Skip to main content

Got to Write a Classic: Classical and Perturbation-Based QSAR Methods, Machine Learning, and the Monitoring of Nanoparticle Ecotoxicity

  • Protocol
  • First Online:
Ecotoxicological QSARs

Part of the book series: Methods in Pharmacology and Toxicology ((MIPT))

Abstract

Machine learning has become a central feature in the development or refinement of in silico methodologies and techniques. Quantitative structure-activity relationship (QSAR) models are no exception. In fact, one can consider there is a renaissance of QSAR techniques and respective reliability as there is a greater synergy between the two of them. Further, this new wave of QSAR + machine learning (ML) techniques allows new avenues in several fields of application, namely, when regarding cytotoxicity and/or ecotoxicity monitoring of nanoparticles (NPs). The latter is of major importance, as the challenges brought by environment management and the increasing concern it has on the food chain are met with expensive and overall slow experimental answers. Within this context, and alongside classical QSAR + machine learning techniques, recent QSAR perturbation-based models join methods with ML as well. The QSAR perturbation models feature the possibility of simultaneous modeling multi bio-targets versus NPs in different experimental conditions, thus offering practical solutions to classical QSAR + ML limitations. The use of in silico models could be the most feasible answer to the present and future scenarios of mandatory ecotoxicity monitorization for nanotechnology by-products. This chapter approaches the methodologies and fundamentals of classical and perturbation-based QSAR models within the environmental risk assessment framework, as scaffold to develop novel in silico techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Crum-Brown A, Fraser TR (1865) The connection of chemical constitution and physiological action. Trans R Soc Edinb 25(1968–1969):257

    Google Scholar 

  2. Crum-Brown A, Fraser TR (1868) On the connection between chemical constitution and physiological action; with special reference to the physiological action of the salts of the ammonium bases derived from strychnia, brucia, thebaia, codeia, morphia, and nicotia. J Anat Physiol 2(2):224–242

    Google Scholar 

  3. Hansch C (1969) A quantitative approach to biochemical structure-activity relationships. Acc Chem Res 2:232–239

    Article  CAS  Google Scholar 

  4. Devinyak OT, Lesyk RB (2016) 5-year trends in QSAR and its machine learning methods. Curr Comput Aided Drug Des 12(4):265–271

    Article  CAS  PubMed  Google Scholar 

  5. Mitchell TM (1997) Machine learning, vol 45. McGraw Hill, Ridge, pp 870–877

    Google Scholar 

  6. Kim BJ, Ko Y, Cho JH (2013) Organic field-effect transistor memory devices using discrete ferritin nanoparticle-based gate dielectrics. Small 9(22):3784–3791

    Article  CAS  PubMed  Google Scholar 

  7. Liz-Marzán LM, Kamat PV (2004) Nanoscale materials. Kluwer Academic Publishers, New York

    Book  Google Scholar 

  8. Chen CY, Retamal JR, Wu IW et al (2012) Probing surface band bending of surface-engineered metal oxide nanowires. ACS Nano 6(11):9366–9372

    Article  CAS  PubMed  Google Scholar 

  9. Biffis A, Králik M (2001) Catalysis by metal nanoparticles supported on functional organic polymers. J Mol Catal A 177(1):113–138

    Article  Google Scholar 

  10. Chan NY, Zhao M, Wang N et al (2013) Palladium nanoparticle enhanced giant photoresponse at LaAlO/SrTiO two-dimensional electron gas heterostructures. ACS Nano 7(10):8673–8679

    Article  CAS  PubMed  Google Scholar 

  11. Lu P, Campbell CT, Xia Y (2013) A sinter-resistant catalytic system fabricated by maneuvering the selectivity of SiO2 deposition onto TiO2 surface versus Pt nanoparticle surface. Nano Lett 13(10):4957–4962

    Article  CAS  PubMed  Google Scholar 

  12. Yang B, Zhao C, Xiao M et al (2013) Loading metal nanostructures on cotton fabrics as recyclable catalysts. Small 9(7):1003–1007

    Article  CAS  PubMed  Google Scholar 

  13. Moseler M, Walter M, Yoon B et al (2012) Oxidation state and symmetry of magnesia-supported Pd13O(x) nanocatalysts influence activation barriers of CO oxidation. J Am Chem Soc 134(18):7690–7699

    Article  CAS  PubMed  Google Scholar 

  14. Corchero JL, Villaverde A (2009) Biomedical applications of distally controlled magnetic nanoparticles. Trends Biotechnol 27(8):468–476

    Article  CAS  PubMed  Google Scholar 

  15. Zhang Z, Wang J, Chen C (2013) Near-infrared light-mediated nanoplatforms for cancer thermo-chemotherapy and optical imaging. Adv Mater 25(28):3869–3880

    Article  CAS  PubMed  Google Scholar 

  16. Schoen DT, Coenen T, Garcia de Abajo FJ et al (2013) The planar parabolic optical antenna. Nano Lett 13(1):188–193

    Article  CAS  PubMed  Google Scholar 

  17. Liao L, Liu J, Dreaden EC et al (2014) A convergent synthetic platform for single-nanoparticle combination cancer therapy: ratiometric loading and controlled release of cisplatin, doxorubicin, and camptothecin. J Am Chem Soc 136(16):5896–5899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lu CH, Willner B, Willner I (2013) DNA nanotechnology: from sensing and DNA machines to drug-delivery systems. ACS Nano 7(10):8320–8332

    Article  CAS  PubMed  Google Scholar 

  19. Brigger I, Dubernet C, Couvreur P (2002) Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Rev 54(5):631–651

    Article  CAS  PubMed  Google Scholar 

  20. Todeschini R, Consonni V (2000) Handbook of molecular descriptors, vol 11. Wiley VCH, Weinheim

    Book  Google Scholar 

  21. Halder AK, Moura AS, Cordeiro MNDS (2018) Advanced chemometric modeling approaches for the design of multitarget drugs against neurodegenerative diseases. In: Roy K (ed) Multi-target drug design using chem-bioinformatic approaches. Methods in pharmacology and toxicology. Humana Press, New York

    Google Scholar 

  22. Hsu DD, Chemicool Periodic Table, http://www.chemicool.com/, Accessed April 4, 2019

  23. Simulations Plus, Inc [US]. http://www.simulations-plus.com/. Accessed 10 Apr 2019

  24. Rana S, Kalaichelvan PT (2013) Ecotoxicity of nanoparticles. ISRN Toxicology 2013:1. https://doi.org/10.1155/2013/574648

    Article  CAS  Google Scholar 

  25. Ostiguy C, Lapointe G, Ménard L, et al. (2006) Les nanoparticules:´Etat des connaissances sur les risques en santé et sécurité du travail, Rapport IRSST Soumis, IRSST, Montréal

    Google Scholar 

  26. Gimbert LJ, Hamon RE, Casey PS, Worsfold PJ (2007) Partitioning and stability of engineered ZnO nanoparticles in soil suspensions using flow field-flow fractionation. Environ Chem 4(1):8–10

    Article  CAS  Google Scholar 

  27. Borm PJA (2003) Toxicology of ultrafine particles. Rapport d’un atelier du BIA sur ultrafine aerosols at workplaces. BIA Report, Berufsgenossenschaftliches Institut für Arbeitsschutz

    Google Scholar 

  28. Guzman KAD, Finnegan MP, Banfield JF (2006) Influence of surface potential on aggregation and transport of titania nanoparticles. Environ Sci Technol 40(24):7688–7693

    Article  PubMed  CAS  Google Scholar 

  29. Yan X, Sedykh A, Wang W et al (2019) In silico profiling nanoparticles: predictive nanomodeling using universal nanodescriptors and various machine learning approaches. Nanoscale 11:8352–8362. https://doi.org/10.1039/C9NR00844F

    Article  CAS  PubMed  Google Scholar 

  30. Delaunay M (1924) Sur la sphère vide. Congrès International des Mathématiciens, Toronto, Canada pp 695–700

    Google Scholar 

  31. Wang W, Sedykh A, Sun H et al (2017) Predicting nano-bio interactions by integrating nanoparticle libraries and quantitative nanostructure activity relationship modeling. ACS Nano 11:12641–12649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Quintero FA, Patel SJ, Munõz F et al (2012) Review of existing QSAR/QSPR models developed for properties used in hazardous chemicals classification system. Ind Eng Chem Res 51(49):16101–16115

    Article  CAS  Google Scholar 

  33. Lewis RA, Wood D (2014) Modern 2D QSAR for drug discovery. Wiley Interdiscip Rev Comput Mol Sci 4(6):505–522

    Article  CAS  Google Scholar 

  34. Ghanem OB, Mutalib MIA, Lévêque J-M et al (2017) Development of QSAR model to predict the ecotoxicity of Vibrio fischeri using COSMO-RS descriptors. Chemosphere 170:242–250

    Article  CAS  PubMed  Google Scholar 

  35. Husowitz B, Sanchez-Arias R (2017) A machine learning approach to designing guidelines for acute aquatic toxicity. J Biom Biostat 8:385. https://doi.org/10.4172/2155-6180.1000385

    Article  Google Scholar 

  36. Kausar S, Falcao AO (2018) An automated framework for QSAR model building. J Cheminform 10(1). https://doi.org/10.1186/s13321-017-0256-5

  37. Kulacki KJ, Lamberti GA (2008) Toxicity of imidazolium ionic liquids to fresh water algae. Green Chem 10:104–110

    Article  CAS  Google Scholar 

  38. Latala A, Nedzi M, Stepnowski P (2009) Toxicity of imidazolium and pyridinium based ionic liquids towards algae, Chlorella vulgaris, Oocystis submarina (green algae) and Cyclotella meneghiniana, Skeletonema marinoi (diatoms). Green Chem 11:580–588

    Article  CAS  Google Scholar 

  39. Pretti C, Chiappe C, Baldetti L et al (2009) Acute toxicity of ionic liquids for three freshwater organisms: pseudokirchneriella subcapitata, Daphnia magna and Dario rerio. Ecotoxicol Environ Saf 72:1170–1176

    Article  CAS  PubMed  Google Scholar 

  40. Costa SP, Justina VD, Bica K et al (2014) Automated evaluation of pharmaceutically active ionic liquids’(eco) toxicity through inhibition of human carboxylesterase and Vibrio fischeri. J Hazard Mater 265:133–141

    Article  CAS  PubMed  Google Scholar 

  41. Viboud S, Papaiconomou N, Cortsei A et al (2012) Correlating the structure and composition of ionic liquids with their toxicity in Vibrio fischeri: a systematic study. J Hazard Mater 215:40–48

    Article  PubMed  CAS  Google Scholar 

  42. Stolte S, Matzke M, Arning J et al (2007) Effects of different head groups and functionalized side chains on the aquatic toxicity of ionic liquids. Green Chem 9:1170–1179

    Article  CAS  Google Scholar 

  43. Radosevic K, Cvjetko M, Kopjar M et al (2013) In vitro cytotoxicity assessment of imidazolium ionic liquids: biological effects in fish channel catfish ovary (CCO) cell line. Ecotoxicol Environ Saf 92:112–118

    Article  CAS  PubMed  Google Scholar 

  44. Dong M, Zhu S, Wang J et al (2013) Toxic effects of 1-decyl-3-methylimidazolium bromide ionic liquid on the antioxidantenzyme system and DNA in zebrafish (Danio rerio) livers. Chemosphere 91:1107–1112

    Article  CAS  PubMed  Google Scholar 

  45. Holden PA, Nisbet RM, Lenihan HS et al (2013) Ecological nanotoxicology: integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels. Acc Chem Res 46:813–822

    Article  CAS  PubMed  Google Scholar 

  46. Gonzalez-Diaz H, Arrasate S, Gomez-SanJuan A et al (2013) General theory for multiple input-output perturbations in complex molecular systems. 1. Linear QSPR electronegativity models in physical, organic, and medicinal chemistry. Curr Top Med Chem 13:1713–1741

