chr22”) refer to the respective autosomes, 23 refers to the X
chromosome, 24 refers to the Y chromosome, 25 refers to pseu-
doautosomal regions, and 26 refers to mitochondria.

If you are working with another species, use the “–chr-set” flag
to indicate the number of autosomes. A positive parameter indi-
cates a diploid genome, while a negative number tells PLINK to
treat the genome as haploid; so “–chr-set 38” is appropriate for dog
data, while “–chr-set -19” is correct for some bog moss species.

Some datasets also contain unplaced contigs. As long as their
names start with non-numeric characters (e.g., “contig35” is ok,
“35” is not), PLINK will accept them when you include “–allow-
extra-chr” (–aec for short) on the command line.

(Unfortunately, if you need –chr-set or –aec once, you will
usually need to include it every time you run PLINK on data for
that species.)

3.1.5 Missing Variant IDs Sometimes, your input files contain lots of variants which have not
been assigned a unique ID (e.g., a VCF file where lots of “ID”
column entries are “.”). This can prevent some PLINK commands
from working properly (such as the fileset merge operation we will
discuss next), so it is best to address this during or immediately after
data import.

PLINK’s –set-missing-var-ids flag provides one solution. Given
a template string where “@” represents the chromosome code and
“#” represents the base-pair coordinate on the chromosome, it
replaces every “.” variant ID with a template-based ID. For
example,

plink --bfile converted_data \

--set-missing-var-ids @:# \

--make-bed \

--out idfilled_data

would assign the ID “3:5331691” to an unnamed variant at
chromosome 3, position 5331691. This is good enough for
SNP-only data.

PLINK 2 also allows the template string to include REF/ALT
allele codes, supports several ways of handling very long allele
codes, and lets you rewrite all variant IDs with the template instead
of just missing IDs; see https://www.cog-genomics.org/plink/2.
0/data#set_all_var_ids.

3.1.6 Merging So you have converted all your data to PLINK 1 binary format, but
it is split across multiple filesets. To merge them into a single fileset,

l Create a text file with each of the input filename prefixes, one per
line. Call this input_sources.txt.
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l Run

plink --merge-list input_sources.txt \

--out merged_data

Note that, if you are merging a thousand single-sample input
filesets which all have the same sample ID, PLINK will assume all
genotype calls are for the same individual (and, as a consequence,
most or all genotype calls in the merged dataset will be missing;
PLINK’s merger normally only keeps a genotype call when all input
files agree on it). Assign a different sample ID to each individual
before merging.

3.1.7 Filling in Missing

Pedigree Information

VCF files normally do not contain pedigree information. However,
you will often know at least the sexes of most of the samples anyway.
Here is one way to integrate them with your merged PLINK fileset.

l Create a text file where the first two columns are PLINK sample
IDs, and the third column indicates sex (1 or M¼male, 2 or F¼
female) (see Note 3). Call this file sex_info.txt.

l Run

plink --bfile merged_data \

--update-sex sex_info.txt \

--make-bed \

--out merged_data_with_sex

You can import parental IDs in a similar manner; see the
documentation on –update-parents. (Or you can write your own
script to manipulate the .fam file; there is more than one way to do
these things.)

3.2 Missingness

Filters

As of this writing, genotyping chips and genome sequencers are not
perfect. For this and other reasons, many datasets contain a bunch
of “NA” entries in the variant � sample genotype call matrix.

The usual practice is to filter out the samples and variants with
high missing-entry frequencies; these tend to be caused by mistakes
in the lab, bad SNP probes, variant calling limitations, and similar
issues where throwing out the entire row/column is an appropriate
solution. (You still have lots of other rows and columns to work
with, so at least in population genomics it usually is not worth the
effort to try to salvage it.) PLINK’s –mind (for individual missing-
ness) and –geno flags provide a way to do this:

plink --bfile merged_data \

--geno 0.1 \

--mind 0.1 \

--make-bed \

--out missingness_filtered_data
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Walking through this command line,

l –bfile specifies that the primary source of input data for this run
is {merged_data.bed, merged_data.bim, merged_data.fam}.

l “–geno 0.1” tells PLINK to throw out every variant where more
than 10% of the genotype calls are “NA”s.

l “–mind 0.1” tells PLINK to throw out every sample where more
than 10% of the genotype calls are “NA”s. This happens before –
geno, not simultaneously with it (or after it; command-line flag
order is ignored). You can see PLINK 1.9’s full order of opera-
tions at

https://www.cog-genomics.org/plink/1.9/order
l –make-bed generates a new PLINK 1 fileset, with the high-

missingness samples and variants removed. When using
PLINK, you generally do not “edit” data in-place; instead you
generate a new fileset with a different name whenever you apply
filters or other data transformations.

l –out causes the new files to be written to {missingness_filter-
ed_data.bed, missingness_filtered_data.bim, missingness_filter-
ed_data.fam} instead of {plink.bed, plink.bim, plink.fam}.

Most PLINK runs also generate a .log file which includes the
original command line as well as other information printed to
the console; in this case, it would be named missingness_filter-
ed_data.log. As long as you do not delete these .log files or reuse
the same –out arguments at inappropriate times, this makes it
easy to see how each PLINK output file in a directory was
generated.

3.3 Selecting

a Sample Subset

Without Very Close

Relatives

Many population-genomic statistics (such as the allele frequencies
we are about to discuss) and analyses are distorted when there are
lots of very close relatives in the dataset; you are generally trying to
make inferences about the population as a whole, rather than a few
families that you oversampled. PLINK 2 includes an implementa-
tion of the KING-robust [5] pairwise relatedness estimator, which
can be used to prune all related pairs (see Note 4). For example, to
get rid of all first-degree relations (parent–child and sibling–sib-
ling), you could run

plink2 --bfile missingness_filtered_data \

--king-cutoff 0.177 \

--make-bed \

--out relpruned_data

If you want to do fancier things based on this relatedness
estimator, such as trying to reconstruct the entire pedigree, take a
look at the KING program, which can be downloaded from http://
people.virginia.edu/~wc9c/KING/Download.htm
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3.4 Minor Allele

Frequency Reporting,

Filtering

Allele frequencies are a primary object of study in population
genetics and genomics. PLINK’s —freq command reports empiri-
cal allele frequencies, and its —maf filter removes all variants with
minor allele frequency below the given threshold.

For example,

plink --bfile relpruned_data \

--freq \

--out allele_freqs

writes an empirical allele frequency report to allele_freqs.frq,
where the first column contains the chromosome, the second col-
umn contains the variant ID, columns 3–4 contain the minor and
major allele codes in that order, column 5 contains the minor allele
frequency, and column 6 contains the number of allele observa-
tions. (This file format is spelled out at

https://www.cog-genomics.org/plink/1.9/formats#frq,
and all other PLINK 1.9 output file formats are described

elsewhere on the page.)
If you are interested in the allele frequency spectrum (refer to

Chapter 1 for some of its applications), PLINK 2 —freq has an
additional convenience that may come in handy:

plink2 --bfile relpruned_data \

--freq alt1bins=0.01,0.02,0.03,0.04,0.05,0.1,0.2,0.3,0.4 \

--out allele_spectrum

This generates an additional allele_spectrum.afreq.alt1.bins file
which reports the number of variants with MAF in [0, 0.01), [0.01,
0.02), . . ., and [0.4, 0.5]. (And the main allele frequency file is
formatted slightly differently from PLINK 1.9, with a more
VCF-like header row, and single-tab delimiters instead of multiple
spaces. These changes are small enough that it should not be
difficult to switch an old codebase from PLINK 1 to PLINK
2, but be aware that the latter is not a drop-in replacement for the
former.)

To filter out all variants with minor allele frequency below 5%,
you would run

plink --bfile relpruned_data \

--maf 0.05 \

--make-bed \

--out maf_filtered_data

3.5 Hardy–Weinberg

Equilibrium Statistics

Checking for deviation fromHardy–Weinberg equilibrium is useful
for multiple reasons:
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l If there are far more heterozygous calls than would be expected
under Hardy–Weinberg equilibrium, that is usually due to a
systematic variant calling error. Any such variants should be
removed from the dataset.

l Population stratification can cause large violations of Hardy–
Weinberg equilibrium, in the fewer-hets-than-expected direc-
tion. Natural selection, migration, and some mating patterns
can drive smaller violations in either direction.

l Several statistical methods assume approximate Hardy–Wein-
berg equilibrium. You can use a more-stringently-filtered subset
of your data for just these methods.

PLINK includes functions for computing Hardy–Weinberg
equilibrium exact test p-values, based on the method of Wigginton
et al. [6] The –hwe flag filters out variants with p-values more
extreme than a given threshold; the following PLINK 2 command
line is appropriate during initial quality control:

plink2 --bfile maf_filtered_data \

--hwe 1e-25 keep-fewhet \

--make-bed \

--out hwe_filtered_data

The “keep-fewhet” modifier causes this filter to be applied in a
one-sided manner (so the fewer-hets-than-expected variants that
one would expect from population stratification would not be
filtered out by this command), and the 1e-25 threshold is extreme
enough that we are unlikely to remove anything legitimate. (Unless
the dataset is primarily composed of F1 hybrids from an artificial
breeding program.) After you have a good idea of population
structure in your dataset, you may want to follow up with a round
of two-sided –hwe filtering, since large (see Note 5) violations of
Hardy–Weinberg equilibrium in the fewer-hets-than-expected
direction within a subpopulation are also likely to be variant calling
errors; with multiple subpopulations, the –write-snplist and –
extract flags can help you keep just the SNPs which pass all subpop-
ulation HWE filters.

The –hardy command can be used to dump all of the p-values.

3.6 Selecting a SNP

Subset in Approximate

Linkage Equilibrium

Some analyses, such as the PCA we will discuss next, work best on a
genome-spanning subset of SNPs which are in approximate linkage
equilibrium. PLINK 2’s –indep-pairwise command (seeNote 6) is a
computationally efficient method of identifying a reasonable sub-
set. For example,

plink2 --bfile hwe_filtered_data \

--indep-pairwise 200kb 1 0.5 \

--out ldpruned_snplist
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removes SNPs so that no pair within 200 kilobases have
squared-allele-count-correlation (r2) greater than 0.5, and saves
the IDs of the remaining SNPs to ldpruned_snplist.prune.in.
(There is nothing magical about the r2 ¼ 0.5 threshold; it is useful
to adjust it depending on the number of SNPs you want to keep.
The lower the threshold you use, the larger your kilobase window
should be.)

You can then create a fileset with just this SNP subset by
combining –extract (which lets you select an arbitrary subset of
variants, by ID) with –make-bed:

plink --bfile hwe_filtered_data \

--extract ldpruned_snplist.prune.in \

--make-bed \

--out ldpruned_data

3.7 Principal

Component Analysis

Once you have LD-pruned and MAF-filtered your dataset, PLINK
2’s –pca command has a good shot of revealing large-scale popula-
tion structure. For example,

plink2 --bfile ldpruned_data \

--pca 5 \

--out pca_results

writes a tab-delimited table to pca_results.eigenvec, with one
sample per row and one principal component per later column.
(Eigenvalues are written to pca_results.eigenval.)

You will usually want to sanity-check the output at this point,
and verify that the top principal components do not correlate too
strongly with, e.g., sequencing facility or date. (A full discussion of
“batch effects” and how to deal with them could take up an entire
chapter; worst case, you may have to analyze your batches sepa-
rately, or even redo all genotyping/sequencing from scratch. I will
be optimistic here and suppose that no major problem was uncov-
ered by PCA, but be aware that this is frequently your best chance
to catch data problems that would otherwise sink your entire
analysis.)

It is also a good idea to throw out gross outliers at this point;
any sample which is more than, say, 8 standard deviations out on
any top principal component is likely to have been genotyped/
sequenced improperly; you can remove such samples by creating a
text file with the bad sample IDs, and then using –remove + –
make-bed:

plink --bfile ldpruned_data \

--remove bad_samples.txt \

--make-bed \

--out ldpruned_data2
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If you do this, follow it up by repeating the PCA, since the bad
samples might have distorted the principal components:

plink2 --bfile ldpruned_data2 \

--pca 5 \

--out pca_results2

(Occasionally, the new principal components will reveal another
bad sample, and you have to repeat these two steps, etc. EIGEN-
SOFT [7, 8] has some additional built-in principal component
analysis options, including automated iterated outlier removal,
and a top-eigenvalue-based test for significant population
structure.)

Anyway, once there is nothing obviously wrong with the PCA
results, you can load the table in R and plot the top pairs of principal
components against each other:

> pca_table <- read.table("pca_results.eigenvec", header=TRUE, comment.char="")

> plot(pca_table[, c("PC1", "PC2", "PC3", "PC4", "PC5")])

Results are shown in Fig. 1.
If there are obvious clusters in the first few plots, I recommend

jumping ahead to Chapter 4 (on ADMIXTURE) and using it to
label major subpopulations before proceeding.

3.8 Sex Validation

and Imputation

If you have X-chromosome population-genomic data, you can
employ PLINK’s –check-sex command to sanity-check the sex
information in your .fam file. (The method is based on chrX het-
erozygosity rates.) Similarly, –impute-sex uses chrX heterozygosity
rates to fill in missing sex entries when appropriate.

This is typically a two- or three-step process:

0. If your species has pseudoautosomal regions, ensure they are
not encoded as part of the X chromosome. If they are, PLINK
1.9’s –split-x or PLINK 2’s –split-par flag can be used to
change the chromosome codes of the relevant variants before
proceeding.

1. Run –check-sex once without additional parameters, just to see
the distribution of F (inbreeding) coefficients.

plink --bfile ldpruned_data \

--check-sex \

--out f_distribution

Then plot the distribution of values in the sixth column of
f_distribution.sexcheck. If both genders are well-represented in
the dataset, you should see a big tight clump near
1 (corresponding to the males), and a more widely dispersed
set of values centered near 0 (corresponding to the females).
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2. Select a pair of decision boundaries (where an F coefficient
below the first boundary causes the sample to be classified as
female, above the second boundary causes the sample to be
classified as male, and in between causes the sample to be
labeled as unknown-sex), and run –impute-sex (or just –
check-sex again) with the boundaries:

plink --bfile ldpruned_data \

--impute-sex 0.7 0.8 \

--make-bed \

--out sexfilled_data
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Fig. 1 PCA bi-plot generated by R
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If you also have Y-chromosome genotype calls and can expect
males to have fewer missing chrY calls than females, you can take
this into account in the sex inference process; refer to the –check-
sex/–impute-sex documentation at

https://www.cog-genomics.org/plink/1.9/basic_stats#check_
sex

3.8.1 Subpopulation

Allele Frequencies, and –

read-freq

By default, –check-sex/–impute-sex and several other PLINK com-
mands assume that your dataset is representative of a single popu-
lation, and all samples are members of that population; population
allele frequencies and F coefficients are estimated under these
assumptions.

Thus, if you identified multiple subpopulations in the previous
section, you should perform sex validation/imputation on one
subpopulation at a time. PLINK’s –filter flag provides one way to
do this; put sample IDs in the first two columns of subpops.txt and
subpopulation IDs in the third column, then

plink --bfile ldpruned_data \

--filter subpops.txt AFR \

--make-bed \

--out afr_data

plink --bfile afr_data \

--check-sex \

...

You can then use –update-sex to copy the inferred sexes back to
your main datasets.

Also, you sometimes have access to more accurate (sub)popu-
lation allele frequencies than would be imputed from your imme-
diate dataset. (An extreme case of this is when you are running –
check-sex/–impute-sex separately for a bunch of single-sample
filesets.) To patch in the more-accurate allele frequencies, reformat
them as a PLINK –freq report if necessary, and then use –read-freq:

plink --bfile ldpruned_data \

--read-freq more_accurate.frq \

--check-sex \

--out f_distribution

3.9 Reporting

Linkage

Disequilibrium

Statistics

While the last several operations worked with a LD-pruned subset
of the data, sometimes you will want to handle linkage disequilib-
rium in a more sophisticated manner, or study it directly. PLINK’s
–r2 command can be used for this purpose.
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plink --bfile hwe_filtered_data \

--r2 dprime \

--ld-window 999999 \

--ld-window-kb 1000 \

--ld-window-r2 0.1 \

--out r2_report

The command line above reports squared-allele-count-correla-
tions and an estimate of Lewontin’s D’ (thanks to the additional
“dprime” modifier) for each pair of variants within 1000 kilobases
of each other, whenever r2 � 0.1. The “–ld-window 999999” flag
is needed because PLINK defaults to only considering variant pairs
which are at most 9 lines apart from each other in the .bim file.

–r2 has a bunch of other options, including matrix output
(when you want to look at literally every single pair of variants)
and ways to focus on just a few SNPs; see the documentation at

https://www.cog-genomics.org/plink/1.9/ld#r

3.10 Data Export While the PLINK 1 binary fileset format is widely supported,
occasionally you will need to convert to a different format like
VCF or PLINK text in order to use another tool. This can be
accomplished with the PLINK –export command:

plink --bfile hwe_filtered_data \

--export ped \

--out exported_plink_text

plink2 --bfile hwe_filtered_data \

--ref-from-fa reference.fa \

--export vcf \

--out exported_vcf

The first command generates {exported_plink_text.ped, expor-
ted_plink_text.map}, while the second one generates exported_vcf.
vcf, determining the correct REF alleles from reference.fa in case
they were scrambled by PLINK 1.9. Many other formats are sup-
ported; see

https://www.cog-genomics.org/plink/1.9/data#recode and
https://www.cog-genomics.org/plink/2.0/data#export.

4 Notes

1. SNPs with three or four alleles exist, but are rare enough such
that most software developers ignore them. The usual practice
as of this writing is to “split” a triallelic SNP into two biallelic
records; for example, if A, C, and G nucleotides are all observed
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at a single position and A is the most common, the dataset will
contain one record describing an A/C SNP, and another
record describing an A/G SNP. This is obviously imperfect,
but it is good enough for most genomic analyses.

2. Unfortunately, there is another type of “.bed” file widely used
in genomics: UCSC Browser Extensible Data, a text format for
positional intervals. However, you can usually distinguish
between the two simply by checking for the presence of .bim
and .fam files with the same filename prefix; these are practically
required to make sense of a PLINK .bed file. Or, in a pinch, you
can check whether the first three bytes of the .bed file are
consistent with the specification at https://www.cog-geno
mics.org/plink/1.9/formats#bed.

3. Assuming your species adheres to the XY sex-determination
system. For ZW species, you may want to deliberately reverse
the sexes, and encode Z!X and W!Y.

4. This does not mean that both samples in each related pair are
thrown out. Instead, –king-cutoff tries to keep as much data as
possible, and as a consequence it usually keeps one sample out
of each pair.

5. What p-value threshold does “large” correspond to, you may
ask? Well, this depends on the size of your dataset and some
other characteristics of your data. But a good rule of thumb is
to use “ridiculous” thresholds like 1e-25 or 1e-50 for quality
control when you have at least a thousand samples (or even
1e-200 if you have many more), while only using “normal”
thresholds like 1e-4 or 1e-7 when you are preparing data for an
analysis which actually assumes all your SNPs are in Hardy–
Weinberg equilibrium.

6. The –indep-pairwise command also works in PLINK 1.9, but it
may run a lot more slowly since it is not automatically
parallelized.
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