Skip to main content

Techniques for Small Non-Coding RNA Analysis in Seeds of Forest Tree Species

  • Protocol
  • First Online:
Plant Epigenetics and Epigenomics

Abstract

In recent years, the scientific community has become aware that epigenetic mechanisms play a more important role in gene regulatory networks (GRNs) than was hitherto thought, as accumulating evidence has shown that changes in epigenetics without genetic variation can affect complex traits over multiple generations. Within the epigenetic machinery, small non-coding RNAs (sRNAs, 18–24 nucleotides in length) are evolutionarily conserved RNA molecules that target mRNAs for deregulation or translational repression. They commonly have high-level regulatory functions in GRNs by mediating DNA and/or histone methylation and gene silencing essential for plant developmental programs and adaptability. Local adaptation enables plants to acquire a high fitness by, for example, properly timing developmental transitions to match plant growth stages with organism’s favorable seasons. In particular, the seed represents a key evolutionary adaptation of seed plants that facilitates dispersal and reinitiates the development coupled in time with suitable environmental conditions. With the advent of high-throughput sequencing for sRNAs and computational approaches for sRNA detection and categorization, it is now feasible to unravel how sRNAs contribute to the fitness of tree species that can survive hundreds of years (e.g., conifers). Of particular interest is to disentangle the roles of sRNAs from complex genomic information in tree species with intimidating genomic sizes (commonly 20–30 Gb in conifers) and abundant nongenic components (e.g., >60% transposable elements). In this chapter, we use seeds of the conifer Picea glauca as a study system to describe the methods and protocols we used or have recently updated, from high-quality RNA isolation to sRNA identification, sequence conservation, abundance comparison, and functional analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu Y, El-Kassaby YA (2019) Novel insights into plant genome evolution and adaptation as revealed through transposable elements and non-coding RNAs in conifers. Genes (Basel) 10(3):228. https://doi.org/10.3390/Genes10030228

    Article  CAS  Google Scholar 

  2. Liu Y, El-Kassaby YA (2017) Landscape of fluid sets of hairpin-derived 21-/24-nt-long small RNAs at seed set uncovers special epigenetic features in Picea glauca. Genome Biol Evol 9(1):82–92. https://doi.org/10.1093/gbe/evw283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Liu Y, El-Kassaby YA (2017) Global analysis of small RNA dynamics during seed development of Picea glauca and Arabidopsis thaliana populations reveals insights on their evolutionary trajectories. Front Plant Sci 8:1719. https://doi.org/10.3389/Fpls.2017.01719

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  5. Jühling F, Mōrl M, Hartmann RK, Sprinzl M, Stadler PF, Pütz J (2009) tRNAdb 2009: compilation of tRNA sequences and tRNA genes. Nucleic Acids Res 37:159–162. https://doi.org/10.1093/nar/gkn772

    Article  CAS  Google Scholar 

  6. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glōckner FO (2007) SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35(21):7188–7196. https://doi.org/10.1093/nar/gkm864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359. https://doi.org/10.1038/Nmeth.1923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rueda A, Barturen G, Lebrón R, Gómez-Martín C, Alganza A, Oliver JL, Hackenberg M (2015) sRNAtoolbox: an integrated collection of small RNA research tools. Nucleic Acids Res 43:467–473. https://doi.org/10.1093/nar/gkv555

    Article  CAS  Google Scholar 

  9. Warren RL, Keeling CI, Yuen MM, Raymond A, Taylor GA, Vandervalk BP, Mohamadi H, Paulino D, Chiu R, Jackman SD, Robertson G, Yang C, Boyle B, Hoffmann M, Weigel D, Nelson DR, Ritland C, Isabel N, Jaquish B, Yanchuk A, Bousquet J, Jones SJ, MacKay J, Birol I, Bohlmann J (2015) Improved white spruce (Picea glauca) genome assemblies and annotation of large gene families of conifer terpenoid and phenolic defense metabolism. Plant J 83(2):189–212. https://doi.org/10.1111/tpj.12886

    Article  CAS  PubMed  Google Scholar 

  10. An J, Lai J, Sajjanhar A, Lehman ML, Nelson CC (2014) miRPlant: an integrated tool for identification of plant miRNA from RNA sequencing data. BMC Bioinformatics 15:275. https://doi.org/10.1186/1471-2105-15-275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Dai X, Zhao PX (2011) psRNATarget: a plant small RNA target analysis server. Nucleic Acids Res 39:W155–W159. https://doi.org/10.1093/nar/gkr319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Llorens C, Futami R, Covelli L, Dominguez-Escriba L, Viu JM, Tamarit D, Aguilar-Rodriguez J, Vicente-Ripolles M, Fuster G, Bernet GP, Maumus F, Munoz-Pomer A, Sempere JM, Latorre A, Moya A (2011) The Gypsy Database (GyDB) of mobile genetic elements: release 2.0. Nucleic Acids Res 39:70–74. https://doi.org/10.1093/nar/gkq1061

    Article  CAS  Google Scholar 

  13. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–29. https://doi.org/10.1038/75556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kanehisa M, Goto S (2000) KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30. https://doi.org/10.1093/Nar/28.1.27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by the Johnson’s Family Forest Biotechnology Endowment and the National Science and Engineering Research Council (NSERC) of Canada Discovery and Industrial Research Chair to Y.A.E.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yang Liu or Yousry A. El-Kassaby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, Y., El-Kassaby, Y.A. (2020). Techniques for Small Non-Coding RNA Analysis in Seeds of Forest Tree Species. In: Spillane, C., McKeown, P. (eds) Plant Epigenetics and Epigenomics . Methods in Molecular Biology, vol 2093. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0179-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0179-2_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0178-5

  • Online ISBN: 978-1-0716-0179-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics