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Inference of Ancestral Recombination Graphs Using
ARGweaver

Melissa Hubisz and Adam Siepel

Abstract

This chapter describes the usage of the program ARGweaver, which estimates the ancestral recombination
graph for as many as about 100 genome sequences. The ancestral recombination graph is a detailed
description of the coalescence and recombination events that define the relationships among the sampled
sequences. This rich description is useful for a wide variety of population genetic analyses. We describe the
preparation of data and major considerations for running ARGweaver, as well as the interpretation of
results. We then demonstrate an analysis using the DARC (Duffy) gene as an example, and show how
ARGweaver can be used to detect signatures of natural selection and Neandertal introgression, as well as to
estimate the dates of mutation events. This chapter provides sufficient detail to get a new user up and
running with this complex but powerful analysis tool.
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1 Overview

The ancestral recombination graph (ARG) can be considered the
holy grail of statistical population genetics. The ARG represents the
history of a collection of related genome sequences, in terms of the
coalescence events by which segments of genomes trace to common
ancestral segments and the historical recombination events that
cause patterns of ancestry to differ from one genomic site to the
next (see Chapter 1 for more introduction to these concepts).
Provided the sequences under study are orthologous and co-lin-
ear—meaning that they trace to a common ancestral sequence
without genomic duplications or rearrangements—the ARG is a
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complete description of their evolutionary relationships. Moreover,
in statistical terms, the ARG provides a highly compact and precise
description of the correlation structure of such a collection of
sequences. Importantly, the ARG naturally defines a set of recom-
bination breakpoints, a set of haplotypes, and a genealogy for each
non-recombining interval in the genome—all objects that are use-
ful starting points for countless population genetic analyses.

Many questions in applied population genetics can be reframed
as questions about ARG structure. For example:

l Recombination rate estimation. Recombination rates can be
estimated by simply counting recombination events and dividing
by the total branch-length of the ARG.

l Estimation of allele ages or mutation rates. Mutation events can
easily be mapped to branches within the ARG by maximum
parsimony, enabling straightforward estimation of allele ages
and mutation rates.

l Local ancestry inference. The local ancestry structure of an
admixed individual (i.e., which genomic segments derive from
which distinct source populations) can be determined by tracing
the individual’s two diploid lineages in the ARG and identifying
the source population with which each genomic segment clusters,
as well as the recombination events that terminate these segments.

l Demography inference. More general information about demo-
graphichistory (such as population sizes,migration rates, anddiver-
gence times) is also embedded in the ARG. A demographic model
can fairly easily be estimated from a known ARG by making use of
the counts of coalescence events within and between populations.

l Detection of sequences under selection. Natural selection can be
detected by identifying local distortions in the ARG, for exam-
ple, unusual clusters of coalescence events or extremely deep
times to most recent common ancestry.

In practice, however, the true ARG is impossible to know with
certainty. The “ARG space,” consisting of every possible ancestral
history of a set of genomes, is astronomically large, and the infor-
mation in genome sequences is insufficient to choose a specific
ARG above all others. But, given a model of coalescence, recombi-
nation, and nucleotide substitution, it is possible to compute the
probability of an observed data set under particular ARGs, and it
will generally be true that some ARGs are much more likely to have
produced the data than others. The approach taken by ARGweaver
is to sample from the posterior distribution of ARGs, given a
collection of genome sequence data and a reasonable set of model-
ing assumptions. This approach is computationally expensive, and it
has the drawback of producing a complex and unwieldy output—a
collection of potential ARGs, none of which is exactly correct, but
which, in the aggregate, reflect certain properties of the true ARG.
Nevertheless, as we will show, this approach can be extremely
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powerful, potentially providing insights into the structure of the
data and the evolutionary history of the sample that are not easily
obtained using simpler methods. In this chapter we will discuss
how ARGweaver works, how and when a user might want to apply
it, and what can be done with sampled ARGs once they have been
obtained.

1.1 What Is an ARG? An ARG represents all ancestral relationships among a collection of
genomes (see Fig. 1). If n is the number of (haploid) genomes
under study (usually from n

2 diploid individuals), then at the present
day, there are n lineages in the ARG. As we trace these lineages back
in time at a particular genomic location, we will find that distinct
lineages gradually coalesce into shared ancestral lineages, until all
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Fig. 1 (a) Schematic of an ARG with four lineages in the present, and two
ancestral recombination events along a region of length L. Tracing the lineages
upwards from present day, two lineages merge when a coalescence event is
encountered, whereas a lineage splits into two when a recombination event is
encountered at a particular breakpoint (b2 or b3). The ARG continues tracing the
history backwards until all lineages have reached a common ancestor. (b) An
alternative view of the ARG depicted in A, showing the local tree between each
pair of recombination breakpoints. The dotted lines on the tree show the
recombination event which transforms the tree on the left side of the breakpoint
into the tree on the right side. (c) The data underlying this ARG, where only
derived alleles at variant sites are shown. Figure adopted from [23]
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n lineages have found a single most recent common ancestor. These
coalescence events define a tree known as a genealogy that fully
describes the evolutionary relationships among the present-day
genomes at the locus in question.

However, recombination events in the history of the sample can
cause the genealogy to change from one genomic location to the
next. Looking backward in time, a recombination at a particular
genomic location has the effect of splitting a lineage into two, with
one path representing the evolutionary history to one side of the
breakpoint and another path representing the history to the other
side. The ARG captures these recombination events together with
the coalescence events. As one follows a lineage upward in the
ARG, that lineage may either merge with another lineage, repre-
senting a coalescence event, or it may split into two lineages,
representing a recombination event (Fig. 1a). In the case of recom-
bination events, the junction in the ARG is also labeled with the
genomic position of the recombination (this information is not
relevant for coalescence events).

Based on these labels for recombination events, one can extract
a local tree for any position in the genome from the ARG. First, one
identifies the lineage associated with each present-day sample.
These lineages are traced backward through the ARG, and coales-
cences between them are noted. When a recombination event is
identified, one of the two possible paths is selected based on the
relationship of the position in question to the annotated recombi-
nation breakpoint. Specifically, if the position is to the left of the
breakpoint, then the left path is taken; and if the position is to the
right of the breakpoint, then the right path is taken. (Because
recombination breakpoints by definition occur between nucleo-
tides, one of these two cases must hold.) Thus, the paths from the
present-day samples to the root will coalesce only, never splitting,
and therefore must define a tree. Furthermore, the tree will be the
same for all genomic positions between two recombination break-
points, differing only between positions on opposite sites of a
breakpoint.

Another way to think about the ARG is that it defines a series of
operations on trees along the length of a chromosome. As one
walks along a chromosome from left to right, the local tree remains
fixed until a recombination breakpoint is encountered, and then
that tree is altered to form a new tree, in the specific manner defined
by the change in path at the corresponding recombination node in
the ARG (Fig. 1b). The ARG, therefore, can be thought of as being
interchangeable with a sequence of local trees and the associated
recombination events that transform each tree to the next. In
practice, this is the representation of the ARG assumed by the
Sequentially Markov Coalescent (SMC

0
) and used by ARGweaver,

and in this chapter we will generally treat the ARG as a collection of
trees and recombination events. Nevertheless, it should be noted
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that this representation does not strictly capture all of the informa-
tion in the ARG. The full ARG also describes “trapped genetic
material” that falls between two linked ancestral loci, but is not
passed on to any present-day sample. Ignoring this trapped material
substantially simplifies modeling and inference algorithms, with
what appear to be only minor costs in accuracy [12, 14, 23].

1.2 Why Would You

Want to Estimate

an ARG?

As discussed above, if the ARG could be estimated accurately and
easily, it would be useful for almost every question in population
genetics. In practice, of course, there are limitations in the accuracy
of inferred ARGs, and they require substantial time and effort to
obtain. So, when does it make sense to take the trouble to run
ARGweaver, instead of making use of simpler or more standard
population genetic summary statistics and tools? Some reasons to
consider sampling ARGs with ARGweaver include:

l Trees/genealogies. ARGweaver estimates explicit genealogies
(with branch lengths) along the genome, considering both pat-
terns of local mutation and local linkage disequilibrium. It may
be particularly interesting to inspect trees at particular regions
suspected to be under selection or to have experienced
introgression.

l Times/dates.These trees allow the timings of various events to be
estimated, including times to most recent common ancestry,
other coalescence times, and the ages of derived alleles. If
desired, posterior expected values of these times can be com-
puted by averaging over the sampled trees.

l Ancient introgression. ARGweaver is a powerful method for
detecting introgression and identifying specific introgressed
haplotypes, particularly ancient introgression events that con-
ventional methods may miss (e.g., [6]).

l Bayesian treatment of uncertainty. Unlike many simpler meth-
ods, ARGweaver attempts to fully account for the uncertainty in
the ARG given the sequence data and an evolutionary model, by
sampling from a posterior distribution of ARGs. This approach
can mitigate biases from the inference method in addressing
biological questions of interest.

l Flexibility in addressing “custom” evolutionary questions. By pro-
ducing explicit ARGs, ARGweaver allows almost any evolution-
ary question to be addressed, including unusual ones not easily
addressed with standard summary statistics (For example: at
what fraction of sites do individuals A and B coalesce with one
another before either coalesces with individual C? What is the
average TMRCA for genes of functional categoryX? Are recom-
bination events more likely to occur in introns or intergenic
regions?)
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l Technical limitations of the data. ARGweaver can accommodate
unphased data, low-coverage sequences, archaic samples, and
other unusual data types that may not be easy to analyze using
other methods.

1.3 Practical

Considerations

ARGweaver is designed to run on genome sequencing data for
small to moderate numbers of individuals—anywhere from 2 to a
maximum of about 100. These individuals should be unrelated but
come from the same species or from recently diverged species (such
as humans and chimpanzees). Phasing of diploid genome
sequences is not necessary—ARGweaver can phase “on the fly,”
integrating over possible phasings—but the algorithm converges
faster and, in some cases, performs better on phased data (depend-
ing on the rate of phasing errors). Similarly, ARGweaver can be
used on low-coverage sequencing data, making use of genotype
probabilities to weight the observed bases, but high-coverage
sequence data is always preferable.

In gauging the feasibility of ARG inference, it is important to
recognize that the processes of mutation and recombination are
opposing forces in reconstructing an ARG. The more mutations
there are, the more information there is to guide the inference of
tree topologies (genealogies). Recombination events, however,
break up the sequences into smaller blocks, effectively limiting the
information for tree inference in each block. Thus, the quality of
ARG inference depends on the ratio of mutation to recombination
rates per nucleotide position. In human data, this ratio is close to
one, but recombination events tend to be concentrated in recom-
bination hotspots, which makes the effective ratio greater than one
for most of the genome. ARGweaver appears to work quite well in
this setting. Nevertheless, the method works better when this ratio
is even higher, and it will break down if this ratio falls significantly
below one. Another consideration is ARGweaver’s assumption of at
most one recombination event per site (see below), which generally
appears to have little effect but could lead to biased estimates in
cases of particularly high recombination rates, large sample sizes,
large evolutionary distances, or large effective population sizes.
Finally, because ARGweaver depends on haplotype-scale informa-
tion for inference, it is generally not useful for short sequences,
deriving, for example, from RAD-seq or a de novo short-read
assembly.

In terms of the number of genomes analyzed, the “sweet spot”
for ARGweaver is generally between a handful of individuals and a
few dozen. As the number of genomes increases, more approximate
models (such as the Li and Stevens model [8]) or conventional
population genetic summary statistics become increasingly accurate
and informative, and the relative advantage of using ARGweaver
over other methods decreases. In addition, the run time and size of
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the ARGweaver output increase with the number of genomes, and
these factors become prohibitive with more than about 100 sam-
ples. Running ARGweaver genome-wide generally requires break-
ing the genome into chunks of a few megabases and running
ARGweaver in parallel on each chunk using a computer cluster.
When running ARGweaver genome-wide is not a realistic possibil-
ity, it may still be of interest to apply ARGweaver to specific geno-
mic regions of interest, such as candidate selective sweeps or
introgressed regions. It may also be useful to run ARGweaver on
subsets of the available genome sequences, for example, to shed
light on genealogy structure, ancient introgression, or allele age—
features ARGweaver may estimate more accurately than other
methods.

Another practical consideration is that while ARGweaver’s out-
put is richly informative, it is not straightforward to interpret. The
program does come with tools to compute various local summary
statistics from sampled ARGs, including times to the most recent
common ancestor, allele ages, and distances between samples. But
many less standard analyses will require custom programs to extract
the desired information from ARGs or local genealogies.

1.4 ARGweaver

Algorithm Overview

ARGweaver uses a Markov chain Monte Carlo (MCMC) algorithm
to sample ARGs at frequencies proportional to their probability,
conditional on the observed DNA sequence data (X) and the
model parameters (θ). The MCMC algorithm starts with an initial
ARG, G0, and then repeatedly removes a subset of the ARG and
resamples that subset from an appropriate conditional probability
distribution. This process generates a sequence of ARGs, G0, G1,
. . ., Gm, where m is the total number of iterations of the algorithm.
AlthoughG0 may be a poor guess with low probability, by sampling
each new Gi according to the appropriate distribution, the chain
will eventually converge to the desired distribution—i.e., for suffi-
ciently large i, Gi will represent a draw from the posterior distribu-
tion over ARGs given the data and the model, P(Gi|X, θ). In
practice, it is customary to plot the posterior probability as a func-
tion of the iteration number, i, observe the point at which it ceases
to trend upward and becomes stable, and then to discard the ARGs
sampled before this point (from what is known as the “burn-in” of
the MCMC algorithm).

Even once the algorithm has converged, successive samples Gi

and Gi+1—while they both represent samples from the posterior
distribution—are not independent samples. Rather they are
strongly correlated, since only part of the ARG is resampled on
each step of the algorithm. Therefore, in order to achieve a distri-
bution of nearly independent ARGs—both to save space and pro-
cessing time, and to better assess the variance of estimates derived
from the samples—it is useful to “thin” the chain, recording only
every jth sample (the default thinning parameter in ARGweaver is
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j ¼ 10). After discarding the initial “burn-in” and performing
thinning, the ARGs Gi that remain can be stored and treated as a
collection of samples representative of the distribution of ARGs
given the data and the model, P(G|X, θ).

The technical details of the ARGweaver algorithm will not be
reviewed here (see ref. 23), but the main idea is to remove a single
haploid genome from the ARG, and then to “thread” this genome
back through the ARG, by sampling both its coalescence points
with the remaining sequences and the associated recombination
points. There is also another, slightly more complicated, version
of this threading operation, called “subtree threading,” that resam-
ples internal branches in genealogies, and is essential for ARGwea-
ver to efficiently explore the full space of possible ARGs. In both
cases, a hidden Markov model (HMM) is used to efficiently sample
new coalescent points for the new lineage across the chromosome.
This HMM depends on several key modeling assumptions, which
are important for users to understand, and which, therefore, will be
reviewed in the next section.

1.4.1 ARGweaver Model

and Assumptions

The HMM underlying ARGweaver depends on the following
assumptions:

l SMC
0
or SMC: The Sequentially Markov Coalescent model [14]

or the closely related SMC
0
[12] is assumed. These models posit

that the distribution over genealogies at each nucleotide posi-
tion directly depends only on the genealogy at the previous
position, not on the genealogies at positions further
upstream—a feature known in probability theory as the Markov
property, after the Russian mathematician Andrey Markov. More
formally, the SMC and SMC

0
assume that the genealogy at

position i + 1 is independent of the genealogies at positions
1, . . ., i � 1, given the genealogy at position i. The SMC

0

slightly improves on the original SMC (see ref. 12 for details).
The differences between these models are not important here,
and the choice of model seems to have only a subtle effect on the
inferred ARGs. While the SMC

0
is technically more accurate, the

SMC model may be considerably faster on data sets with large
numbers of samples. ARGweaver therefore allows the user to
choose either model (SMC by default, --smc-prime for the
SMC

0
).

l Discrete time: All recombination and coalescent events are
assumed to occur at a predefined collection of discrete time
points. The total number of time points, K, can be chosen by
the user (using --ntimes <K>) and can be arbitrarily large,
with the ARGweaver model approaching a continuous-time
model as K approaches infinity. However, the computational
complexity of the threading algorithm is proportional to K2,
so, in practice, Kmust be kept modest in size. The default value
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of K in ARGweaver is 20. The time points are uniformly spaced
on a logarithmic scale, so that they are more closely clustered at
recent time points, when there are more lineages and coales-
cence rates are larger. The algorithm forces all lineages to coa-
lesce by the final time point, tK.

l No more than one recombination event between neighboring
nucleotides. For simplicity, the algorithm permits at most one
recombination event at every “step” along the sequence, mean-
ing between two adjacent nucleotide positions. This assumption
means that adjacent genomic positions must either have identi-
cal genealogies or ones that differ by a single recombination
event. In practice, this assumption is minimally restrictive,
because the information about genealogies comes primarily
from variable sites, which tend to be sparse along the genome.
If ARGweaver should need to account for multiple recombina-
tion events between variable sites, it typically can spread those
events across a series of intervening invariant sites with minimal
impact on accuracy. If the data are such that multiple recombi-
nations between neighboring sites occur frequently, then it is
likely that the haplotype structure is too broken down to make
use of ARGweaver.

l Population size known: ARGweaver assumes that the effective
population size Ne (which determines the coalescence rate) is
provided by the user. In the simplest case, a single global value of
Ne can be provided. But ARGweaver can accommodate different
values ofNe for different discrete time intervals. Values ofNe can
typically be obtained from the literature or estimated from the
same data using one of the many available programs for inferring
demographic histories (such as SMC++ [29], PSMC [7],
MSMC [27, see also Chapter 7], G-PhoCS [3], and diCal
[28]). Note the user-provided values of Ne define a “prior” for
coalescence rates in ARGweaver, so it is not necessary for them
to be perfectly estimated; ARGweaver will consider the data
together with this prior distribution in sampling coalescence
events.

l Mutation and recombination rates known. The ARGweaver
model also depends on pre-definedmutation and recombination
rates. These rates can be assumed to be constant across the
genome, or variable rates can be provided in a position-specific
map along the genome. These values are also “priors” in the
same sense as the population size (see above).

l Jukes-Cantor model of base substitution. ARGweaver makes use
of a Jukes-Cantor model for nucleotide substitutions. This
model assumes that all nucleotide substitutions are equally prob-
able—an obvious oversimplification, but one that seems to have
minimal costs at the close evolutionary distances typically
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considered by ARGweaver. The symmetries inherent in the
Jukes-Cantor model can be exploited to optimize the likelihood
calculations in ARGweaver.

2 Ancient Hominins Analysis

In the remainder of this chapter we will set up, and then walk
through, an analysis of real sequence data using ARGweaver. We
will use three high-quality ancient hominin genome sequences that
are freely available: the Altai Neandertal [21], Vindija Neandertal
[22], and Denisovan [15] genome sequences, as well as a diverse set
of 14 human genomes that were sequenced to high coverage for
the Altai Neandertal paper [21]. All steps of the analysis will be
described in detail, with code snippets, and the complete set of
commands required to replicate the analysis is provided in the
companion material for this book.

The data set used in our example is ideal for several reasons.
First, the Neandertal and Denisovan genome sequences provide an
exciting opportunity to examine many interesting aspects of human
history and adaptation. Neandertals and Denisovans are sister
groups of archaic hominins that diverged from humans roughly
600 kya, and then split from each other around 400 kya
[22]. Importantly, these divergence times are recent enough that
modern and archaic humans share many polymorphic sites across
their genomes. As we will show, this shared variation can be infor-
mative about evolutionary history. In addition, the genetic evi-
dence strongly suggests multiple cases of interbreeding among
these three groups following their initial divergence [15, 21, 24],
an intriguing topic that can be examined using ARGweaver. On a
more practical level, these genomes have all been sequenced to high
coverage and all sequencing reads have been processed consistently.
The genotypes are published in standard VCF format with geno-
type quality and sequencing depth information given at every
genomic position with aligned reads, which, as we will discuss,
simplifies the set up for ARGweaver.

Before launching into the actual analysis, which is presented in
Subheading 5, we will discuss some important preliminaries relat-
ing to program installation and file formats (remainder of Subhead-
ing 2), model parameters (Subheading 3), and commonly used
program options (Subheading 4).

2.1 Pre-requisites ARGweaver is designed to run under either the Linux or Mac OSX
operating system. Windows(c) users may run ARGweaver via a
Linux virtual machine. The specific commands for performing the
example analysis in this chapter are available as a bash script,
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provided in the online supplement for this book. Besides a bash
shell, the script requires:

l Python: (http://python.org), used by several ARGweaver scripts.

l SAMtools [9]: (http://htslib.org), used here for the tabix and
bgzip tools, which are useful for indexing and fast retrieval of
VCF and BED files.

l bedops [18]: (http://bedops.readthedocs.io), a useful tool for
computing intersections of genomic intervals.

l PHAST [20]: (http://compgen.cshl.edu/phast), used for com-
puting neutral substitution rates.

l R (https://www.r-project.org), used for plotting results.

l The R package “ape” [19] (https://bioconductor.org), used for
plotting trees.

l git (https://git-scm.com) for downloading ARGweaver.

l g++ (https://gcc.gnu.org) or any C++ compiler for compiling
ARGweaver.

2.2 Obtaining

and Installing

ARGweaver

The first step in our example is to download and install ARGweaver.
The program is available at http://github.com/CshlSiepelLab/
ARGweaver.git. It can be downloaded and compiled on Linux or
Mac machines with the following commands:

git clone https://github.com/CshlSiepelLab/ARGweaver.git

cd ARGweaver.git

make

These commands create several executables in the bin/ direc-
tory, the most important of which is called arg-sample. All the
executables are meant to be run from the command line in a Unix
shell such as Bash.

Within the ARGweaver software is also suite of R tools useful
for plotting ARGweaver results. This package is optional, but was
used to create many of the plots in this chapter. It can be installed
from the same directory with the command:

R CMD INSTALL R/argweaver

2.3 Sequence File

Format

The main data required by ARGweaver is sequence data for every
individual. ARGweaver accepts Variant Call Format (VCF) files [2],
provided that they are indexed (this can be done with the command
tabix -p vcf file.vcf.gz, which creates a file file.vcf.gz.
tbi). A single VCF file containing all samples may be provided with
the argument --vcf; if only a subset of the individuals are to be
used, they can be specified with the --subsites option. Or, if the
genotypes are in multiple VCF files, a list of these files can be given
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with the option --vcf-files. In our example, there is a single
VCF file for each individual, so we use the second option.

It is worth noting that VCF input has some limitations when
used with ARGweaver. Namely, ARGweaver will ignore any phas-
ing information in the VCF, and sites with insertion/deletion
polymorphisms or more than two alleles. If the data is phased, the
SITES format will have to be used (see below).

2.4 SITES Format ARGweaver has its own sequence data format, called SITES format,
which is used both as an alternative input format, as well as an
output format for sampling phase. All lines in SITES files are
tab-delimited. The first line starts with the string “NAMES” and
then lists the name of every haploid genome (two per individual).
The second line starts with the string “REGION” and is followed
by the chromosome name, start position, and end position. All
subsequent lines contain two columns: the position of a variant
site and a string giving the observed alleles at this site in each of the
genomes, in the order given on the first line. Importantly, any
position not listed in the file is considered invariant across samples.
Here is a short example of a sites file with the two Neandertal
individuals and two variant sites on chromosome 2:

NAMES Altai_1 Altai_2 Vindija_1 Vindija_2

REGION 2 24000001 24010000

24000417 GGCG

24008883 TTTA

2.4.1 Phasing Options For an ARG to be fully defined for diploid organisms, the geno-
types at heterozygous positions must be “phased” into two distinct
haploid genome sequences. The low-cost, short-read sequencing
methods most widely in use, however, generally produce unphased
data, in which the chromosomal origin of each allele at a heterozy-
gous site is unknown. Thus, an important consideration in running
ARGweaver is how to address phasing.

ARGweaver can either accept predefined haplotype phases or it
can treat the phase as unknown and sample possible phasings as it
samples ARGs. The program’s default behavior is to assume hap-
loid genome sequences are fully specified (phased input). The
option --unphased causes ARGweaver to sample the phase
instead. In unphased mode, whenever ARGweaver re-threads a
leaf branch, it does so by integrating over possible phasings of the
individual corresponding to that leaf. After the threading is com-
plete, it resamples the phase for this individual conditional on the
threading choice. This new phase is retained until the next time a
leaf for the same individual is re-threaded. The phase sampling step
is fast and does not contribute significantly to the run time of each
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sampling iteration, but it may delay overall convergence of the
algorithm.

As noted above, the program does not read phase information
from VCF files, so the --unphased option is implicit when using
VCF input. In this case, the program internally creates two haploid
lineages, <ind>_1 and <ind>_2, for each diploid individual,
<ind>, listed in the VCF file. (Throughout this chapter, we assume
diploid input to ARGweaver; in principle, ARGweaver could be
used with haploid input, but the assumed model of recombination
is best matched to sexually reproducing species.) These haploid
labels will be used in some of the output files of ARGweaver.
With SITES input and the --unphased option, the program
requires the user to indicate the haploid pairs corresponding to
each individual. They will be detected automatically if the genomes
are named with the convention <ind>_1 and <ind>_2. Other-
wise, the option --unphased-file <file.txt> may be used,
where <file.txt> has two columns with haploid sample names,
and each row corresponds to a single individual.

In unphased mode, ARGweaver will output the current phased
data (in SITES.gz format) every time an ARG is sampled. This
explicit phasing information makes it possible to map mutations
onto branches of the sampled ARGs, among other features. It has
the additional benefit of allowing ARGweaver to function as an
ARG-based computational phasing method. In practice, however,
other existing phasing methods are more efficient, and are likely to
achieve greater accuracy, especially if they are able to leverage large
reference panels of phased genomes [10].

Nevertheless, even when the data has been pre-phased by
another computational method, it may still be worthwhile to use
the --unphased option. The reason is that the error rates from
computational phasing methods can be quite high, and in
unphased mode ARGweaver may be able to “correct” phasing
choices that are incompatible with the ARGs it samples. In this
case, the pre-phased data can still be passed to ARGweaver in
SITES format and will be used for initialization, so convergence
will be much faster than with unphased input.

2.5 Masked Regions Whether using VCF or SITES input, ARGweaver assumes that any
site which does not appear in the input file is invariant. An “invari-
ant” site in ARGweaver is one in which all individuals have been
sequenced and are confidently called homozygous for the same
allele (usually the reference allele). This absence of genetic variation
is informative about the ARG. For example, a genomic region with
many invariant sites will tend to have short branches in the inferred
ARG, because fewer mutations are expected on shorter branches.

On the other hand, some sites have unknown genotypes, for
example, due to low sequencing depth, poor sequence quality, or
poor alignability. For ARGweaver, an unknown genotype means
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something quite different from an invariant site—it suggests miss-
ing data, meaning that no information is provided about the ARG
at that genomic location. At a region with many unknown sites, the
sampled trees will tend to reflect the neutral coalescent model
provided to ARGweaver, because there will be little data available
to override this “prior.”

Therefore, it is essential to distinguish between “invariant” and
“unknown” sites in the input files to ARGweaver. Making this
distinction often requires some additional effort, because other
population genetic methods often do not depend strongly on it,
and many data sets are not processed in a way that tracks this
difference. In particular, genotypes that are unknown should be
“masked,” either by using the genotype NN or by using masking
options (described below), so that ARGweaver knows to integrate
over all possible genotypes at those positions. Unmasked sites that
are not specified in the input can then reasonably be assumed to be
invariant.

ARGweaver supports several kinds of masking. For regions
with poor alignability (such as repeat regions), it is customary to
mask out the entire region across all individuals. This can be done
by providing ARGweaver with a BED-formatted file indicating the
regions to mask, and using the option --maskmap <mask_file.
bed>. (Note that unlike VCF and SITES files, BED files have zero-
based start coordinates.) On the other hand, some regions have
poor genotype quality only in particular individuals, for example,
due to low sequencing coverage or read quality. In these cases, the
regions can be delineated in an auxiliary file which is specified using
the option --ind-maskmap <ind_mask_file.txt>. This file
should have two columns, giving the name of each individual and
the name of a file containing a BED-formatted mask specific to that
individual. Additional options include --mask-cluster <a,b>,
which will mask any region of length b that has � a variant sites
(possibly indicating alignment errors or mutational hotspots);
--vcf-min-qual <Q>, which will mask any genotype with qual-
ity less than Q (for VCF files with quality scores); or --vcf-geno-
type-filter<filter>, which can mask genotypes based on any
keys used in the VCF genotype field. For example, --vcf-geno-
type-filter ~DP<10;DP>50;GQ<10~ will mask sites where the
depth is less than 10 or greater than 50, or where the genotype
quality is less than 10.

In our example analysis, we use a union of several mappability
and uniqueness filters developed for the ENCODE project
[30]. Details for where these filters were obtained can be found in
the online resource. We also use --vcf-min-qual 30 --mask-
cluster 2,5. These filters seem sufficient for our illustration,
however other filters may be needed for a thorough, careful analy-
sis. In particular, it may be important to mask CpG sites, which
have unusually high mutation rates.
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2.5.1 Genomic vs

Variant VCFs

Many population genomic data sets are now available in VCF
format, and it may be tempting to run ARGweaver directly on
such a data set. However, VCF is a common file type used for a
wide variety of purposes, and it is critical to understand what criteria
were used for inclusion or non-inclusion of sites in the files before
analyzing them. In particular, VCF files often contain only those
positions where high-confidence variants are detected. As discussed
above, this convention will make it impossible to distinguish
unknown and invariant sites. Thus, more preparation will be neces-
sary for a proper analysis with ARGweaver.

Further processing of such incomplete VCF files generally
requires returning to the alignments from which the VCF files
were derived. If those alignments are available in the form of a
BAM file, then the necessary information can be extracted in a fairly
straightforward manner. If they are not available, it may be neces-
sary to regenerate them from the raw reads. Once a BAM file is in
hand, the best option is usually to re-run a genotype caller (such as
GATK [31]) on the BAM file to generate more complete VCF files
including most likely genotypes at every site, as well as quality
scores, sequencing depth, and genotype probabilities. A possible
shortcut, adequate for many purposes, is to use bamtools [1] to
extract the sequencing depth per site from the BAM file, and use
the depth as a proxy for genotype quality. For example, if a position
is not in the VCF file but has a sequencing depth greater than some
cutoff (perhaps 20), then it is very likely invariant. In practice, this
thresholding can be accomplished by first creating a BED file for
each individual containing the regions with sequencing depth
below the desired cutoff, and then using the --ind-maskmap
option to mask these regions.

In our example, we are lucky to be using VCF files that provide
genotype probabilities and confidence scores at every location hav-
ing aligned reads. However, care must still be taken to deal with
these files correctly. ARGweaver assumes that any site absent from a
VCF file is invariant, but in this case those sites are actually
unknown. To correct this assumption, we create a BED file contain-
ing all the regions absent from the VCF for each individual, and use
the --ind-maskmap option to specify that these regions should be
masked in their respective genomes. This is done with the bedops
tool [18], and the commands are shown in the example script that
comes with this chapter.

2.5.2 Genotype

Probabilities

If a genome has only been sequenced at low coverage, there may be
too many errors in the genotypes to produce meaningful ARGs.
Nevertheless, it is possible to run ARGweaver on low-quality data
by having it weight possible genotypes by their probabilities of
being correct. There are two ways to specify these probabilities.
First, if VCF files are annotated with PL (phred-likelihood) or GL
(genotype-likelihood) fields, then the option --use-genotype-
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probs may be used to integrate over the possible genotypes.
Second, genotype probabilities can be encoded directly into the
SITES file. In this case, each row (following the header) may have
an additional 4n columns, in the order p1,A, p1,C , p1,G , p1,T , p2A ,
. . ., pn,T , where pi,b is the probability of the ith haploid genome

having base b. If these columns are present, then --use-geno-
type-probs is implied.

The use of genotype probabilities will slow down ARGweaver,
and therefore this feature should only be used if absolutely neces-
sary. There is a modest computational cost, of course, in taking the
genotype probabilities into account. The larger issue, however, is
that the use of genotype probabilities causes almost every site to be
considered “variant,” which prohibits the use of site compression
(see Subheading 4.3). Nevertheless, genotype probabilities may be
useful for low-coverage data when the scale of the analysis is not too
large.

3 Choosing Model Parameters

ARGweaver assumes fixed rates of mutation, recombination, and
coalescence (based on population sizes), which must be specified by
the user. As noted above, these parameters can be thought of as
defining a “prior” distribution for ARGs, which can be overcome
by consideration of the data in determining the “posterior” samples
produced by the program. However, these prior estimates can have
an appreciable influence on the sampled ARGs, so they should be
set as accurately as possible.

3.1 Mutation Rates ARGweaver can accept a single mutation rate to be used across the
entire genomic region that is being analyzed (with the option --
mutrate <rate>), or it can use a specified map of mutation rates
(--mutmap <ratefile.bed>). If using a rate map, the file speci-
fying the map should have four columns: chromosome, start coor-
dinate (0-based), end coordinate, and the rate. The rates should be
specified in units of expected mutations per base pair per
generation.

The mutation rate is particularly important for calibrating the
timing of ancestral events. If the given mutation rate is off by a
factor ofm, then the estimated ages of events will tend to be off by a
factor of 1/m, so that too high a mutation rate will make events
seem to have happened much more recently than they actually did.
After a period of controversy [26], estimates of mutation rates for
humans have stabilized in recent years, but there is still considerable
debate about the best average rates to use for evolutionary analyses
[16, 25]. In addition, mutation rates are known to vary across
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species and along the genome in each species, which further com-
plicates their use in ARGweaver.

For our example analysis, we address these issues by using levels
of divergence between several closely related primates (human,
chimpanzee, gorilla, orangutan, and gibbon) to estimate relative
mutation rates in sliding 100 kb windows. We first mask out con-
served regions of the genome in order to estimate the neutral
substitution rate, which should be proportional to the average
mutation rate. Then, we scale all the relative rates so that the
average rate is 1.45e � 8 mutations per base pair per generation
[17]. The online resource for this chapter contains the full script for
obtaining these rates, as well as the rates themselves.

3.2 Recombination

Rates

Recombination rates are specified in ARGweaver in units of the
probability of a recombination between two neighboring bases per
generation. As with mutation rates, the rate may be assumed con-
stant across the region (--recombrate<rate>), or a map of rates
may be provided to the program (--recombmap <ratefile.
bed>).

As discussed earlier, there is an important interplay between the
mutation and recombination processes in the ARGweaver model.
ARGweaver always tries to find ARGs that best fit the data given the
model. If too high a recombination rate is used, then ARGweaver
may overfit the data, so that it samples as many recombination
events as needed to produce trees that allow for minimal numbers
of mutations at polymorphic sites. Conversely, an unrealistically low
rate will lead to ARGs containing too few recombination events,
resulting in local trees that are incompatible with the site patterns in
the data (this will be seen as a large number of “noncompats” in the
output stats file). Thus, it is important to specify the recombination
rates as accurately as possible.

In humans, there are many estimates of recombination rates;
for our example analysis we will use one based on a collection of
African-American genomes [5]. For other species that may not have
existing maps, a genome-wide estimate from the closest model
organism should be sufficient.

It is worth noting that, for reasons of computational efficiency,
the mutation and recombination map should generally only be
specified at modest levels of resolution along the genome sequence.
The reason is that ARGweaver must recompute the transition and
emission probabilities of its HMM at all positions at which the
mutation or recombination rates change, as well as at those at
which the local tree changes. Thus, if the rates change more fre-
quently than the local trees, there will be a considerable increase in
the run time of the algorithm. For this reason, in our example
analysis we smooth out the recombination rates by taking the
average across 5 kb windows. The mutation rates were calculated
in larger windows so they are already smooth.
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3.3 Population Size The prior model for ARGweaver assumes that all samples are drawn
from a single, panmictic population. The panmixia aspect of the
prior is weak in the sense that actual structure in the population is
usually evident in the data and will be reflected in the sampled
ARGs. At the same time, the population size does determine the
prior rate at which branches coalesce, so an incorrect prior may
skew certain features of the sampled ARGs, such as the relative
coalescence times between samples, and the relative rates of candi-
date recombination events.

The simplest way to specify population size is as a constant-
sized population. A quick estimate for the population size can be
obtained using Watterson’s estimator. If S is the number of segre-
gating sites over L nucleotides in n haploid genomes, and μ is the
mutation rate per base pair per generation, then Watterson’s esti-
mator for the diploid effective population size is:

N ¼ S
4μL

 Xn�1

i¼1

1
i

!�1

: ð1Þ

A slightly better method, for the purposes of ARGweaver, is to
use the nucleotide diversity (otherwise known as pi), which is
computed as the average number of pairwise differences between
any two haploid genomes per base-pair. If using VCF input, this
calculation can be accomplished using VCFTools [2] with the
command vcftools --site-pi. The nucleotide diversity can
be divided by 4μ to obtain an estimate of the diploid effective
population size, N.

For most populations, a more realistic model allows for a
changing population size over time. Programs such as SMC++
[29], MSMC [27, see also Chapter 7], PSMC [7], G-PhoCS [3],
or diCal [28]) can be used to obtain estimates of a demographic
history that includes such changes. The option --popsize-
file <popsize_file.txt> can then be used to specify the
corresponding history in ARGweaver. The specified popsize file
should have two columns: a time (in generations) and a diploid
population size. The times should be increasing, with the first time
being zero. An example is shown below:

0 10000

1500 200

2500 20000

This file would represent a bottleneck scenario where there is a
population of size 10,000 for the past 1500 generations, but
between generations 1500 and 2500 ago, the population size was
only 200. Before 2500 generations ago, the population size was
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20,000. Note that ARGweaver will round all times in the file to the
nearest discrete time point used by the model.

Our example analysis illustrates some of the inherent short-
comings in assuming a single population. The sequence data we
will analyze consists of humans sampled from across the globe,
including non-Africans (whose populations endured a severe bot-
tleneck associated with the out-of-Africa event, followed by a rapid
recent expansion), Africans (whose effective population size is
larger, and more stable over time), and ancient hominins (whose
effective population sizes are much smaller than those of humans).
There simply is no single history which would be a good fit for our
data set. In this case, we will simply forge ahead with ARGweaver’s
default population size of 10,000, which is about the correct order
of magnitude for most of our lineages over most of their shared
history. However, it is critical that we keep our model misspecifica-
tion in mind as we interpret our results. In a real analysis, we would
probably eventually want to use simulations to understand the
implications of our over-simplifying assumptions. At the same
time, the fact that we do estimate ARGs that appear to be reason-
able in most respects demonstrates that ARGweaver is somewhat
robust to the choice of population size.

3.4 Time

Discretization

Before running ARGweaver, it is worth thinking about the time
discretization scheme and adjusting it to ensure it is appropriate for
the analysis at hand. There are three options to consider. First, the
number of time points can be changed with the option --
ntimes <ntime>, with the default number of points being 20.
While more resolution may be desired, the running time will
increase proportionally to the square of this number.

Second, the option --maxtime <time> indicates the maxi-
mum time point in the model, in units of generations. All lineages
are forced to coalesce by this time, so it usually makes sense to
choose a very ancient time. The default in ARGweaver of 200,000
generations is about 20 times the effective human population size
and a reasonable choice for most human analyses.

The third relevant option is --delta <delta>. The times are
distributed on a scale so that recent time points are more close
together than distant points. This convention allows for greater
resolution on recent time scales, when there are usually more
coalescence events (since there are more distinct lineages). The
distribution is controlled by the delta (δ) parameter, where
which bring the points closer together at recent times when it is
set to larger values. The exact formula for setting the time points is:

tðiÞ ¼ ðexpð i
K�1 logð1þ δtmaxÞÞ � 1Þ=δ, for K time points and

i ∈{0, 1, . . ., K � 1}. Very small values of δ(< 1/tmax) will yield
roughly linear distribution of times, whereas very large values δ will
place the first few time points so close together that they represent

Inference of Ancestral Recombination Graphs Using ARGweaver 249



fractions of a generation. The default value of δ ¼ 0.01 produces a
reasonable distribution for the default tmax of 200,000 generations.
The discrete times are written to the terminal and log file at the start
of an ARGweaver run, and it is advisable to inspect these values and
possibly adjust δ (by restarting the run) as necessary.

It is important to carefully consider your goals when deciding
how to set maxtime and delta. If you are interested in recent
history, then you may want to increase delta, and your choice of
maxtime may not be crucial. If you are interested in balancing
selection or deep coalescences, it will be important to choose a
larger maxtime and possibly a smaller delta as well.

4 Other Options

4.1 Sampling

Frequency

Another decision to be made is how frequently to sample from the
MCMC chain. The option --sample-step <n> tells ARGweaver
to output the ARG sampled on every nth step of the MCMC
algorithm. If any of the individuals are unphased, then the program
will also output the corresponding phased samples.

As mentioned above, it is customary to “thin” MCMC samples
to reduce autocorrelation between the final samples, but it is diffi-
cult to know how much thinning will be required prior to an
ARGweaver run. Some have argued that thinning is inefficient
and unnecessary, and that most properties of the distribution can
be better estimated using the full sample [11]. In the case of
ARGweaver, however, there is a substantial cost associated with
storing and processing each sampled ARG, and adjacent ARGs in
the chain are very highly correlated, so some degree of thinning is
justified. We will use the default sampling frequency of 10, and
return to the issue of autocorrelation as we interpret the results.

4.2 Ancient Samples If the samples are not all from present day (as with the Neandertals
and Denisovan in our example), their ages (in generations before
the present) can be specified to ARGweaver. The computed ARGs
will then have shorter branches for these samples than for the
modern samples. The ages can be specified in a file with two
columns—sample name and age in generations—and passed to
ARGweaver with the option --age-file <age_file.txt>.
The ages will be rounded to the nearest time point in the model.
Any sample not found in the file is assumed to have age zero, and at
least one sample must have age zero (so sample ages should be
given relative to the youngest sample).

In our example, we use ages of 4206 generations for the Altai
Neandertal, 2482 generations for the Denisovan sample, and 1793
generations for the Vindija Neandertal, corresponding to ages of
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122 kya, 72 kya, and 52 kya, respectively [22], and an assumed
generation time of 29 years.

4.3 Site

Compression

Site compression is usually important for keeping ARGweaver’s run
time manageable. The option --compress-seq <c> will com-
press blocks of c sites together, resulting in a speed-up of the
code of approximately a factor of c. The breakpoints between
each block are chosen in a flexible manner so that there is no
more than one variant site in the same block. If a block contains a
variant site, then the new “compressed site” takes on the site
pattern of its variant site; otherwise the compressed site is invariant.
The mutation and recombination rates are also increased by a factor
of c, since they reflect per-site rates. (This rate inflation is done
internally by arg-sample; the user should provide rates per
uncompressed base pair.)

There are several issues to consider with this option. Compres-
sion will fail (with a program abort soon after stating) if variant sites
are too close together to compress at the requested level. Compres-
sion also causes a loss of resolution; if --compress-seq50 is used,
then the breakpoints in the ARGs will occur at most every 50 base
pairs. Most importantly, recall that ARGweaver assumes that only
one recombination event can occur between any two sites. This
assumption applies to compressed sites also, so its effect is magni-
fied as the compression factor increases. Therefore, if compression
is too high, ARGweaver may not be able to place enough recombi-
nation events between variant sites, resulting in poor ARG
estimates.

One way to think about how much compression is allowable is
to consider the distribution of distances between variant sites,
ignoring singleton sites, which contain no topological information.
In our data set, non-singleton variant (NSV) sites occur, on aver-
age, about every 300 bases. Therefore, one might be tempted to
select a compression factor of 50, which would allow an average of
�6 recombinations between each pair of NSV sites. However, bear
in mind that the distance between NSV sites is approximately
exponentially distributed, which means that at an average distance
is 300, only �15% of NSV sites are more than 50 base pairs apart.
We therefore will use a compression factor of 10 in our example,
which should allow about 97% of pairs of NSV sites to have more
than one recombination between them.

In general, we recommend using compression conservatively,
so that multiple recombinations are still possible between most
pairs of adjacent NSVs. Too high compression will lead to a high
number of “noncompats” in the .stats file (described in the next
section), so the compression factor may need to be adjusted if this is
observed.
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5 Running ARGweaver

With all preliminaries addressed, we are now ready to run ARG-
weaver and work through our example analysis. The command to
run ARGweaver is as follows:

arg-sample --vcf-files vcf_files.txt \

--region $region \

--vcf-min-qual 30 \

--subsites inds.txt \

--maskmap filter.bed.gz \

--mask-cluster 2,5 \

--ind-maskmap ind_mask_files.txt \

--age-file sample_ages.txt \

--mutmap subst_rate_autosome.bed.gz \

--recombmap recomb_rate_autosome.bed.gz \

--compress-seq 10 \

-o $outdir/out

As ARGweaver runs, it produces several output files, all with
names having the prefix specified by the -o option. These files
include:

l A log file (<outroot>.log) , which records the same output
that is written to the terminal, including details about the model
and data, progress, time, and memory usage, etc., as the itera-
tions continue.

l A stats file (<outroot>.stats), consisting of one row perMCMC
iteration, with columns including:

– prior: log probability of the sampled ARG given the model

– likelihood: log probability of the data given the sampled ARG

– joint: total log probability of the ARG and the data (prior +
likelihood)

– recombs: number of recombination events in the sampled
ARG

– arglen: total length of all branches summed across sites

– noncompats: the number of variant sites that cannot be
explained by a single mutation under the sampled ARG

l Sampled ARGs (<outroot>.<iter>.smc.gz) are written at
the sampling frequency requested by the option --sample-
step. These are in ARGweaver’s SMC format, which is text-
readable and lists non-recombining genomic intervals, the tree
in each interval (using Newick format), and the recombination
events that occur between intervals. The recombination events
are described as subtree pruning and regrafting (SPR) events,
which define where a particular branch breaks and recoalesces
back onto the tree.
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l Phased sites files (<outroot>.<iter>.sites.gz) If the data is
unphased, then it will also print the current phased sequence
data (in SITES format) for each ARG that is printed. These
phased SITES files do not contain information about positions
that are masked in all individuals; those regions are written to a
file named <outroot>.masked_regions.bed.

5.1 Time/Memory

Requirements

ARGweaver requires substantial computation time, but the mem-
ory usage is low. In our example, a 1 Mbase region took 6 h to
complete 1000 MCMC iterations, with a maximum memory usage
of 135 Mbytes. The program does not support multithreading.
Rather, parallelization is usually achieved by running many geno-
mic segments at the same time on different CPU cores.

5.2 Monitoring

Convergence

The stats file produced by ARGweaver can be used to monitor
ARGweaver’s convergence. Figure 2 shows an example of how
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Fig. 2 Traces of various statistics over MCMC iterations. The values should stabilize as the chain reaches
convergence; earlier iterations should be discarded as “burn-in.” Values related to the probability of the data,
including the prior, likelihood, and joint probability, should increase as the MCMC converges from a poor initial
guess to higher probability ARGs. The number of “noncompats” tends to decrease until stabilization, since the
true ARG usually explains observed site patterns without requiring multiple mutations. The number of
recombinations and length of the ARG may increase or decrease before convergence, depending on the
data and the model. In this example, a burn-in of 600 iterations seems adequate
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statistics change as the sampler reaches equilibrium (known as
“stationarity” in the MCMC literature). In this example, the rele-
vant statistics seem to become fairly stable after about 600 itera-
tions, so we will use 600 for the “burn-in” for this run.

It is also useful to examine the autocorrelation of the statistics
in the stats file (after removing the burn-in samples). The autocor-
relation of the “joint” statistic is shown in Fig. 3, and it appears that
in this case autocorrelation reaches insignificant levels in roughly
20 iterations. Autocorrelations for the other statistics look similar
and are insignificant between 20–30 iterations (not shown). There-
fore, the sampled ARGs should be thinned to at least every 20th
MCMC iteration in order to achieve a sample of effectively inde-
pendent ARGs. It is not necessary to perform thinning in order to
estimate the mean or quantiles of ARG statistics, so we will not do
that here. Still, it is useful to keep the thinning interval in mind, in
order to compute how many effectively independent samples we
have. If we run 1000 MCMC iterations, and discard the first 600 as
burn-in, and use a thinning interval of 20, we are left with an
effective sample size of only 20. This size may be sufficient for
inspecting example trees, but is not enough to obtain good esti-
mates of derived quantities such as coalescence times. So, in this
case we may want to continue running the MCMC chain for
(at least) an additional 1600 iterations in order to end up with
100 effectively independent samples.

5.2.1 Resuming a Run In our original command, we ran the MCMC for the default
number of iterations, which is 1000. It is easy to resume a run, by
adding the option --resume and specifying the final number of
iterations desired, for example, --iters 2600. In this case it will
start from iteration 1000 and perform 1600 additional iterations.
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Fig. 3 The autocorrelation in the “joint” likelihood statistic for the run shown in
Fig. 2, as plotted by the R function “acf.” The region between the blue lines
represents the 95% confidence interval for no correlation
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6 Interpreting Results

When enough iterations have been completed, the fun begins! It is
time to look at the ARGs and see what might be learned from them.
There are countless ways that one might parse and examine a set of
ARGs, and custom code may eventually be required for a specific
analysis. However, there are some tools in ARGweaver that can be
used to get started.

Many of the plots we will show in this and following sections
were created by the R package that comes with ARGweaver. We will
not show the code to create the plots in this chapter, but it is in the
companion material that accompanies this book. The R package
Gviz [4] was used to create the gene annotation plots.

6.1 Leaf Trace Plots Leaf trace plots were introduced in the ARGweaver paper [23] as
way to visualize the ARG. In these diagrams, the leaves of the local
trees, as they change along the genome sequence, are drawn as
horizontal lines, with the vertical distance between neighboring
lines proportional to the distance between adjacent leaves in the
local tree (see top panel of Fig. 4). Leaf traces should be interpreted
with caution, because there are many possible leaf trace plots for the
same ARG (depending on arbitrary choices made in ordering the
leaves), and the distance between non-adjacent lines in the leaf trace
plot is not directly interpretable. Furthermore, the leaf trace is
drawn for a single ARG, rather than showing the distribution across
sampled ARGs. Nevertheless, the leaf trace is an intuitive graphical
description of an ARG that can be used to survey its overall
structure.

A leaf trace plot can be created by first running the arg-lay-
out executable on a single SMC file. Then, the “plotLeafTrace”
function in the ARGweaver R package can plot the resulting file.

Leaf traces around the DARC gene are shown in the top panel
of Fig. 4. The first feature that is apparent is that the plot changes
quickly along the x-axis in some regions, and more slowly in others,
reflecting the posterior estimate of the local recombination rate.
The vertical height of the plot also gives a quick indication of the
total height of the local trees along the region. That is, a large
“spread” of the traces indicates a deep (ancient) time to most recent
common ancestry (TMRCA), whereas a small spread indicates a
shallow TMRCA. If the traces are colored by population of origin,
the leaf trace can also provide an idea of the level of population
structure in the data. The leaf trace in our example suggests that the
DARC gene is in the middle of a low-diversity region with a
relatively high recombination rate.
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6.2 Computing Basic

ARG Statistics

After examining leaf trace plots, the next way to explore the ARG is
to look at various statistics across the genomic region. The first step
is to convert the ARGs into a more convenient format. We cur-
rently have an SMC file for every sampled ARG, named
<outprefix>.0.smc.gz, . . ., <outprefix>.<num_iter>.
smc.gz. We use the command smc2bed-all <outprefix>,
which will combine all the information into a single sorted and
indexed BED file, with columns: chromosome, start coordinate
(0-based), end coordinate, MCMC iteration number, and Newick
tree (representing the local tree for the ARG sampled in this region
and iteration).

Now, the executable arg-summarize can be used to extract
statistics. Some of the more useful options to arg-summarize
include:

l --tmrca: time to the most recent ancestor

l --pi: average distance between any two leaves

l --branchlen: total tree length

l --popsize: estimate of diploid population size based on coa-
lescence rates in the local tree

l --tmrca-half: time at which half the samples find a current
ancestor

l --rth: Relative TMRCAHalf life (RTH), defined as the ratio of
tmrca-half to tmrca. Unusually low values of this statistic suggest
a recent “clustering” of coalescent events, possibly indicating a
partial selective sweep [23]

l --node-dist <leaf1,leaf2>: Distance between leaf1 and
leaf2 on the tree

l --node-dist-all: Like node-dist, but for all pairs of leaves

l --min-coal-time <ind1,ind2>: Return minimum coales-
cence time between two individuals (over all four haploid pair
combinations)

l --subset-inds <ind_list.txt>: Before computing statis-
tics, prune all individuals not listed in given file

l --mean: Rather than reporting statistics for every MCMC
iteration, report the mean across iterations for all
non-recombining intervals. This applies to all statistics requested
(i.e., --tmrca,--pi, etc.)

l --quantile <q1,q2,...>: Same as --mean, but instead
report one or more quantiles of statistics across samples

For example, the command:

arg-summarize -a <outprefix>.bed.gz --tmrca \

--subset africans_inds.txt \

--quantile 0.05,0.5,0.95
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would compute the 5%, 50% (median), and 95% quantiles of
the time to the most recent common ancestor, in the subset of the
ARG only containing individuals listed in the file african_inds.
txt.

ARGweaver supports many additional options not described
here. A full list can be obtained using the command arg-
summarize --help.

Figure 4 shows a plot of several of these statistics (recombina-
tion rate, pi, popsize, RTH, TMRCA) in the region surrounding
the DARC gene. The highlighted region is known to harbor
variants which have reached near-fixation throughout Africa and
are thought to provide resistance to malaria; however, this region
tends not to be detected by most tests for selective sweeps
[13]. Looking at Fig. 4, there are some suggestions of possible
positive selection in Africa, such as low estimates for pi, population
size, and RTH in the highlighted region. It is possible that the
relatively high recombination rate in this region has led to a fast
breakdown of haplotype structure, which would make a selective
sweep difficult to detect.

It is important when looking at these plots to remember the
underlying population structure; a low RTH seems to be fairly
common in non-African populations due to the population bottle-
neck, but is more rare in African populations. Similarly, we expect
the local population size estimates for the African genomes to be
higher than for the non-Africans. Overall, while the RTH in Africa
at the highlighted region is low, it is doubtful that this region would
be a significant outlier in a genome-wide scan.

6.2.1 Examining Local

Trees

Often one of the most useful ways to gain insight into the ARG is to
look directly at the estimated local trees. ARGweaver’s R package
comes with some tools to visualize the trees (the package internally
makes use the “ape” package [19]). For example, Fig. 5 shows one
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mapped to the branch as shown
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of the sampled trees at the position of rs2814778, the SNP which
defines the African haplotype.

This tree is interesting in several ways. First, it suggests a tight
grouping among the African and non-African populations. While
this is not particularly unusual for non-Africans (due to the out-of-
Africa bottleneck), it is quite rare to observe this level of clustering
among Africans. Importantly, the San individual does not cluster
with the rest of the Africans, providing a hint as to why the African
TMRCA was not unusually low in Fig. 4. In fact, it is known that
the FY*O mutation shown in Fig. 5 is not common in the San
population, whereas it has reached near-fixation throughout most
of the rest of Africa [13].

These observations suggest that perhaps the statistics shown in
Fig. 4 do not fully capture the interesting aspects of this tree.
Figure 6 shows the same statistics, but also calculated using a subset
of Africans that excludes San. This subset (shown in dark blue) is
much more of a regional outlier, with unusually low pi, population
size, and TMRCA. Notably, the RTH statistic is no longer low in
this case; this is because RTH is designed to detect partial sweeps,
and the putative sweep is complete in the subset excluding San.

One must of course be cautious about the biases that might
result from inspecting the sampled trees, deciding how they are
interesting, and then revising the statistical tests to detect these
same interesting features. Nevertheless, it is sometimes only by
visual inspection and exploration of the sampled trees that the
patterns in the data start to become clear. The basic statistics that
can be computed with arg-summarize are often too crude to give
a clear understanding of the ARG features. For example, TMRCA is
unaffected by any feature besides the final coalescence time. The pi
statistic is also very heavily dominated by long branches, especially
due to the logarithmic timescale used by ARGweaver. Finally, RTH
is sometimes informative of partial sweeps; however, it fails to
detect complete sweeps or partial sweeps that have not yet hit
50% frequency, and it also will give many false positives if the
underlying population is expanding or has experienced a
bottleneck.

It is therefore sometimes necessary to “browse” through the
trees to get an idea of what interesting signals may exist. In our
example, we revised our tests both because of the structure of the
observed trees, and because this structure was concordant with the
known geographical distribution of the DARC haplotypes. In order
to determine if this locus is truly special, it would be necessary to
compare its trees/statistics to ones from across the genome, or
generated from neutral simulations based on a more realistic demo-
graphic model.
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6.2.2 Allele Age The sampled ARGs allow mutations to be mapped to the branches
of local trees, which in turn allows the times at which those muta-
tions occurred to be estimated. The arg-summarize program
supports computing such “allele ages,” based on a single sites file.
However, this program is not designed to perform allele age com-
putations when the data is unphased, as it would need to use the
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Fig. 6 Modified statistics around the DARC gene after removing San from the African group (the new group is
shown in dark blue)
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sampled phase corresponding with each sampled ARG to properly
map the mutations. This problem can be addressed using a script
called allele_age, which will call arg-summarize for each pair
of sampled ARG and phase, and report the age for each MCMC
iteration.

There are some caveats to interpreting the allele age. First of all,
it is typically the case that, at a small fraction of sites, the local tree
will not be able to explain a particular variant site with a single
mutation (indicating a violation of the “infinite sites” model), so
that the mutation time is poorly defined. It is also possible that the
assignment of derived/ancestral alleles will not be consistent across
all the ARGs; some ARGs may explain an observed variant as a
young, low-frequency allele, whereas other samples may flip the
ancestral and derived alleles and describe the same variant as an old,
high-frequency allele. Also, when a mutation is mapped to a
branch, it is equally likely to have arisen anywhere along the branch,
so mutations mapped to longer branches will have much more
uncertainty in their time estimates than those mapped to short
branches.

The allele_age function outputs a number of extra columns
to help clarify these issues. For each MCMC sample, it outputs the
identity of the inferred derived and ancestral alleles, as well as a flag
indicating whether the mutation can be explained by the infinite
sites model under the sampled tree. It also outputs both the mean
allele age (the midpoint of the branch where it was mapped) and the
minimum allele age (the most recent point on the branch).

In our DARC example, we find that on average 4.5% of sites do
not obey the infinite sites model. The infinite sites violations tend
to be concentrated in the same sites across all MCMC replicates
(with 2.6% of sites requiring multiple mutations in > 95% of repli-
cates, and 92% of sites requiring multiple mutations in < 5% of
replicates). This rate of infinite-site violations is not unexpected,
and is likely due to a number of factors, including low levels of
genotyping error accumulating over 17 samples, true instances of
multiple mutations (especially at sites with high mutation rates such
as CpG sites), model misspecification, or uncertainty in phasing or
the ARG.

Looking at the allele underlying the tree in Fig. 5, we estimate
that the allele is between 100 and 300 ky old. This large amount of
uncertainty is not surprising, as the mutation is mapped to a fairly
long branch above the African subtree.

6.2.3 Neandertal

Introgression

Careful inspection of the local trees in our example region reveals
another interesting feature. Several of the trees downstream from
DARC, such as the one shown in Fig. 7, exhibit an atypical place-
ment of one of the Han haplotypes (Han_2), which is clustered
tightly with the Neandertal genomes. In other respects, this tree is
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quite typical. It is therefore possible that this is a region of Nean-
dertal introgression into the Han individual included in our data
set.

To investigate further, we can use arg-summarize to com-
pute the minimum coalescence time between the Han individual
and each of the ancient hominins (for every sampled ARG, at every
genomic location), and look at the distribution of these times. The
result is plotted in Fig. 8. We see that there is a region between
roughly 159.20Mb and 159.21Mb where the Han genome coa-
lesces with both the Neandertal and the Altai genomes significantly
more recently than 500 kya, roughly the minimum to be expected
in the absence of introgression. (The threshold of 500 kya gener-
ously allows for uncertainty in dating coalescence events; the actual
population divergence time is closer to 600 kya.) No other individ-
ual besides Han has coalescence times significantly below 500 kya in
this region (not shown), indicating that this observation is not
likely to be an artifact of using an incorrect local mutation rate.
Thus, it seems likely that this is a short introgressed region in the
Han.

Another way to examine this region is to look at the site
patterns within it. The subsites program can retrieve sites for
particular individuals or genomic intervals; we can use the sampled
phased SITES file from the ARGweaver run to examine the site
patterns. The R package also has a function (plotSites()) to
visualize site patterns. Figure 9 shows the site patterns in this
putatively introgressed region. It confirms that there are four sites
shared by one of the Han haplotypes and at least one Neandertal,
which are not shared by any other modern human, making the
region a very good candidate for introgression. Most other soft-
ware for detecting introgression would not confidently find such a
short region.
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7 Discussion

We hope that this chapter is sufficient to help new users decide
whether ARGweaver is an appropriate tool to apply to their data,
and to get started with an initial analysis. In our example, we
explored a few relatively simple statistics that suggested instances
of positive selection and Neandertal introgression near the DARC
locus. In other work, we have also shown that ARGweaver can be
used to detect balancing and negative selection [23], as well as
more subtle patterns of introgression [6]. However, there are
many more evolutionary questions that ARGweaver could poten-
tially shed light upon; in fact, one of the most exciting aspects of
ARGweaver is that its possible uses have yet to be fully explored.
One could imagine delving deeper into the study of natural selec-
tion, for example estimating selection coefficients, or distinguishing
selection on new variants from selection on standing variation.
Beyond natural selection, the ARG could also be useful to detect
patterns of population structure, explore genotype/phenotype cor-
relation, phase haplotypes, estimate recombination rates, etc. As we
discussed in the introduction, almost all population genetics ques-
tions can be framed as questions about ARG structure. In some
cases it may be sufficient to compute summary statistics from the
ARG using arg-summarize, but in others, it will be necessary to
write custom code for analyzing the ARG.

There is no doubt that an ARGweaver analysis requires more
time and effort than an analysis based on a typical “off-the-shelf”
tool for population genetics. For this reason, ARGweaver generally
should not be the first tool that one reaches for when analyzing a
new data set. Nevertheless, as we have shown, this additional effort
can prove worthwhile for certain kinds of analyses. One such
instance is when the genomic data are rare and precious, as is the
case with the Neandertal, Denisovan, and other ancient genomes,
which is why we highlight the use of those genomes in this chapter.
Another circumstance in which ARGweaver may be especially use-
ful is when simpler methods fall short, for example, by being
underpowered, or inappropriate in some way for the data or the
question at hand. Because ARGweaver utilizes all the genome data,
without reducing it to summary statistics, and models the full
recombination and coalescence process (within the limitations of
the SMC

0
), it should generally have more statistical power than

other methods. In addition, its ability to work on low-quality
and/or unphased genomes, and produce full evolutionary his-
tories, makes it a uniquely flexible approach that may fill in gaps
left behind by more traditional methods. For these reasons, ARG-
weaver is a “power tool” many population geneticists may wish to
add to their toolboxes.
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