    Article  CAS  PubMed  Google Scholar 

  47. Kleandrova VV, Luan F, Gonzalez-Diaz H et al (2014) Computational ecotoxicology: simultaneous prediction of Ecotoxic effects of nanoparticles under different experimental conditions. Environ Int 73C:288–294

    Article  CAS  Google Scholar 

  48. Kleandrova VV, Luan F, Gonzalez-Diaz H et al (2014) Computational tool for risk assessment of nanomaterials: novel QSTR-perturbation model for simultaneous prediction of Ecotoxicity and cytotoxicity of uncoated and coated nanoparticles under multiple experimental conditions. Environ Sci Technol 48:14686–14694

    Article  CAS  PubMed  Google Scholar 

  49. Luan F, Kleandrova VV, Gonzalez-Diaz H et al (2014) Computer-aided nanotoxicology: assessing cytotoxicity of nanoparticles under diverse experimental conditions by using a novel QSTR-perturbation approach. Nanoscale 6:10623–10630

    Article  CAS  PubMed  Google Scholar 

  50. Concu R, Kleandrova VV, Speck-Planche A et al (2017) Probing the toxicity of nanoparticles: a unified in silico machine learning model based on perturbation theory. Nanotoxicology 11(7):891–906

    Article  CAS  PubMed  Google Scholar 

  51. Kato T (1995) Perturbation theory in a finite-dimensional space. In: Perturbation theory for linear operators, (Reprint of the 1980 edn). Springer, Berlin

    Google Scholar 

  52. Concu R, Dea-Ayuela MA, Perez-Montoto LG et al (2009) 3D entropy and moments prediction of enzyme classes and experimental – theoretic study of peptide fingerprints in Leishmania parasites. Biochim Biophys Acta 1794:1784–1794

    Article  CAS  PubMed  Google Scholar 

  53. Concu R, Podda G, Uriarte E et al (2009) Computational chemistry study of 3Dstructure–function relationships for enzymes based on Markov models for protein electrostatic, HINT, and van der Waals potentials. J Comput Chem 30:1510–1520

    Article  CAS  PubMed  Google Scholar 

  54. García A, Espinosa R, Delgado L et al (2011) Acute toxicity of cerium oxide, titanium oxide and iron oxide nanoparticles using standardized tests. Desalination 269:136–141

    Article  CAS  Google Scholar 

  55. Hill T, Lewicki P (2006) Statistics methods and applications. A comprehensive reference for science, industry and data mining. StatSoft, Tulsa

    Google Scholar 

  56. Tenorio-Borroto E, Garcia-Mera X, Penuelas-Rivas CG et al (2013) Entropy model for multiplex drug-target interaction endpoints of drug immunotoxicity. Curr Top Med Chem 13:1636–1649

    Article  CAS  PubMed  Google Scholar 

  57. Statsoft-Team (2001) Statistica. Data analysis software system. v6.0. Tulsa

    Google Scholar 

  58. González-Díaz H, Pérez-Bello A, Cruz-Monteagudo M et al (2007) Chemometrics for QSAR with low sequence homology: mycobacterial promoter sequences recognition with 2DRNA entropies. Chemom Intell Lab Syst 85:20–26

    Article  CAS  Google Scholar 

  59. Hanczar B, Hua J, Sima C et al (2010) Small-sample precision of ROC-related estimates. Bioinformatics 26:822–830

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by UID/QUI/50006/2019, contract IF CEECIND/03631/2017, and project PTDC/QUI-QIN/30649/2017 with funding from FCT/MCTES through national funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Natália D. S. Cordeiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Moura, A.S., Cordeiro, M.N.D.S. (2020). Got to Write a Classic: Classical and Perturbation-Based QSAR Methods, Machine Learning, and the Monitoring of Nanoparticle Ecotoxicity. In: Roy, K. (eds) Ecotoxicological QSARs. Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-0150-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-0150-1_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-0149-5

  • Online ISBN: 978-1-0716-0150-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics