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Abstract  The vascular endothelium can be considered as an 
organ/tissue which comprises a monolayer of endothelial cells 
which serve as a semipermeable cellular barrier separating the 
inner space of blood vessels from its surrounding tissue and 
to control the exchange of fluids and cells between the two 
compartments. Since the pulmonary circulation receives the 
entire cardiac output, the large surface area of the lung micro-
vasculature is well suited for sensing mechanical, chemical, 
and cellular injury by inhaled or circulating substances. 
This endothelial barrier is dynamically regulated through 
exposure to these various stimuli of physiological and patho-
logical origin and serves to regulate multiple key biological 
processes (including lung fluid balance and solute transport 
between vascular compartments). For example, an increase 
in vascular permeability is a necessary feature of the body’s 
defense mechanism to provide injured tissues with access to 
leucocytes, resulting in tissue edema due to fluid extravasa-
tion. However, during conditions of intense lung inflamma-
tion such as observed in acute lung injury or its severer form 
of acute respiratory distress syndrome, the large surface area 
becomes a liability and provides the opportunity for profound 
vascular permeability resulting in massive fluid accumulation 
in the alveolar space and progressively leading to pulmonary 
failure. Alterations in vascular permeability occur not only in 
acute inflammatory lung disorders primarily caused by sepsis, 
pneumonia, and trauma which result in high rates of patient 
morbidity and mortality, but are an attractive target for thera-
peutic intervention in subacute lung inflammatory disorders 
such as ischemia–reperfusion injury, radiation lung injury, and 
asthma. Thus, understanding the mechanisms of endothelial 
barrier dysfunction is vital for the management and treatment 
of key and enigmatic pulmonary disorders.
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1 � Introduction

1.1 � Overview of Lung Endothelial Cell Barrier 
Regulation in Inflammatory Lung Injury

The vascular endothelium can be considered as an organ/
tissue which comprises a monolayer of endothelial cells 
(ECs) which serve as a semipermeable cellular barrier sep-
arating the inner space of blood vessels from its surround-
ing tissue and to control the exchange of fluids and cells 
between the two compartments. Since the pulmonary cir-
culation receives the entire cardiac output, the large sur-
face area of the lung microvasculature is well suited for 
sensing mechanical, chemical, and cellular injury by 
inhaled or circulating substances. This endothelial barrier 
is dynamically regulated through exposure to these various 
stimuli of physiological and pathological origin and serves 
to regulate multiple key biological processes (including 
lung fluid balance and solute transport between vascular 
compartments). For example, an increase in vascular per-
meability is a necessary feature of the body’s defense 
mechanism to provide injured tissues with access to leuco-
cytes, resulting in tissue edema due to fluid extravasation. 
However, during conditions of intense lung inflammation 
such as observed in acute lung injury (ALI) or its severer 
form of acute respiratory distress syndrome (ARDS), the 
large surface area becomes a liability and provides the 
opportunity for profound vascular permeability resulting 
in massive fluid accumulation in the alveolar space and 
progressively leading to pulmonary failure. Alterations in 
vascular permeability occur not only in acute inflamma-
tory lung disorders primarily caused by sepsis, pneumonia, 
and trauma which result in high rates of patient morbidity 
and mortality [1, 2], but are an attractive target for thera-
peutic intervention in subacute lung inflammatory disor-
ders such as ischemia–reperfusion injury [3], radiation 
lung injury [4, 5], and asthma [6, 7]. Thus, understanding 
the mechanisms of endothelial barrier dysfunction is vital 
for the management and treatment of key and enigmatic 
pulmonary disorders.
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1.2 � Transcellular Versus Paracellular 
Permeability

A key concept of the dynamically regulated lung EC barrier 
is the notion that two general pathways, transcellular and 
paracellular, that describe the movement and flow of fluid, 
macromolecules, and leukocytes into the interstitium (and 
subsequently the alveolar air spaces) produce clinically sig-
nificant pulmonary edema during inflammatory lung pro-
cesses (Fig. 1). The transcellular pathway utilizes a tyrosine 
kinase dependent, gp60-mediated transcytotic albumin 
route, an active process of albumin transport in which endo-
cytic vessels fuse with the endothelium in response to sur-
face glycoprotein (gp60) receptor ligation [8]. However, 
there is general consensus that the primary mode of fluid 
and transendothelial leukocyte trafficking occurs by the 
paracellular pathway as shown by the elegant electron 
microscopy studies of Majno and Palade [9, 10], who dem-
onstrated lung EC rounding and paracellular gap formation 
at sites of active inflammation within the lung vasculature. 

Disruption of the integrity of the EC monolayer is now 
recognized as a cardinal feature of inflammation, ischemia–
reperfusion injury, and angiogenesis and occurs in response 
to a variety of mechanical stress factors, inflammatory medi-
ators, and activated neutrophil products [reactive oxygen 
species (ROS), proteases, cationic peptides]. The dramatic 
cell shape change which results in paracellular gap forma-
tion implicates the direct involvement of endothelial struc-
tural components composed of cytoskeletal proteins 
(microfilaments and microtubules).

Thus, although once perceived as a passive cellular barrier, 
ECs are now recognized as a highly dynamic tissue contrib-
uting to the multiple dimensions of EC function, including 
interactions with a number of barrier-regulatory effectors via 
the endothelial cytoskeleton. The duration and outcome of 
inflammatory disease processes depends upon the balance 
between the severity of endothelial injury caused by adhesive 
biophysical forces, mechanical shear stress (SS), or receptor 
ligation by specific inflammatory mediators and the effi-
ciency of endogenous repair mechanisms to restore vascular 
integrity [1, 2]. In this chapter, we will (1) address the role 
of cytoskeletal rearrangement in mechanistic regulation of 
pulmonary vascular barrier function and permeability, 
(2) define current strategies designed to enhance the integrity 
of the lung vascular endothelium, and (3) identify vascular 
biomarkers and potential prognostic determinants of acute 
inflammation.

2 � Role of the Cytoskeleton

2.1 � Endothelial Cell Cytoskeleton 
Components: Overview

It is now well accepted that dynamic cytoskeletal elements, 
actin, microtubules, and intermediate filaments (IFs), are key 
elements of vascular barrier regulation. The vast majority of 
the studies contributing to this recognition have focused on 
agonist-mediated signaling to the actomyosin cytoskeleton 
with subsequent effects on lung vascular barrier-regulatory 
properties. Historically viewed as separate and distinct 
cytoskeletal systems, microtubules and actin filaments are 
now known to interact functionally during dynamic cellular 
processes. The microtubule scaffolding complex [11, 12], 
with a central role of tubulin dynamics, actively contributes 
to cytoskeletal rearrangement and in transducing competing 
barrier-regulatory forces, often in close collaboration with 
microfilament elements. Much less is known about IFs, an 
enigmatic component of the EC cytoskeleton consisting of 
dimer structured a-helical proteins which combine to form 
fibrils. IF proteins are expressed in a specific manner, with 

Fig. 1  Paracellular and transcellular routes of transport. The paracel-
lular pathway involves diffusive transport of molecules or fluid across 
the vascular barrier between the cell–cell junctions of adjacent endothe-
lial cells. The diagram illustrates polar organization of tight and adhe-
rens junctions of endothelial cells and interactions of linking proteins 
that form junctions. Cell–cell connections include tight junctions com-
posed of transmembrane occluding proteins linked to the actin cytoskel-
eton by the zona occludens family (ZO-1) and adherens junctions 
mediated by Ca2+-dependent association of vascular endothelial cad-
herin proteins linked to the a-catenin, b-catenin, and g-catenin complex 
which are linked to the actin cytoskeleton. Transcellular pathway 
involves vesicular (nondiffusive) transport. The diagram illustrates 
vesicular transport of albumin by either solid-phase or fluid-phase path-
ways. The endothelial cell surface expresses albumin binding proteins 
that bind albumin (solid circles). Formation of vesicles contains albu-
min bound to albumin binding proteins and those free in cytosol. The 
vesicle membrane fuses with the abluminal cell membrane, and albu-
min bound to binding protein and free albumin are extruded to the ablu-
minal side
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vimentin the primary IF protein found in ECs. The role of 
IFs in regulating EC barriers represents a fertile area for 
future investigations as only limited information is available 
[13, 14]. Nevertheless, cytoskeletal constituents together 
provide the capacity for dynamic regulation of cell shape 
and, as a consequence, of moment-to-moment adaptation to 
an ever-changing vascular environment.

2.2 � Actin Microfilaments and Myosin

Actin, a globular protein with a centrally located ATP-binding 
site, is critical to many cellular processes, including cell 
motility, cell division, cell signaling, and as we and others 
have shown, EC permeability [15–17]. G-actin reversibly 
assembles to form polymerized actin fibers called filamen-
tous actin (F-actin) or actin microfilaments (7-nm diameter), 
conferring strength to structural elements regulating cell 
shape, particularly when accompanied by phosphorylated 
myosin. Dynamic remodeling of actin filaments within 
peripherally distributed cortical bands is essential for mainte-
nance of endothelial integrity and basal barrier function, with 
inhibition of actin polymerization (cytochalasin D) directly 
increasing EC permeability [16]. Edemagenic agents initiate 
dramatic cytoskeletal rearrangement characterized by the loss 
of peripheral actin filaments with a concomitant increase in 
organized actin cables that span the cell, known as “stress 
fibers.” Critically involved in regulating the spatial locale and 
level of actin cycling (polymerization–depolymerization) are 
numerous actin-binding proteins which serve as cross-linking/
bundling proteins, polymerization/depolymerization proteins, 
and capping/severing proteins.

One key actin-binding protein and central regulator of the 
EC contractile apparatus is the Ca2+/calmodulin-dependent 
nonmuscle isoform of myosin light chain kinase (nmMLCK). 
Phosphorylation of the substrate myosin light chain (MLC) 
by nmMLCK is central to paracellular gap formation and 
increased permeability by many edemagenic agents, includ-
ing thrombin [18] and vascular endothelial growth factor 
(VEGF) [19], both in  vitro and in preclinical models of 
inflammatory lung injury. Studies with nmMLCK knockout 
mice have revealed protection from sepsis-induced ALI and 
our laboratory has shown that nmMLCK knockout mice, as 
well as mice treated with an inhibitory peptide which reduces 
MLC kinase (MLCK) activity, are protected against ventila-
tor-induced lung injury (VILI) [20]. In addition, we have 
shown that genetic variants (single-nucleotide polymor-
phisms) in MYLK, the gene on chromosome 3q21 encoding 
MLCK, confer significant susceptibility to sepsis, and sepsis- 
and trauma-induced ALI [21], as well as contributing to risk 
of severe asthma in African Americans, another inflamma-
tory lung disorder [22]. A key regulatory feature of nmMLCK 

is the posttranslational modification (PTM) by increased lev-
els of nmMLCK tyrosine phosphorylation catalyzed by either 
p60src kinase or c-abl kinase, or by inhibition of tyrosine 
phosphatases (vanadate). This PTM serves to increase kinase 
activity and modulates EC barrier responses [15, 23–25]. 
Diperoxovanadate, a potent tyrosine phosphatase inhibitor, 
also increased nmMLCK activity, the number of stress fibers, 
and EC contraction via activation of p60src kinase. The 
nmMLCK isoform binds cortactin, another actin-binding 
protein and EC barrier regulator which localizes to numerous 
cortical structures within cells [25]. The SH3 domain in cort-
actin binds the proline-rich areas in nmMLCK [18, 26, 27], 
with this interaction enhancing cortical actin formation and 
tensile strength. The central region of cortactin binds and 
cross-links actin filaments, with its C-terminus site for p60src 
kinase-mediated phosphorylation which reduces cross-link-
ing activity. Tyrosine phosphorylation of cortactin by p60src 
potentiates and stabilizes actin polymerization, and strength-
ens cortactin–nmMLCK interactions [28], and is a key step in 
a sequence of events that produce cytoskeletal changes, reas-
sembly of adherens junctions (AJs), and barrier restoration 
during lung inflammation.

2.3 � Microtubules

Microtubules are 25-nm polymers of a-tubulin and b-tubulin 
that form a lattice network of rigid hollow rods spanning the 
cell in a polarized fashion from the nucleus to the periphery 
while undergoing frequent assembly and disassembly [29, 30]. 
Important functions of microtubules include intracellular 
transport of vesicles and organelles, as well as signal trans-
duction and cytoskeletal structure. In addition, microtubules 
act in concert with the actin cytoskeleton to promote EC barrier 
integrity. Microtubules and actin filaments exhibit complex, 
but intimate functional interactions during dynamic cellular 
processes [29–32]. Microtubule disruption with an agent 
such as nocodazole or vinblastine induces rapid assembly 
of actin filaments and focal adhesions, isometric cellular 
contraction that correlates with the level of MLC phosphory-
lation, increased permeability across EC monolayers, and 
increased transendothelial leukocyte migration, events that 
can be reversed or attenuated by microtubule stabilization 
with paclitaxel [31, 32]. The mechanisms involved in these 
effects are poorly understood but are likely to be mediated 
through interaction with actin filaments, suggesting signifi-
cant microfilament–microtubule cross talk. Disruption of 
microtubules causes actin cytoskeletal remodeling, cell con-
traction, and decreased transendothelial resistance through a 
Rho kinase induced phosphorylation of MYPT1, a MLC 
phosphatase [31, 33]. Nocadozole causes formation of stress 
fibers and myofilament assembly accompanied by increases 
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in MLC phosphorylation, remodeling of AJs [34, 35], and 
barrier disruption [31]. Microtubule stabilization with paclitaxel 
inhibits the formation of stress fibers and preserves cellular 
shape and intercellular contacts [32]. Although these effects 
are poorly understood, microfilament–microtubule cross talk 
represents an intriguing area of EC barrier regulation [32, 36].

2.4 � Intermediate Filaments

IFs, the third major element involved in EC cytoskeletal 
structure, were defined on the basis of their 10–12-nm filament 
structure which distinguished them from 7-nm microfila-
ment and 25-nm microtubules. Despite greater diversity than 
the highly conserved components of either actin microfila-
ments or microtubules, IF proteins share a common dimer 
structure containing two parallel a-helices which combine to 
form polar fibrils that associate with an array of IF-binding 
proteins while connecting to the nuclear envelope, peripheral 
cell junctions, and other cytoskeletal components. IF proteins 
are expressed in a highly cell specific manner, with vimentin 
being the primary IF protein found in ECs and other cells of 
mesenchymal origin. Although these data suggest potential 
roles for IFs in EC cytoskeletal structure and barrier function, 
these effects are likely to be subtle and subject to compensa-
tion by biological redundancy and the function of IFs in EC 
barrier regulation is much less understood [15]. Assembly of 
IFs is a complex process likely highly regulated by signaling 
cascades associated with cell motility. Vimentin is a dynamic 
structure undergoing constant assembly/disassembly, as 
well as anterograde and retrograde movements. Microtubule-
based movement of IFs is likely critical for assembly and 
maintenance of the vimentin IF network [37, 38]. The physical 
and dynamic properties of the vimentin network in the vas-
cular EC are likely important in regulation of cell shape and 
resistance to hemodynamic stress that accompanies blood 
flow and resistance to shear strain, physiological changes 
regulated by the IF cytoskeleton, and IF-associated proteins 
which serve as internal scaffolding for ECs, linked to the 
plasma membrane, and to junctional contacts. Vimentin protein 
expression is higher in macrovascular EC lining vessels sub-
jected to the highest hemodynamic strain, such as the aorta, 
compared with microvascular EC lining vessels under less 
SS. Vimentin knockout mice develop normally without gross 
blood vessel abnormalities, but with reduced mesenteric artery 
vessel dilation in response to flow [37, 38]. Downstream 
responses to flow may be the result of intracellular mechanosig-
naling events triggered by deformation of the IF cytoskeleton. 
Changes in unidirectional laminar flow results in rapid adap-
tation of the EC vimentin network, with directional displacement 
within minutes of initial exposure. As noted with microfila-
ments and microtubules, over a period of hours, cytoskeletal 

filaments align themselves in the direction of flow, with 
significantly larger change in the vimentin distribution 
around the nucleus compared with displacement occurring in 
the cytosol closer to the substrate. These observed spatial 
changes may be a means of distribution of local shear force 
transmission throughout the cell and therefore convey cell 
signaling messages via a mechanosignaling pathway. Thus, 
vimentin IFs are likely critical for maintaining the structural 
integrity of ECs under SS, and may also be a conduit for 
signaling cascades triggered by mechanical force, again an 
exciting area for future examination.

2.5 � Adhesive Protein–Cytoskeleton Linkages

Dynamic equilibrium exists between EC contractile forces 
and the adhesive protein–cytoskeleton linkages with cell–
cell and cell–matrix interactions necessary for proper barrier 
function. A major contributor to the intact cellular barrier is 
the tight apposition of individual ECs with neighboring cells 
via intercellular junctions which collectively contribute to 
basal endothelial barrier function. The two primary types of 
intercellular contacts between ECs are AJs and tight junc-
tions (TJs), both of which link the EC actin cytoskeletons of 
neighboring cells to each other while providing mechanical 
stability and mediating signal transduction [15] (Fig. 1). In 
addition to cell–cell junction stability, cell–matrix interac-
tion also contributes to stability of the barrier function. 
Specific components of the focal adhesion complex, i.e., the 
integrin-based linkage between the extracellular matrix 
(ECM) and the endothelial cytoskeleton, provide strong teth-
ering of the endothelium to the vessel wall and thus enhanced 
barrier integrity.

AJs are composed of cadherins bound together in a homo-
typic- and Ca2+-dependent fashion to link adjacent ECs [39]. 
Cadherins interact through their cytoplasmic tail with the 
catenin family of intracellular proteins (primarily b-catenin), 
which in turn provide anchorage to the actin cytoskeleton [40]. 
The primary adhesive protein present in human endothelial 
AJs, vascular endothelial cadherin (VE-cadherin) [41], is criti-
cal to maintenance of EC barrier integrity as demonstrated by 
increased vascular permeability induced in mice after infusion 
of VE-cadherin blocking antibody [42]. Similarly, in cultured 
ECs, VE-cadherin blocking antibody enhanced neutrophil 
transendothelial migration while producing reorganization of 
the actin cytoskeleton [43]. Anchorage of VE-cadherin to the 
actin cytoskeleton is crucial to maintaining barrier integrity 
since a cytoplasmic-deleted VE-cadherin which cannot anchor 
to the actin cytoskeleton still forms cadherin–cadherin binding 
but results in increased vascular permeability [41].

TJs, or zona occludens, are areas that surround the entire 
apical perimeter of adjacent cells and are formed by the 
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fusion of the outer layers of the plasma membranes. These 
associations are sufficiently tight as to form a virtually 
impermeable barrier to fluid [44, 45] and are composed of 
occludins, claudins, and junctional adhesion molecules cou-
pled to cytoplasmic proteins [46] (Fig.  1). Similar to 
VE-cadherin at AJs, ECs express a cell-type-specific trans-
membrane adhesion protein, claudin-5, at TJs. The cyto-
plasmic components of TJs are linked to the EC actin 
cytoskeleton by the zona occludens family (ZO-1). TJs are 
particularly abundant and prominent in the brain microvas-
culature and epithelial cells, where strict control of perme-
ability is needed. In contrast, most microvascular beds of 
ECs, particularly leaky lung microvasculature, have less 
defined TJ structures and more prominent AJ structures. 
Therefore, AJs and not TJs have historically been consid-
ered the primary targets involved in junctional protein dis-
sociation resulting in increased paracellular permeability, 
but there is growing evidence that TJs may play a larger role 
in the regulation of paracellular permeability in the lung 
than previously thought [47].

Finally, focal adhesions are intimately involved in lung 
EC barrier regulation via signaling between the cytoskele-
ton to the ECM. Focal adhesions are attachments of ECs to 
the underlying ECM and are mediated by ECM proteins 
(i.e., collagen, fibronectin, laminin, etc.), integrins, and 
cytoplasmic adhesion plaques (containing vinculin, talin, 
and paxillin) [48, 49]. Integrins couple the ECM to the 
cytoskeleton and transmit signals from the surrounding 
environment and play a key role in the formation of cell 
adhesion complexes which attach to the actin cytoskeleton 
via the cytoskeletal proteins actin, vinculin, talin, and 
a-actinin. Focal adhesions, primarily through integrins, 
form a bridge for bidirectional signal transduction between 
the actin cytoskeleton and the cell–matrix interface. 
Disruptions of the integrin–ECM connection can increase 
EC permeability [50, 51] and integrins modulate EC per-
meability to SS and inflammatory mediators [52]. Integrin–
ECM binding stimulates tyrosine phosphorylation of 
proteins such as paxillin, cortactin, and focal adhesion 
kinase (FAK), as well as calcium influx [53, 54]. FAK is the 
principal kinase which catalyzes the downstream reactions 
of integrin engagement and focal adhesion assembly [52], 
with FAK activity regulated by tyrosine phosphorylation 
mediated by the Src family. Activation of FAK through 
tyrosine phosphorylation produces cell contraction and 
increased EC barrier permeability. We previously reported 
that integrin b

4
 expression is dramatically upregulated upon 

challenge with the barrier-protective agent simvastatin [55]. 
Furthermore, the upregulation of integrin b

4
 attenuates 

endotoxin- and ventilator-induced expression of inflamma-
tory cytokines interleukin (IL)-6 and IL-8 [56], suggesting 
a novel mechanism of modulating endothelial barrier func-
tion via integrin b

4
 and focal adhesion signaling.

3 � Mechanisms of Increased Permeability 
Mediators of Barrier Dysfunction

3.1 � Endothelial AJs/TJs: Dissociation  
and the Disruption of Vascular Integrity

Inflammatory mediators increase vascular permeability by 
disrupting endothelial junctions and focal adhesion complexes 
as well as inducing cellular contraction to open paracellular 
gaps [49, 57–59]. As TJs and AJs are ideally situated in a 
locale between cell–cell junctions, they logically are key par-
ticipants in the control of vascular paracellular permeability 
and monolayer integrity. Recent studies in brain ECs have 
focused on the importance of claudins in TJ formation and 
maintenance [60, 61]. Mice with claudin-5 gene knocked out 
did not have a morphologically altered vascular network or 
TJ structures, but the claudin-5-deficient pups died within 
10 h of birth owing to size-selective loosening of the blood–
brain barrier against molecules of less than 800 kDa. It appears 
that moderate redundancy among the claudin isoforms may 
allow for the formation of the TJ, but not for the complete 
function of the TJ. Claudin-3 appears to act in concert with 
claudin-5 to form the tightly organized strand network, but in 
claudin-5 mutants, claudin-3 can only maintain the barrier 
against larger molecules [60], suggesting claudin-3 is a struc-
tural barrier, whereas claudin-5 is crucial for the dynamic 
regulation of TJ permeability. Gene inactivation of claudin-1 
and occludin also has no effects on vascular morphology or 
barrier permeability, suggesting a minor role in TJ function 
in endothelium as compared with claudin-5 and claudin-3 
[62]. The family of junctional adhesion molecules (JAM-A, 
JAM-B, JAM-C) and EC-selective adhesion molecules 
(ESAM) are transmembrane glycoproteins that associate 
with TJ strands but are not part of the strands per se [63]. 
Inactivation of these genes in mice does not cause any defect 
in the development of the vascular system in the embryo, 
but in adult mice these molecules play an important role in 
modulating leukocyte diapedesis through ECs. JAM-Cs 
however, is unique in that unlike other junctional proteins, it 
increases endothelial permeability when expressed at the EC 
surface, suggesting a role in promoting and/or organizing 
junction formation [64]. This activity is mediated by 
VE-cadherin activity and actin organization, as well as by 
kinases and phosphatases that modulate TJ protein phospho-
rylation and endothelial permeability. Many of the studies on 
TJ have been using brain ECs, where the adhesion molecules 
are prominent. Nevertheless, recent studies on lung ECs have 
demonstrated that despite the less prominent formation of 
TJs as compared with AJs, TJs may play a critical role in the 
endothelial barrier dysfunction associated with exposure to 
particulate matter from air pollution, which has been shown 
to induce a gradual and prolonged barrier dysfunction in 
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cultured lung endothelium [47, 65]. AJs were found unexpectedly 
to be unaltered but the TJs, specifically ZO-1, were degraded 
through a calpain-dependent proteasome pathway, a novel 
mechanism of lung endothelial barrier regulation.

In contrast to TJs, the regulation of lung vascular integrity 
involving AJs has been well characterized. Although VE-cadherin 
is present in high concentration in all ECs, different types of 
vessels appear to modify VE-cadherin expression to comple-
ment the vascular barrier function of that particular vessel. 
Four modes of AJ protein regulation of permeability have 
been described, all involving VE-cadherin: phosphorylation, 
internalization, cleavage, and expression. Simultaneous coor-
dination of VE-cadherin phosphorylation and internalization 
appears to be crucial for a rapid response to an increase in 
permeability [66], whereas VE-cadherin cleavage and 
expression are progressive alterations. Edemagenic stimuli 
induce tyrosine phosphorylation of AJ proteins (VE-cadherin, 
b-catenin, and p120 catenin), which parallels increases in 
permeability, with the tyrosine kinase Src implicated in the 
phosphorylation of AJ proteins as it directly associates with 
the VE-cadherin/catenin complex, and src gene inactivation 
or treatment with inhibitors blocks VEGF-induced VE-cadherin 
phosphorylation [67]. Phosphorylation of VE-cadherin is 
dependent on kinase activation as well as inhibition of asso-
ciated phosphatases such as the endothelial-specific phos-
phatase VE-PTP, which also associates with VE-cadherin, 
and inactivation of the VE-PTP gene leads to a phenotype 
comparable to that of VE-cadherin null embryos, suggesting 
that vessels cannot form correctly if VE-cadherin is constantly 
phosphorylated [68]. Permeability may also be regulated by 
VE-cadherin internalization. Typically, p120 catenin binds 
to VE-cadherin and acts as a plasma membrane retention sig-
nal to prevent VE-cadherin internalization; however, upon challenge 
with barrier-disrupting stimuli, activated Src phosphorylates 
Vav2, a guanine exchange factor (GEF) for Rac, which then 
phosphorylates VE-cadherin at Ser665, inducing b-arrestin 2 
recruitment and promoting clathrin-dependent VE-cadherin 
internalization [66]. Angiopoietin 1 induces Src trapping by 
mDia, reducing its activity at AJs, and thus reducing vascular 
permeability [69]. The third pathway that may induce vascu-
lar permeability is VE-cadherin cleavage. VE-cadherin is 
particularly susceptible to enzymatic proteolysis, specifically 
elastase and Adam-10, which are released in high amounts 
by leukocytes, promoting VE-cadherin cleavage, cell extrava-
sation, and vascular leakage. Lastly, permeability control 
may also be achieved through VE-cadherin gene expression. 
The VE-cadherin promoter contains several binding sites for 
transcription factors, TAL-1, ERG, and hypoxia-inducible 
factors.

Therefore, the interendothelial junction is a key site of 
regulating vascular permeability, with various stimuli target-
ing either the TJ or the AJ, or both. Furthermore, there are 
various combinatory modes of regulating the AJ that promote 

dissociation of adhesion proteins in the cell–cell junction. 
However, additional factors often accompany junctional 
dissociation, such as disbanding of cortical cytoskeleton and 
increase in cellular contraction, which augment the barrier 
dysfunction.

3.2 � Regulation of Vascular Permeability by 
Stress Fiber Formation and Endothelial 
Cell Contraction

The monolayer integrity is regulated by the dynamic equilibrium 
which exists between contractile forces and tethering forces 
[18, 70, 71]. Transcellular stress fiber formation and activa-
tion of actomyosin interaction, along with the cortical actin 
ring disassembly, results in contractile tension that induces 
cell rounding, which contributes to cell–cell gap formation 
(Fig.  2), with inhibition of this cytoskeletal reorganization 
attenuating barrier dysfunction [72, 73].

Contraction triggered in ECs is regulated by nmMLCK-
catalyzed MLC phosphorylation on Thr18 and Ser19 which 
increases actomyosin ATPase activity and shifts the equi-
librium between the folded and unfolded myosin forms 
[74], thus providing the assembling and functioning of the 
contractile apparatus of the cells. The MYLK gene on chro-
mosome 3 in humans encodes three proteins: the nmMLCK 
isoform, the smooth muscle MLCK isoform (130–150 
kDa), and telokin [75–78]. In smooth muscle, nmMLCK is 
expressed at relatively low level, being present together 
with a shorter smooth muscle isoform, whereas only 
nmMLCK can be detected in ECs [78] and exists as a 1,914 
amino acid high molecular weight (214-kDa) protein. The 
nmMLCK shares essentially identical catalytic and CaM 
regulatory motifs with smooth muscle MLCK, but contains 
a unique 922 amino acid N-terminal domain comprising 
potential novel PTM sites [79]. Inflammatory agonists 
such as VEGF and thrombin produce rapid increases in 
MLC phosphorylation, reflecting coordinated nmMLCK 
activity and the small GTPase Rho and its effector, Rho 
kinase, result in phosphorylation and, thereby, inhibition 
of the MYPT1 myosin phosphatase, resulting in stabiliza-
tion and accumulation of phosphorylated MLC. The aggre-
gated result is actomyosin interaction and EC permeability 
which is significantly attenuated by MLCK or Rho kinase 
inhibitors [19, 80–82].

Despite the clear contribution of MLCK/Rho kinase 
driven increases in MLC phosphorylation to tension develop-
ment and increased vascular permeability, MLCK-independent 
pathways are also involved in the regulation of cellular con-
traction. Protein kinase C (PKC)-mediated pathways exert a 
prominent effect on barrier regulation in a time- and species-
specific manner without significantly increasing MLC 
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phosphorylation and without inducing formation of actin 
stress fibers, but with alterations in other components of 
the endothelial cytoskeleton [18, 83, 84]. PKC-mediated 
increases in EC permeability involve phosphorylation of 
caldesmon, an actin-, myosin-, and calmodulin-binding pro-
tein present in smooth muscle actomyosin cross-bridges as a 
145-kDa protein and in ECs as a 77-kDa protein [84]. The 
phosphorylation of caldesmon alters smooth muscle cross-
bridge activity [85]. Caldesmon-mediated regulation of 
actomyosin ATPase in smooth muscle is also modified by the 
actin cross-linking protein filamin and gelsolin [86]. Although 
filamin participates directly in barrier regulation via CaM 
kinase II activation [87], its effects on actin cytoskeletal rear-
rangement are regulated through Rho family GTPases [88, 
89], thereby providing another link with a known modulator 
of EC barrier function. The cytokine tumor necrosis factor a 
(TNF-a) induces slow-onset barrier disruption in cultured 
ECs independent of MLCK activity [11]. Finally, p38 kinase 
activation also has been linked to contractile regulation in 
smooth muscle [90], EC migration [91, 92], and lipopolysac-
charide (LPS)-induced EC permeability [93]. The mechanism 
through which p38 exerts these effects is unclear but may 
involve the actin-binding protein hsp27 [94], a known p38 
mitogen-activated protein kinase (MAPK) target whose 

actin-polymerization-inhibiting activity dramatically decreases 
after phosphorylation [95, 96] in association with stress fiber 
development [92, 97].

3.3 � Mechanical Stress and Vascular  
Barrier Function

The pulsatile nature of blood pressure and flow exposes blood 
vessels to constant hemodynamic forces in the form of SS and 
cyclic stretch (CS). The flow of blood parallel to the vessel 
surface produces fluid SS from the friction of blood against the 
vessel wall. In contrast, CS is an important mechanical force 
generated in the lung circulation either by circulating blood, 
which results in the rhythmic, pulsatile distension of the arterial 
wall, or by tidal breathing. The endothelium converts these 
mechanical stimuli to intracellular signals that effector cellular 
functions including proliferation, migration, remodeling, apop-
tosis, and permeability, as well as gene expression. The 
cytoskeleton is the key structural framework for the ECs to 
transmit mechanical forces between its luminal, abluminal, and 
junctional surfaces to its interior, including the cytoplasm, 
nucleus, and focal adhesion sites. Changes in mechanical stress 

Fig.  2  Intracellular signaling pathways evoked by endothelial cell 
edemagenic agents and contractile agonists, and resulting in paracellu-
lar gap formation. In this model, under basal conditions, a balance 
exists between actomyosin contractile and cellular adhesive forces. 
When contractile forces predominate, as depicted in the thrombin-
stimulated model, actin stress fibers form and endothelial cells pull 
apart to form paracellular gaps, favoring barrier disruption. Thrombin 
cleavage of the proteinase-activated receptor-1 on the surface of 
endothelial cells activates both heterotrimeric G proteins (G

q
, G

12/13
) and 

small GTPases such as Rho. Activated Rho induces Rho kinase, which 
via phosphorylation of the phosphatase regulatory subunit inhibits the 

myosin light chain phosphatase. Rho kinase and myosin light chain 
kinase (MLCK) activation occurs via independent pathways. Increased 
level of cytosolic Ca2+ (via inositol trisphosphate production) activates 
the Ca2+/calmodulin-dependent MLCK, with conformational changes 
allowing the enzyme to access the preferred substrate myosin light chain. 
Rho kinase and MLCK activation both culminate in increased myosin 
light chain phosphorylation, which enables actomyosin contraction, 
resulting in increased stress fiber formation, cellular contraction, para-
cellular gap formation, and ultimately endothelial barrier dysfunction. 
Also depicted are other edemagenic agonists that result in stress-fiber-
dependent contraction leading to endothelial barrier dysfunction
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activate multiple sensing mechanisms and signaling networks in 
ECs, resulting in physiological and pathological functional 
responses. Blood pressure is the major determinant of vessel 
stretch, although arterial wall distension normally does not 
exceed 10–12% stretch. At physiological levels, both SS and CS 
provide barrier-enhancing and barrier-maintenance stimuli [98, 
99]. However, pathological levels of mechanical stress, as 
induced by mechanical ventilation, may serve as a barrier-
disrupting stimulus. Our studies using human ECs stretched at 
excessive distension of 18% CS demonstrated increased Rho 
activation and sensitivity to edemagenic agonists, suggesting 
barrier-disrupting phenotype [99, 100]. Long-term CS increased 
gene expression and protein content of signaling and contractile 
proteins including Rho GTPase, MLCs, MLCK, zipper-interact-
ing protein kinase, protease-activated receptor (PAR)-1, caldes-
mon, and HSP27, suggesting regulation at both the translational 
and the posttranslational level [99, 101]. Acute lung overdisten-
tion caused by mechanical ventilation at high tidal volumes can 
induce remodeling of ECM constituents such as collagen, elastin, 
proteoglycans, glycosaminoglycans, and matrix metalloprotei-
nases [102], processes which influence cellular responses to 
mechanical stress via increased inflammatory cytokine production, 
macrophage activation, acute inflammation, and barrier dysfunc-
tion resulting in pulmonary edema. Reduction in tidal volume 
causes less ECM disorganization [102] and has improved patient 
mortality from VILI [103], a topic reviewed in the following.

3.4 � Pulmonary Vascular Response  
to Oxidative Stress

Among the organs in the body, the lung exists in a high-oxygen 
environment and is susceptible to injury by oxidative stress. 
Cigarette smoking and inhalation of airborne pollutants/toxins/
oxidant gases and particulate matter result in direct lung 
damage as well as the activation of lung inflammatory 
responses [104–106]. Long-term exposure of lungs to higher 
oxygen tension (hyperoxia), as observed with premature 
infants and critically ill patients on ventilators, causes oxida-
tive stress and lung injury [107]. Thus, increased ROS 
production has been directly linked to inflammatory lung 
diseases such as asthma, chronic obstructive pulmonary disease, 
and ARDS. ROS are essential for normal lung/endothelial 
function [108], but an imbalance of the redox equilibrium 
may contribute to pulmonary edema [109, 110]. The imbalance 
of oxidants produced to oxidants detoxified, i.e., a change in 
the redox equilibrium appears important in the development 
of various inflammatory lung diseases, and increased ROS 
production have been directly linked to oxidation of DNA, 
proteins, lipids and sugars, remodeling of ECM, alteration of 
mitochondrial respiration, and apoptosis. Furthermore, 
increased levels of ROS have been implicated in initiating 

signaling cascades of activation of transcription factors 
(NF-kB and AP-1), chromatin remodeling, and gene expres-
sion of proinflammatory mediators [106, 111]. Also, ROS 
generated by phagocytes that have been recruited to sites of 
inflammation and excess generation of ROS by vascular cells 
are a major cause of edema and lung injury. Generation of 
ROS and ROS signaling in lung endothelium alter vascular 
permeability in vivo [112, 113] and in endothelial monolayers 
[24, 114, 115]. Despite several potential sources of ROS 
[mitochondrial electron transport chain, cytochrome P-450 
enzymes, xanthine oxidase, nitric oxide synthases, myeloper-
oxidase (MPO) system], the vascular NADPH oxidase family 
of proteins has been shown to be a major contributor of 
endothelial ROS in response to hyperoxia [116] since 
NADPH oxidase mediated superoxide production increases 
endothelial permeability [117, 118].

3.5 � Bioactive Agonists Which Increase  
Lung Vascular Permeability

A variety of agonists, cytokines, growth factors, and mechan-
ical forces alter pulmonary vascular barrier properties and 
serve to increase vascular permeability [11, 15, 17, 19, 24, 
99, 119, 120]. The serine protease thrombin represents an 
ideal model for the examination of agonist-mediated lung 
endothelial activation and barrier dysfunction as thrombin 
evokes numerous EC responses that regulate hemostasis and 
thrombosis, and is recognized as an important mediator in 
the pathogenesis of ALI [15]. Thrombin increases EC leakiness 
to macromolecules by ligating and proteolytically cleaving the 
extracellular N-terminal domain of the thrombin receptor, a 
member of the family of PARs [121–123]. The cleaved 
N-terminus, acting as a tethered ligand, activates the receptor 
and initiates a number of downstream effects, including 
cytoskeletal rearrangement (Fig.  2). In vivo studies have 
detailed events which followed thrombin infusion into the 
pulmonary artery of the chronically instrumented lung lymph 
sheep model initiating a cascade of events that culminate in 
intravascular coagulation, inflammation, and vascular leak 
[124–126]. Naturally occurring agonists, such as the cytokines 
TNF-a and IL-1b, have a prominent effect early in ALI, 
causing microthrombosis, and eliciting a cascade of inflam-
matory signals which result in capillary endothelial production 
of P-selectin, an adhesion molecule which enhances leuko-
cyte-EC migration [127–129] and actin reorganization, and 
paracellular gap formation [130]. TNF-a also increases tyrosine 
phosphorylation of VE-cadherin, leading to increased para-
cellular gaps in human lung endothelium [129].

Much less is known about pre-B-cell colony-enhancing 
factor (PBEF), a relatively unknown cytokine we identified 
via functional genomic approaches as a novel ALI candidate 
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gene [131, 132]. PBEF is also known as visfatin, following 
its identification as a visceral fat hormone [133], and nicoti-
namide phosphoribosyltransferase (Nampt), as it serves as 
the rate-limiting component in the NAD biosynthesis pathway 
that catalyzes the conversion of nicotinamide and phosphori-
bosylpyrophosphate into nicotinamide mononucleotide. 
We demonstrated PBEF as a novel biomarker in sepsis and 
sepsis-induced ALI with genetic variants conferring ALI 
susceptibility [131, 132]. Furthermore, PBEF is highly 
expressed in polymorphonuclear neutrophils (PMNs) of sepsis 
subjects, with expression upregulated by mechanical force 
and inflammatory cytokines, and is involved in EC barrier 
regulation [131, 134, 135]. We explored the mechanistic par-
ticipation of PBEF in ALI and VILI and demonstrated that 
recombinant human PBEF is a direct neutrophil chemotactic 
factor and elicits marked increases in the levels of broncho-
alveolar lavage (BAL) PMNs and PMN chemoattractants 
(KC and MIP-2) after intratracheal injection in mice [136], 
changes accompanied by modest increases in lung vascular 
and alveolar permeability. Dramatic increases in BAL PMNs, 
BAL protein, and cytokine levels (IL-6, TNF-a, KC) were 
observed in recombinant human PBEF- and VILI-challenged 
mice [136], whereas heterozygous PBEF+/− mice were sig-
nificantly protected (reduced BAL protein levels, BAL IL-6 
levels, peak inspiratory pressures) when exposed to a model 
of severe VILI and exhibited significantly reduced expres-
sion of VILI-associated gene expression modules.

The role of the renin–angiotensin system in pulmonary 
vascular regulation is now well recognized with angiotensin II, 
a key component of the renin–angiotensin system, generated 
primarily by angiotensin-converting enzyme (ACE) from 
angiotensin I and its effects are mediated through angiotensin 
type I (AT-1) and angiotensin type II (AT-2) receptors which 
are expressed in the normal lung. The pulmonary endothelium 
represents a major site of ACE expression and angiotensin II 
production, with ACE2, a homologue of ACE, expressed in the 
lung inactivating angiotensin II, leading to the downstream 
generation of angiotensin 1-7, which acts through AT-2 recep-
tors to induce vasodilatation. Although components of the 
renin–angiotensin system have been implicated in a variety of 
lung diseases, including pulmonary hypertension and fibrotic 
lung diseases, the system has been strongly linked to the 
pathophysiology of pulmonary vascular leak syndromes. For 
example, ACE2 serves as the receptor for the coronavirus, first 
identified in 2003, responsible for severe acute respiratory syn-
drome [137, 138], with a mortality rate of more than 50% in the 
elderly. ACE and AT-2 serve a protective role in ARDS, whereas 
ACE2, angiotensin II, and AT-1 mediate lung edema and injury 
associated with ARDS. A role for ACE via angiotensin II and/
or bradykinin in ALI was proposed [139]. Reductions in ACE 
activity by captopril attenuated the inflammatory response and 
apoptosis, whereas blocking bradykinin receptors did not 
attenuate the anti-inflammatory and antiapoptotic effects of 

captopril [140]. Captopril did not attenuate ACE activity or 
necrosis, indicating that inflammation and apoptosis in VILI 
is due to ACE-mediated Ang angiotensin II production [141].

New blood vessel formation, or angiogenesis, is defined 
by the generation of new capillaries by ECs either by sprouting 
or by splitting from pre-existing vessels. Sprouting angio-
genesis involves EC detachment from the basement membrane, 
migration, and subsequent proliferation, tube formation, and, 
finally, functional maturation of the new vessel [142]. VEGF 
is key in vasculogenesis as mice lacking the VEGF receptor 
Flt-1 fail to develop fully functional blood vessels [143]. 
Inhibition of VEGF as a promising therapeutic strategy in 
the management of patients with advanced malignancies 
[144]. Pulmonary hypertension is a devastating disease with 
many similarities to neoplastic processes and is characterized 
by aberrant angiogenesis, with VEGF serving as a target in 
pulmonary hypertension [145, 146]. VEGF increases EC 
permeability and was originally named “vascular permeability 
factor” for its profound effects on vascular barrier function 
[147]. VEGF levels are highest in the lungs and plasma and 
VEGF levels are increased in patients with ARDS compared 
with the other groups [148]. VEGF increases cytosolic calcium 
levels and levels of MLC phosphorylation at high doses and 
VEGF inhibition decreases EC permeability [148, 149].

Additional angiogenic factors with barrier-regulatory 
properties include angiopoietin 1 and angiopoietin 2, which 
are critical for normal vascular development. The angiopoietin 
family is compopsed of vascular growth factors which are 
ligands to the family of tyrosine kinases that are selectively 
expressed in the vascular endothelium. VEGF induces EC 
differentiation and migration, whereas angiopoietin 1 stabilizes 
vascular networks [150–152]. Angiopoietin 1 and angiopoietin 
4 modulate EC permeability by altering the state of AJs and 
specifically inhibit vascular leakage in response to VEGF or 
other barrier-disruptive agents, as well as promoting vessel 
maturation. Angiopoietin 2 antagonizes angiopoietin 1 and 
promotes barrier dysregulation by blocking the ability of 
angiopoietin 1 to activate its receptor [152].

4 � Mechanisms of Increased Barrier  
Integrity: Therapeutic Strategies

Understanding the mechanisms of barrier dysfunction 
offers the advantages to design therapeutic strategies which 
target barrier-integrity preservation or reverse established 
barrier dysfunction by restoring vascular integrity. Prior to 
the last decade, permeability-reducing strategies primarily 
consisted of cyclic AMP (cAMP) augmentation, producing 
only modest barrier enhancement [153–156]. More recently, 
a number of barrier-promoting agents have been identified 
which share common signal transduction mechanisms 
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which are distinct from cAMP signals and target the 
endothelial actin cytoskeleton to facilitate barrier-restor-
ative processes. The dynamic process of actin polymeriza-
tion allows for the rapid reorganization of actin structures, 
with profound functional consequences for barrier regula-
tion that are highly dependent on the exact spatial location 
of this actin rearrangement occurring as either barrier-dis-
rupting cytosolic stress fibers or as a barrier-enhancing 
thickened cortical actin ring. We have demonstrated that 
the quiescent EC phenotype is characterized by a cortical 
actin ring and few stress fibers, a structure which favors 
cell–cell adhesion and cell–matrix tethering. We have con-
ceptualized a paradigm whereby barrier recovery after 
edemagenic agonists involves development of a cortical 
actin ring to anchor cellular junctions and a carefully cho-
reographed (but poorly understood) gap-closing process 
via formation of Rac GTPase-dependent lamellipodial pro-
trusions into the paracellular space between activated ECs 
(Fig. 3) Within these lamellipodia, signals are transduced 
to actin-binding proteins (nmMLCK and cortactin) and 
phosphorylated MLCs in spatial-specific cellular locations. 
Lamellipodia also require formation of focal adhesions 
(regulated by the cytoskeleton) critical to the establishment 
of the linkage of the actin cytoskeleton to target effectors 
that restore cell–cell adhesion and cell–matrix adhesion. 
This process is essential to the restoration of endothelial 
barrier in response to exposure to agonists such as sphin-
gosine 1-phosphate (S1P), hepatocyte growth factor (HGF), 

simvastatin, activated protein C (APC), ATP, oxidized 
phopholipids, and hyaluaron [33, 134, 157–161]. Central to 
these events is the activation of small GTPases, Rac and 
cdc42 [162], which follows ligation of barrier-protective 
receptors and drives cortical actin remodeling and lamelli-
podia formation (Fig. 3). In addition to lamellipodia, there 
is increased actin polymerization at the cell periphery (i.e., 
the cortical actin ring) which occurs with increased force 
driven by the actin-binding proteins cortactin and nmMLCK, 
which also translocate to this spatially defined region. Like 
lamellipodia formation, Rac GTPase-dependent increases 
in the level of cortical actin follow exposure to multiple 
barrier-enhancing levels of SS or to potent barrier-enhanc-
ing agonists [134, 158, 159], including S1P [157, 158], 
HGF [33], ATP [159], simvastatin [158], APC [134], pros-
taglandin E

2
 [163], and oxidized phospholipid 1-palmitoyl-

2-arachidonoyl-sn-glycero-3-phosphochlorine (OxPAPC) 
[160] (Table 1). These observations serve to highlight the 
importance of the cellular location of cytoskeletal proteins 
in maintaining or enhancing EC barrier function, with cort-
actin directly interacting with nmMLCK, an association 
which is increased by p60src tyrosine phosphorylation of 
either cortactin or nmMLCK [26]. Rac activation is in con-
junction with Akt-mediated phosphorylation events known 
to be involved in EC proliferation and migration [164] and 
EC barrier enhancement. Akt-induced phosphorylation of 
the S1P

1
 receptor is important in barrier enhancement pro-

duced by high molecular weight hyaluronan [161, 165].

Fig. 3  Intracellular signals elicited by barrier-protective agonists with 
cortical cytoskeletal linkage to target junctional adhesion components. 
Increased endothelial cell barrier function by barrier-enhancing ago-
nists is depicted. A low concentration (0.5–1  mM) of sphingosine 
1-phosphate (S1P), a platelet-derived lipid growth factor, activates a 
specific G-protein-coupled receptor, leading to profound cytoskeletal 
rearrangement and increased barrier function in  vitro and in  vivo. 

Ligation of S1P
1
 results in activation of the small GTPase Rac, a signal-

ing cascade that results in cytoskeletal rearrangement and increased cor-
tical actin formation with MLCK colocalization. Phosphorylation of 
myosin light chain at the periphery mediates increased linkage to the 
adherens junction, resulting in increased endothelial barrier integrity. 
Also depicted are other barrier-enhancing agonists that result in cortical 
actin formation leading to enhanced endothelial barrier function
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4.1 � Strategies to Reverse Permeability  
and Restore Barrier Integrity

4.1.1 � MLCK Inhibitors

Historically, cyclic nucleotides have represented the sole strategy 
for retarding the edema phase observed in inflammatory lung 
syndromes, possibly via cAMP-dependent protein kinases that 
phosphorylate proteins such as MLCK and inhibit F-actin 
reorganization [153, 154, 166, 167]. We examined nmMLCK 
as a molecular target involved in increase of lung epithelial 
and EC barrier permeability utilizing genetically engineered 
mice and complementary strategies to reduce nmMLCK activ-
ity or expression. Both MLCK inhibition (membrane-permeant 
oligopeptide, PIK) and silencing of nmMLCK expression in 
the lung significantly attenuate LPS-induced lung permeability 
and inflammation. We also targeted pulmonary vessels and 
utilized ACE antibody-conjugated liposomes with nmMLCK 
small interfering RNA (siRNA) as cargo in a murine VILI 
model, again with significant attenuation of VILI. Furthermore, 
nmMLCK−/− knockout mice were significantly protected when 
exposed to a model of severe VILI. Thus, the multidimensional 
cytoskeletal protein nmMLCK represents an attractive target 
for reducing lung vascular permeability and lung inflamma-
tion in the critically ill [20, 168, 169].

4.1.2 � SIP and Closely Related Analogues

S1P is a sphingolipid resulting from the phosphorylation 
of sphingosine, a product of sphingomyelinase catabolism 
of sphingomyelin, catalyzed by sphingosine kinase [170]. 
S1P ligates a family of receptors known as S1P receptors 
(also termed endothelial differentiation gene or Edg recep-
tors) with prominent effects on the vasculature, promoting 
EC mitogenesis, chemotaxis, and angiogenesis. Our earlier 
studies were the first to demonstrate that S1P is the most 
potent EC chemoattractant in serum [171] and to link S1P 
and its receptor ligation to enhanced vascular barrier reg-
ulation and demonstrated that physiological doses of S1P 
induce EC activation, marked cytoskeletal rearrangement, 
and stabilization of lung EC barrier function in vitro [157]. 
This novel function for S1P was of particular relevance to 
clinical medicine as thrombocytopenia is well known to 
be associated with increased vascular leak [172] and 
although the mechanism of this effect was unknown, we 
demonstrated that activated platelets are an important 
source of S1P and directly enhance barrier function via 
S1P

1
 receptor ligation [173]. Platelets contain significant 

levels of sphingosine kinase but reduced levels of sphin-
gosine lyase, thereby serving as enriched sources for the 
barrier-promoting S1P [173]. Ligation by S1P of the bar-
rier-enhancing G

i
-protein-coupled S1P

1
 receptor (also 

known as Edg1) [157, 170, 174, 175] increases Rac 
GTPase activity [157], cytosolic calcium level [176], and 
aggregation of key barrier-regulatory signaling compo-
nents into caveolin-rich lipid rafts, including the Rac 
GTPase target p21-associated Ser/Thr kinase (PAK) and 
its downstream target cofilin, an actin-binding protein 
[177], nmMLCK, cortactin, and c-Abl. PAK and cofilin 
allow polymerization–depolymerization cycling to occur 
and thus facilitate rearrangement of actin from primar-
ily transcytoplasmic to primarily cortical in a spatially 
distinct organization as a cortical actin cellular ring, pro-
cesses which are integral to EC barrier function [157]. 
Increases in MLC phosphorylation within a peripheral 
distribution within the cortical actin ring [157] provide 
strength to this spatially directed scaffolding force and 
enhance cell–cell tethering as we described via atomic 
force microscopy [178]. Immunofluorescence studies 
demonstrated that overexpressed green fluorescent pro-
tein–nmMLCK distributes along cytoplasmic actin fibers, 
but rapidly translocates to the cortical regions of the cell 
after S1P treatment, rapidly catalyzing MLC phosphory-
lation. In addition, confocal microscopy studies showed ECs 
challenged with S1P demonstrate colocalization of 
nmMLCK with the key actin-binding and EC barrier-
regulatory protein cortactin [158]. The interaction of cort-
actin and nmMLCK decreases cortactin-stimulated actin 
polymerization [26, 158] and is essential to S1P barrier 
protection. The p60src is not involved in this pathway, but 
other tyrosine kinases such as c-abl are likely involved 
[158]. S1P-induced cytoskeletal rearrangement produces 
increased linkage of actin to AJ components, as well as 
S1P-induced phosphorylation of focal-adhesion-related 
proteins paxillin and FAK, with translocation of these 
proteins to the EC periphery, further implicating S1P-
induced cell–cell adhesive changes as part of the mechanism 
of S1P-induced barrier enhancement [176, 179].

The potential utility of S1P in restoring lung water balance 
in patients with inflammatory injury was underscored in 
studies involving small- and large-animal models of ALI 
in which S1P provided dramatic attenuation of LPS-mediated 
lung inflammation and permeability [170, 180]. Mice treated 
with S1P had significantly less histological evidence of 
inflammatory changes/lung injury, with decreased neutrophil 
alveolitis on BAL and decreased lung MPO activity [180]. 
Interestingly, mice treated with S1P after intratracheal 
administration of LPS also showed an attenuated renal 
inflammatory response compared with controls, measured 
by tissue MPO activity and Evans blue dye extravasation as 
a measure of capillary leak. S1P also protected against intra-
bronchial LPS-induced ALI and concomitant VILI in a 
canine model, with decreased shunt fraction, decreased BAL 
protein, decreased extravascular lung water, and improved 
oxygenation [181]. Use of a large-animal canine model 
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allowed investigation of regional lung changes in ALI and 
the effect of S1P on these changes. Computed tomography 
scans of animals subjected to LPS/VILI found that animals 
treated with S1P had a dramatic improvement in alveolar air 
content (with decreased edema) in all lung regions [181]. 
Additional in  vivo studies found that S1P protects against 
VILI in a murine model as assessed by Evans blue dye 
extravasation [181].

We have also evaluated a potential role for S1P in amelio-
rating lung ischemia–reperfusion injury, a common sequela 
of lung transplantation, which is characterized by alveolar 
damage, edema, and inflammation in donor lungs and is a 
significant cause of transplant failure. Utilizing a rat model 
of ischemia–reperfusion injury (pulmonary artery ligation 
and reperfusion), we determined that rats pretreated with 
S1P exhibited reduced lung vascular permeability and 
inflammation compared with controls [181]. Lung MPO 
activity, an index of parenchymal leukocyte infiltration, and 
levels of IL-6, IL-1b, and IL-2 were also attenuated in S1P-
treated animals exposed to ischemia–reperfusion injury 
[182]. Together, these findings suggest that S1P may serve as 
an effective permeability-reducing agent in diverse conditions 
which share an element of lung inflammatory burden.

Despite the profound attractiveness of S1P as a therapeutic 
agent which targets the endothelium in high-permeability 
states, S1P has several attributes which limit its potential 
utility as a permeability-reducing strategy. With an affinity 
for ligation of the S1P

3
 receptor, intratracheal S1P has been 

implicated as a cause of pulmonary edema via endothelial/
epithelial barrier disruption [182]. S1P also causes bradycardia 
via ligation of cardiac S1P

3
 receptor [183]. These findings 

generated increased interest in FTY720, a derivative of the 
natural immunosuppressant myriocin [184], and a recently 
described immunosuppressive agent that causes peripheral 
lymphopenia by inhibiting cellular egress from lymphoid tissues. 
FTY720 is structurally similar (but not identical) to S1P and 
is phosphorylated by sphingosine kinase to FTY720-phosphate, 
which is an agonist at S1P receptors [184]. This characteristic 
prompted investigation of the effect of FTY720 on EC barrier 
function. FTY720 did not have superior efficacy compared 
with mycophenolate mofetil in preventing renal transplant 
rejection [185], but it is in phase III clinical trials as an immu-
nosuppressant in multiple sclerosis patients. The clinical 
availability of FTY720 makes it attractive as a potential 
mediator of EC barrier function in patients with ALI. Our 
in vivo studies demonstrated that intraperitoneally adminis-
tered FTY720 protected against intratracheally administered 
LPS in a murine model of ALI, as measured by Evans blue 
dye extravasation [180]. The mechanism of FTY720-induced 
EC barrier enhancement diverges from the mechanism 
described for S1P in several ways, including the delayed 
kinetics of the rise in total energy requirement (TER) com-
pared with S1P [186]. Decreased expression of the S1P1 

receptor prevented an S1P-induced increase in TER but only 
partially altered FTY720-induced TER increases. Unlike 
S1P, FTY720 did not result in threonine phosphorylation of 
the S1P1 receptor, nor did inhibition of phosphatidylinositol 
3-kinase (PI-3-kinase) prevent FTY720-induced EC barrier 
enhancement [186]. Furthermore, FTY720 did not cause the 
increased intracellular calcium level, the MLC phosphoryla-
tion, or the cytoskeletal rearrangement seen in response to 
S1P [186]. Downregulation of Rac or cortactin using 
siRNAs attenuated the barrier-enhancing effect of S1P, but 
not that of FTY720 [186]. Although FTY720 is an S1P 
receptor agonist, its mechanism of barrier enhancement is 
distinct from that of S1P and does not require the S1P

1
 receptor. 

We are currently pursuing novel S1P and FTY analogues for 
use in inflammatory lung injury models [187–189].

4.1.3 � Simvastatin

Another class of prominent barrier-protective agonists under 
intense scrutiny is the statin family of compounds known as 
3-hydroxy-3-methylglutaryl coenzyme A reductase (HMG-
CoA reductase) inhibitors [190]. These drugs inhibit choles-
terol synthesis in the liver, are commonly used in clinical 
practice as lipid-lowering agents, and prevent acute coronary 
events. A plethora of reports have now demonstrated that the 
benefits of statin therapy cannot be entirely attributed to 
decreased serum cholesterol level. We have been interested 
in the effect of statins on endothelial function in ALI as an 
ever-growing body of literature demonstrates improved out-
comes in patients with sepsis who are treated with statins, 
with decreased mortality in bacteremic patients admitted to 
the hospital while on statin therapy [190]. A retrospective 
study in human patients with multiple organ dysfunction 
syndrome found that those receiving statins had significantly 
lower 28-day mortality and hospital mortality compared with 
matched controls not receiving statin therapy [191]. Animal 
studies suggest dramatically improved survival in mice 
treated with simvastatin prior to initiation of sepsis by cecal 
ligation and puncture compared with mice which were not 
pretreated with simvastatin [192].

We have pursued the mechanism of statin action on the 
endothelium and found that simvastatin attenuated thrombin-
induced stress fiber formation, paracellular gap formation, 
and barrier dysfunction [193]. Co-incubation with mevalonate 
(the product of HMG-CoA reductase activity) eliminated the 
protective effect of simvastatin against thrombin-induced EC 
permeability, indicating this effect is due to HMG-CoA 
reductase inhibition and did not involve either intracellular 
increased cAMP levels or increased levels of endothelial 
nitric oxide synthase. Statins inhibit geranylgeranylation of 
small GTPases, essential for GTPase interaction with cell 
membranes [158], and translocation of the small GTPases 
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Rac and Rho to the plasma membrane. EC pretreatment with 
simvastatin prevented thrombin-induced translocation of 
Rho to the plasma membrane [193] and simvastatin was 
found to confer greater protection against thrombin-induced 
barrier dysfunction than Rho inhibition alone. Rac inhibition 
may be protective via decreased activation of NADPH oxidase 
and resultant superoxides that induce barrier dysfunction, and 
this was also found to be important in simvastatin-induced 
EC barrier protection [194]. Simvastatin pretreatment 
resulted in reduced diphosphorylated MLC levels, reduced 
numbers of stress fibers, increased Rac GTPase activation 
[158], cortactin translocation to the EC periphery [158], and 
increased cortical actin and decreased paracellular gap for-
mation after thrombin treatment. Unlike S1P, simvastatin 
does not cause an increased baseline TER [158].

Simvastatin elicits changes in EC gene expression with 
downregulation of caldesmon and the thrombin receptor 
PAR-1, as well as upregulation of integrin b

4
 (known to function 

in cell–cell adhesion), Rac 1, and GEFs, which may regulate 
Rho GTPase activity [158]. The importance of new protein 
synthesis to the barrier protective effect of simvastatin was 
established by the elimination of the protective effect by co-
incubation of ECs with simvastatin and the protein synthesis 
inhibitor cycloheximide [158]. In vivo data from an intratra-
cheal-LPS murine model of ALI support the in vitro finding 
that simvastatin is protective of EC barrier function and 
against markers of inflammatory lung injury compared with 
controls, with decreased BAL neutrophil count and MPO 
activity, decreased vascular permeability, and a marked 
reduction of inflammatory histological changes [195]. 
Investigation of gene expression in lung tissue of mice pre-
treated with simvastatin in this LPS-induced model of ALI 
found that simvastatin caused differential regulation of 
several families of genes, including inflammatory and immune 
response genes, as well as NFkB regulation and cell adhesion 
genes [195]. Simvastatin may prove to be clinically relevant 
in treating ALI, as ALI typically has a prolonged course, and 
treatment with simvastatin along the trajectory of the illness 
may be beneficial. To this end, a blinded, randomized con-
trolled clinical trial of simvastatin in ALI is currently under 
way.

4.1.4 � Adenosine Triphosphate

ATP is found in abundance in the EC microenvironment and 
participates in EC barrier regulation, with constitutive release 
of ATP across the EC apical membrane in basal conditions 
[196, 197]. ATP reduced EC albumin permeability in a con-
centration-dependent manner in ECs from a variety of origins, 
including porcine aorta and pulmonary artery, bovine aorta, 
and human umbilical vascular endothelial cells [198]. The 
mechanism of ATP-induced EC barrier enhancement involves 

G
i
/G

o
 proteins [196] but does not involve adenosine recep-

tors [198], increased PKC activity, or increases in cyclic 
GMP levels [198]. However, ATP-induced decreases in EC 
permeability were found to involve the phospholipase C sig-
naling pathway [198], as well as alterations in EC MLC 
phosphorylation [199, 200]. We demonstrated that ATP produces 
Ca2+- and p42/44 MAPK-independent increases in cell–cell 
interfaces (VE-cadherin staining) and increased thickness 
and continuity of zona occludens (ZO-1) in TJs [196], medi-
ated in part via cAMP-independent activation of protein 
kinase A (PKA). We also noted that ATP produced a biphasic 
effect on MLC phosphorylation, with an initial increase 
followed by a decrease in levels of phosphorylated MLC. 
However, the delayed decrease in the levels of phosphorylated 
MLC was prevented by phosphatase inhibitors, emphasizing 
the importance of G-protein-mediated phosphatase activity 
in the ATP-induced decrease in MLC phosphorylation and 
ATP-induced barrier enhancement [196]. Similar to S1P 
(as well as HGF, APC, etc.), ATP-mediated barrier enhance-
ment required Rac-dependent cytoskeletal rearrangement 
with decreased numbers of central actin stress fibers, 
increased cortical distribution of actin, peripheral MLC 
phosphorylation, and cortactin translocation to the cortical 
actin ring [159]. In addition, a rapid, transient increase in 
MLC diphosphorylation was observed after ATP stimulation, 
with phosphorylated MLC localized at the cell periphery, a 
stark contrast to the central, stress-fiber-associated phospho-
rylated MLC seen in ECs treated with thrombin [159].

As an extension of these in  vitro studies, the effect of 
purinergic stimulation was assessed in a murine model of 
ALI with intratracheally administered LPS. As ATP is rapidly 
degraded intravascularly, the nonhydrolyzable analogue 
ATPgS was used for in vivo studies. Mice given ATPgS intra-
venously concomitant with intratracheal administration of 
LPS were protected from LPS-induced ALI compared with 
controls as assessed by neutrophil infiltration and MPO 
activity [201]. ATPgS also attenuated the lung microvascular 
permeability elicited by LPS, with decreased BAL protein 
and decreased Evans blue–albumin extravasation in mice 
treated with ATPgS compared with controls [201]. ATPgS-
treated animals were also protected from the LPS-induced 
decrease in body weight that was seen in control mice [201]. 
In addition, in vitro studies found that ATPgS alone produced 
an increased TER in ECs and also showed delayed protec-
tion against the reduction in TER caused by LPS [201].

4.1.5 � Hepatocyte Growth Factor

Alterations in vascular permeability are requisite steps 
in the angiogenic process [157, 171]. We were the first 
to report that HGF, a well-known angiogenic factor, like S1P, 
is a potent EC barrier-protective agonist [33] and acts via 
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stabilization of the EC actin cytoskeleton. HGF-mediated 
EC protection from the barrier-disrupting effect of thrombin 
[202] evolves via increased Rac activation involving the Rac-
specific GEF Tiam1 as well as decreased Rho activation with 
increased PAK1 phosphorylation [202]. HGF signals via a 
tyrosine kinase receptor, c-met, and serves to recruit 
CD44v10, a key transactivated receptor for CD44, into cave-
olin-enriched microdomains (CEMs) or lipid rafts [203]. 
In experiments using siRNA, both c-met and CD44 were 
found to be important in HGF-induced increases in EC TER 
[203]. Furthermore, pretreatment of ECs with the CEM-
interfering compound methyl-b-cyclodextran also prevented 
HGF-induced increases in TER [203]. In addition, Rac acti-
vation by HGF was found to require CEM formation, c-met, 
CD44, Tiam1, and dynamin-2 [203]. In a mouse model of 
LPS-induced ALI, HGF was protective against markers of 
lung inflammation, an effect not noted in CD44 knockout 
mice [203]. The signaling mechanism involved in HGF-
induced EC barrier enhancement is complex, with important 
roles for c-met, CD44, and CEM formation. HGF produced 
Rac-dependent increases in the levels of cortical actin, cort-
actin translocation, and cortical levels of phosphorylated 
MLC [33]. Further mechanistic studies found that HGF-
induced EC barrier enhancement critically involves 
PI-3-kinase activity, distinguishing the mechanism of HGF-
induced barrier enhancement from that of S1P [33], with 
important roles for MAPKs (ERK and p38) and PKC in 
HGF-induced EC barrier enhancement [33]. Attention to the 
role of improved cell–cell or cell–matrix adhesion elicited by 
HGF found that HGF produced increased b-catenin localiza-
tion to the EC periphery alongside cortical actin and increased 
association of b-catenin with VE-cadherin [33]. The cell 
signaling effectors of HGF (PI-3-kinase, ERK, p38, PKC) 
were found to converge at phosphorylation of glycogen synthase 
kinase-3b, which regulates the association of b-catenin and 
cadherin, thereby controlling cell–cell adhesion [33].

4.1.6 � Activated Protein C

APC is a serine protease that modulates coagulation and 
inflammation. In 2001, the Food and Drug Administration 
approved Xigris®, or recombinant human APC (rhAPC), also 
known as drotrecogin alfa (activated), for treatment of severe 
sepsis in adults after a randomized trial found a 28-day survival 
benefit in treated patients [204]. Because severe sepsis involves 
ALI and systemic increased vascular permeability, the effect 
of APC on pulmonary EC permeability is intriguing. Interest 
in the effect of the anticoagulant APC on EC permeability is 
also related to the well-described role of the procoagulant 
thrombin in EC barrier disruption. Furthermore, the mecha-
nism of the survival benefit imparted by treatment with rhAPC 
is unclear, as APC given to human subjects in the setting of 

endotoxin infusion improved hemodynamics but did not have 
an anti-inflammatory or antithrombotic effect [205], suggesting 
that a different mechanism may be involved.

We demonstrated that APC prevented and was able to 
reverse thrombin-induced increased permeability [134]. APC 
also increased MLC phosphorylation and the level of actin at 
the EC periphery and decreased the number f central stress 
fibers. The barrier-enhancing effect of APC was found to be 
mediated by Rac1 activation, similar to the barrier-enhancing 
effect of S1P, simvastatin, and HGF [134]. The endothelial 
protein C receptor (EPCR) is critical to APC-induced barrier 
enhancement and MLC phosphorylation. Furthermore, EPCR-
mediated transactivation of the S1P

1
 receptor via PI-3-kinase 

is essential and involves direct interaction between EPCR and 
S1P

1
 receptor [134]. This novel pathway for APC-induced EC 

barrier enhancement may contribute significantly to the survival 
benefit offered by rhAPC in patients with severe sepsis.

More recent work has focused on APC in animal models of 
ALI. Using a rat model of intestinal ischemia–reperfusion injury-
induced ALI, investigators found that APC treatment just prior to 
reperfusion attenuated subsequent pulmonary edema, which was 
accompanied by fewer neutrophils on histological examination 
and a marked improvement in the histological appearance com-
pared with animals that did not receive APC [206]. In addition, 
rats treated with APC prior to intestinal reperfusion had lower 
serum levels of TNF-a, IL-6, and D-dimer compared with controls 
[206]. Investigation of APC in a mouse model of VILI found that 
APC pretreatment was protective against VILI caused by high 
tidal volume ventilation, with mice pretreated with APC exhibiting 
significant reductions in BAL protein and Evans blue dye 
extravasation compared with controls [207].

4.1.7 � Oxidized Phospholipids

Oxidized phospholipids are derived from oxidized low-density 
lipoproteins and have been the focus of much investigation in 
the areas of vascular injury and inflammation [36], with 
increased levels noted in ALI [104]. Oxidized phospholipids 
resulting from the oxidation of OxPAPC activate MAPKs 
ERK, and c-Jun N-terminal kinase, but not p38 or its down-
stream target, Hsp27 [36], and increased the activity of both 
PKC and PKA [36] and Src kinases, processes involved in 
OxPAPC-mediated EC barrier enhancement, whereas Rho, 
Rho kinase, ERK, p38, and PI-3-kinase were not involved 
[208]. Furthermore, OxPAPC resulted in phosphorylation of 
the actin-binding protein cofilin as well as phosphorylation 
of the focal adhesion proteins FAK and paxillin, indicating 
that OxPAPC may affect the EC actin cytoskeleton and cell–
cell adhesions [36]. OxPAPC protects against EC barrier 
dysfunction in  vitro [160, 209] after thrombin and LPS 
stimulation [210]. OxPAPC accentuates peripheral F-actin in 
a unique, ziplike configuration [160, 210, 211] and results in 
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continuous focal adhesions with accumulation of b-catenin 
[210]. The signaling pathways involved in OxPAPC-mediated 
endothelial barrier protection involve Rac and Cdc42 [160], 
the Rac effector PAK1 [160], the upstream Rac/Cdc42-
specific GEFs Tiam1 and bPIX [212], and the actin-binding 
proteins cortactin and Arp3 [212]. OxPAPC was found to 
cause a novel interaction between focal adhesion and AJ 
complexes, a process mediated by association of paxillin and 
b-catenin and dependent upon Rac and Cdc42 [213].

In vivo studies have shown that intravenous OxPAPC 
delivery results in significant attenuation of LPS-induced 
inflammation in a rat model [214] and VILI [209]. OxPAPC 
protects ECs from mechanical-stress-induced injury via 
cytoskeletal rearrangements and changes in Rho and Rac 
activation and remains a potential therapy for the profound 
pulmonary edema associated with inflammatory states.

4.1.8 � Methylnaltrexone

Methylnaltrexone (MNTX) is a peripherally restricted mu 
opioid receptor (mOP-R) antagonist recently approved by 
the Food and Drug Administration for the treatment of post-
operative ileus and also recently found to work synergisti-
cally with 5-fluorouracil and bevacizumab to inhibit 
VEGF-induced pulmonary EC proliferation and migration 
[215]. Antagonists of mOP-R are of interest as potential EC 
barrier-enhancing agents because of the barrier-disruptive 
properties of the mOP-R agonist morphine [216]. Pretreatment 
of human pulmonary microvascular ECs with 0.1 mM MNTX 
was found to protect against the decrease in TER caused by 
the mOP-R agonists morphine and DAMGO and also pro-
tected against the barrier-disruptive effects of thrombin and 
LPS, which act independently of mOP-R [217]. MNTX aug-
ments the barrier-enhancing effect of S1P [217]. EC pretreat-
ment with naloxone, a charged mOP-R antagonist, protected 
against morphine and DAMGO-induced barrier disruption, 
but was not protective against barrier disruption caused by 
thrombin or LPS. These data, together with the observation 
that siRNA targeting mOP-R had a minimal effect on MNTX-
induced protection against thrombin and LPS, suggest that 
the protective effect of MNTX cannot be attributed to mOP-R 
antagonism alone [217]. Further experiments found that 
MNTX confers its barrier-protective effect by inhibiting the 
association of the RhoA-activating GEF p115RhoGEF with 
the S1P

3
 receptor and resultant RhoA activation that is caused 

by barrier-disrupting agents [217]. Complementary in vivo 
experiments found that intravenous administration of MNTX 
after ALI had been established via intratracheal administra-
tion of LPS was protective against ALI at 24 h, as assessed 
by histological examination and BAL protein and TNF-a 
levels [217].

4.1.9 � PBEF Neutralizing Antibodies

As noted already, PBEF is a biomarker in sepsis and sepsis-
induced ALI and intratracheal injection of recombinant 
PBEF into mice results in increased lung inflammation and 
vascular permeability [136, 218], indicating that extracel-
lular PBEF promotes endothelial barrier dysfunction. 
Intracellular PBEF may have a contrasting beneficial 
response in ALI function via effects on cell apoptosis. 
Neutrophils in sepsis patients increase expression of PBEF, 
which promotes cell survival through the enzymatic pro-
cess of NAD biosynthesis via nicotinamide phosphoribo-
syltransferase (Nampt) activity, a feature cancer cells have 
utilized to prevent cell death. The Nampt inhibitor FK-866 
is currently in trials as a cancer drug to promote apoptosis. 
Thus, PBEF therapies are complicated, with intracellular 
PBEF appearing to have beneficial effects in cells by pro-
moting cell survival, whereas extracellular PBEF appears 
to induce inflammatory response. To specifically target 
extracellular PBEF that may induce deleterious cellular 
response, we generated neutralizing antibodies against 
PBEF to act as a molecular sponge for extracellular PBEF 
without altering intracellular PBEF function, which may be 
beneficial for the cell. Using a mouse model of lung injury, 
we demonstrated that the anti-PBEF neutralizing antibod-
ies significantly protected lungs from VILI by reducing the 
availability of extracellular PBEF from sensitizing the lung 
endothelium [136]. The study implicates PBEF as a key 
inflammatory mediator intimately involved in both the 
development and the severity of ventilator-induced ALI 
and demonstrated that anti-PBEF neutralizing antibody has 
potential clinical utility.

5 � Vascular Biomarkers of Acute 
Inflammation

Various molecules participating in the activation of inflam-
mation in ALI serve as indicators for the progression of nor-
mal to pathological biological processes, providing important 
tools to detect disease and support diagnostic and therapeutic 
decisions. Ideally, vascular biomarkers have strong correla-
tion between the presence/absence of a disease state and 
clinical outcome and provide predictive points of interven-
tion to slow or reverse the disease. Furthermore, the indica-
tion of a specific biomarker may allow for customized 
therapies that are more effective in different phases of the 
disease. New research and novel understanding of the molec-
ular mechanisms of ALI have revealed an abundance of 
exciting new biomarkers with high potential value as prog-
nostic tools (Table 2).
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Table 2  Prognostic biomarkers of acute lung injury and acute respiratory distress syndrome

Biomarkers Descriptions Summary/Prognostic Indication References

S1P Sphingolipid; angiogenic factor Low S1P level is predictive of vascular dysfunction [157, 173]
S1P

3
 receptor  

(tyrosine-nitrated)
Sphingolipid receptor Tyrosine nitration of S1P

3
 receptor released from cell surface as 

microparticles is predictive of pathological disease state
[219, 220]

IL-8/IL-8 receptor Cytokine; inflammation IL-8 increase is predictive of death [222, 264]
Protein C Procoagulant activity Low protein C level is predictive of death [264, 265]
Thrombomodulin Cofactor in the thrombin-induced 

activation of protein C in the 
anticoagulant pathway

Reduced plasma thrombomodulin level is predictive of higher 
mortality and worse system dysfunction

[229, 239]

PAI-1 Inhibitor of plasminogen activator  
in plasma

PAI-1 level increase is predictive of death [240, 242]

sICAM-1 Marker of EC activation; adhesion 
molecules

ICAM-1 level increase is predictive of death [249, 264]

IL-6 Cytokine; inflammation IL-6 level increase is predictive of death [255, 256]
PBEF Cytokine; inflammation Secretion of extracellular PBEF upon mechanical stress induces 

pulmonary edema and neutrophil extravasation in mice
[131, 136]

ICAM-1 intercellular adhesion molecule-1, interleukin, PAI-1 plasminogen activator inhibitor-1, sICAM-1 soluble intercellular adhesion molecule-1

5.1 � Sphingosine 1-Phosphate 

The importance of sphingolipids to maintain physiological 
vascular integrity has been well established and thrombocy-
topenia, a clinical condition in which there is a deficient 
number of circulating platelets, is associated with increased 
vascular leak [172] via an unknown mechanism. Activated 
platelets are an important source of S1P and contain significant 
levels of sphingosine kinase but reduced levels of sphin-
gosine lyase, thereby serving as enriched sources for the 
barrier-promoting S1P [173] which directly enhance barrier 
function via S1P

1
 ligation [173].

5.2 � S1P
3
 Receptor (Tyrosine-Nitrated)

Although the role of S1P at physiological concentration is 
critical to maintaining normal endothelial barrier function, the 
differential ligation to S1P receptors has differential responses. 
In contrast to the ligation to S1P

1
, the ligation of S1P

3
 induces 

endothelial barrier dysfunction via activation of Rho-dependent 
actin stress fiber and cell–cell gap formation. Recently, we dis-
covered that culture of ECs challenged with barrier-disrupting 
agents induces tyrosine nitration of S1P

3
 receptors, which are 

released into media in microparticles or exosomes [219, 220]. 
The occurrence of protein tyrosine nitration under disease 
conditions is now firmly established and represents a shift 
from the physiological signaling actions of •NO to oxidative 
and potentially pathogenic pathways. Protein tyrosine nitra-
tion is an irreversible PTM mediated by reactive nitrogen spe-
cies, a process that suggests the regulatory function of proteins 
that undergo phosphorylation in signal transduction cascades 
might be seriously compromised by peroxynitrite-promoted 
nitration. We explored S1P

3
 as a potential biomarker and 

observed from immunoblot analysis of serum from mice 

exposed to various models of vascular injury that they had sig-
nificant tyrosine-nitrated S1P

3
 expression [219, 220]. In addi-

tion, we examined serum from patients with sepsis and ALI 
and discovered tyrosine-nitrated S1P

3
 receptor was correlated 

with disease progression [219, 220]. Therefore, our data indi-
cate tyrosine-nitrated S1P

3
 receptor is released from chal-

lenged ECs in microparticles and serves as a novel biomarker 
for vascular injury in various disease models.

5.3 � IL-8/IL-8 Receptor

The family of PMN chemotactic cytokines, known as the CXC 
chemokines have been described and characterized and include 
IL-8, GRO-a, GRO-b, GRO-g, ENA-78, and granulocyte 
chemotactic peptide (GCP)-2. These chemokines are all pro-
duced by human alveolar macrophages and contain a glutamyl–
leucyl–arginine (ELR) motif that is critical to their neutrophil 
binding and chemotactic functions [221]. IL-8 is present in biologi-
cally significant concentrations in BAL fluid from patients with 
ARDS, tracking PMN concentrations [222]. Although GRO-a 
and ENA-78 concentrations are higher than IL-8 concentra-
tions, IL-8 is the predominant chemoattractant in ARDS BAL 
fluid via its high-affinity binding to CXC chemokine receptors, 
CXCR1 and CXCR2, on human PMNs. Unlike ENA-78, 
GRO-a, GRO-b, and GRO-g with a high-affinity binding only 
to CXCR2, IL-8 and GCP-2 can bind to either receptor with 
high affinity [223]. In the presence of a systemic inflammatory 
process such as severe sepsis, CXCR2 is tonically downregu-
lated and the function of only CXCR1 receptor predominates 
[224]. Thus, of the multiple neutrophil chemotactic factors pro-
duced in humans, there appears to be a small group that is par-
ticularly relevant to patients with ARDS, with IL-8 and its 
cognate receptor CXCR1 being the dominant receptor–ligand 
pair. IL-8 also binds to its circulating high-affinity polyclonal 
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IgG3 and IgG4 autoantibodies naturally [225], therefore 
preventing binding to CXC chemokine receptors on PMNs 
[226]. These autoantibodies are present in lung fluids from 
patients who are at-risk for ARDS as well as in patients after 
the onset of ARDS. The ratio of IL-8 autoantibody:cytokine 
complex  was significantly higher at the onset of ARDS than in 
patients at risk for ARDS. In addition, patients with ARDS 
with an elevated anti-IL-8-autoantibody:IL-8 complex ratio are 
more likely to die than patients with lower concentrations of 
anti-IL-8-autoantibody:IL-8 complex [227]. Thus, the anti-
IL-8-autoantibody:IL-8 complex ratio in lung fluid samples 
was more revealing than lung fluid protein concentrations to 
predict the development of ARDS in patients who were 
at-risk, and also for predicting mortality in patients with 
ARDS [228].

5.4 � Protein C / Thrombomodulin

The protein C pathway is one of the most important regulators 
of blood coagulation and serves as a critical link between 
coagulation and inflammation in sepsis and ALI [229–231]. 
Protein C is a vitamin-K-dependent plasma glycoprotein that 
is synthesized by the liver and circulates as a two-chain bio-
logically inactive zymogen. It is transformed to its active 
form, APC, by the thrombomodulin–thrombin complex on 
the cell surface. APC suppresses further thrombin formation 
by proteolytically inactivating coagulation factors Va and 
VIIIa [232]. The membrane-bound EPCR potentiates this 
activation about 20-fold [233]. Recent evidence suggests 
that, in addition to its anticoagulant effects, APC also has 
anti-inflammatory properties. Thus, the protein C pathway is 
important for the control and modulation of both coagulation 
and inflammation [230].

APC inhibits the production of TNF-a via NFkB activation 
in monocytes and ECs [234], and inhibits neutrophil activa-
tion and chemotaxis through interaction with a cell-surface 
receptor similar to the EPCR [235]. Decreased protein C 
activation on the pulmonary vascular endothelium surface 
may contribute to the widespread microvascular thrombosis 
that occurs in the acutely injured lung and may also be proin-
flammatory and proapoptotic. Administration of APC attenuates 
experimental sepsis-induced lung injury. In human studies, 
an infusion of APC 2 h prior to and 6 h after administration 
of an intravenous injection of LPS prevented LPS-induced 
increase in tissue factor expression and thrombin formation 
in plasma after LPS injection, as well as circulating levels of 
IL-6 or TNF-a, markers of inflammation [236]. Loss of 
thrombomodulin and EPCR from the cell surface results in a 
decreased ability to activate protein C, a phenomenon that 
has been implicated in the pathogenesis of sepsis and lung 
injury. Release of the protein C pathway components throm-

bomodulin and EPCR into the plasma has been reported in 
experimental sepsis models [237]. In clinical studies, plasma 
protein C levels were reduced in patients with severe sepsis, 
with 90% of patients meeting the criteria for acquired protein 
C deficiency. Low levels of protein C were associated with 
ventilator dependency and a higher prevalence of ARDS and 
correlated with higher mortality [238]. Another study dem-
onstrated that patients with severe sepsis varied markedly in 
their ability to generate APC [239]. Modulation of coagula-
tion and inflammation through the activation of protein C is 
a critical mechanism in the pathogenesis of sepsis and ALI 
[231]. Protein C levels and thrombomodulin levels are lower 
early in the course of ALI and reduced plasma protein C and 
thrombomodulin levels are associated with higher mortality 
and more nonpulmonary organ system dysfunction, with the 
combination of low levels of protein C and other predictors 
such as high levels of plasminogen activator inhibitor-1 (PAI-1) 
conferring an even higher risk of mortality. The prognostic 
value of protein C and thrombomodulin was not altered by 
exclusion of patients with coexisting sepsis [229].

5.5 � Plasminogen Activator Inhibitor-1

The balance between activation of coagulation and activation 
of fibrinolysis is likely an important determinant of the 
amount and duration of fibrin deposition in the injured lung, 
and the fibrinolytic system is profoundly altered in patients 
with ALI/ARDS, both systemically and in the alveolar compart-
ment. Plasminogen activator (PA) and PAI-1 regulate fibrin-
olysis, the dissolution of fibrin clots, through modulation of 
the conversion of plasminogen to plasmin, a major fibrin-
olytic enzyme [240]. Upregulation of PAI-1, the major inhibitor 
of fibrinolysis, appears to play a primary role in the shift 
from profibrinolytic to antifibrinolytic phenotypes in a variety 
of cell types, including ECs, indicating a risk factor for ALI 
and sepsis. There are two forms of PA, urokinase-type PA 
(uPA) and tissue-type PA (tPA). uPA is a cell-surface protein 
that is responsible for activating fibrinolysis at the tissue 
level, whereas tPA is a soluble protein that activates intravas-
cular fibrinolysis [241]. Two major endogenous PA inhibitors 
have been identified, PAI-1 and PAI-2, which are pro-
duced by platelets, endothelial, mesothelial, and epithelial 
cells, including those of the lung [241]. PAI-1 is the major 
PA inhibitor in plasma and extravascular fluids and has been 
implicated in the fibrinolytic defect associated with ALI 
[242]. Human lung ECs isolated from patients with ARDS 
constitutively express greater levels of PAI-1 than controls 
with lower fibrinolytic potential as measured by the PA to 
PAI-1 ratio. In limited ALI/ARDS clinical studies, reduced 
fibrinolytic capacity and an increase in uPA and in PAI-1 
activity was noted in ARDS patents, with levels of PAI-1 higher 
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in both pulmonary edema fluid and plasma of ALI/ARDS 
patients, and correlated with mortality in patients with ALI/
ARDS [243, 244]. A variety of strategies are being explored 
to develop inhibitors of PAI-1 that might be of therapeutic 
use in ALI/ARDS or other diseases associated with high levels 
of PAI-1 such as cardiovascular disease [240].

5.6 � Soluble Intercellular Adhesion Molecule-1

Intercellular adhesion molecule-1 (ICAM-1; CD54) is an 
adhesion molecule constitutively expressed in the normal 
lung and is a critical participant in pulmonary innate immu-
nity [245]. Soluble ICAM-1 (sICAM-1) represents a circu-
lating form of ICAM-1 that is constitutively expressed or is 
inducible on the cell surface of different cell lines [246]. 
Structurally, ICAM-1 belongs to the immunoglobulin 
superfamily, serving as a counterreceptor for the leukocyte 
integrin LFA-1. Interaction between ICAM-1, present on 
ECs, and LFA-1 facilitates leukocyte adhesion and migra-
tion across the endothelium; however, sICAM-1 binding to 
LFA inhibits lymphocyte attachment to ECs [247]. sICAM-1 
is found in BAL fluid and the release of sICAM-1 is induced 
by several cytokines and various factors, including IL-1, 
IL-6, TNF-a, interferon-g, and angiotensin II via prote-
olytic cleavage of ICAM-1 or direct transcription from its 
messenger RNA [248]. Studies correlating sICAM-1 levels 
to disease have led to the identification of sICAM-1 as a 
marker for diseases such as viral infections, autoimmune 
disease, atherosclerosis, coronary heart disease, cancers, 
and neurological disorders [249]. Increased BAL sICAM-1 
has been described in adults with granulomatous lung 
diseases such as sarcoidosis, tuberculosis [250], hypersen-
sitivity pneumonitis, and radiation pneumonitis [251], and 
in children exposed to second-hand smoke [252]. 
Importantly, the level of sICAM-1 is increased in pediatric 
ARDS during high-frequency oscillatory ventilation [253] 
and in ALI patients [254].

5.7 � Interleukin-6

IL-6, a well-recognized ALI candidate gene and ALI biomarker 
[255, 256], and is produced by a wide range of cells, including 
ECs, in response to stimulation by endotoxin, IL-1b, and 
TNF-a [257]. IL-6 in the acute-phase response stimulates 
synthesis of C-reactive protein from hepatocytes in vitro and 
in vivo [258]. Elevated levels have been described in acute 
conditions such as burns, major surgery, and sepsis and may 
predict development of multiple organ failure and the 
severity of ARDS of different orgins, such as sepsis and 

acute pancreatitis [255]. The elevation of the level of and 
persistence of circulating IL-6 has been associated with 
increased mortality in critically ill patients with ARDS, sep-
sis, and trauma, and IL-6 concentrations have been shown to be 
elevated in the BAL fluid from patients with established 
severe ALI [259]. Functional polymorphisms in the promoter 
region of the IL-6 gene exist (G174C), with the C allele asso-
ciated with reduced gene promoter activity, lower circulating 
IL-6 concentrations, and a lower mortality rate in patients 
with acute respiratory failure admitted to the ICU [260]. In 
the multispecies ALI studies performed, significant IL-6 
gene expression across all species as well as differential 
region-specific expression in the canine ALI model has been 
noted. All of these facts suggest that the role of IL-6 in ALI is 
complex and IL-6 may have a dual role in the temporal 
response to sepsis and mechanical stress.

5.8 � Pre-B-cell Colony-Enhancing Factor

The PBEF gene is one of a handful of genes with extremely 
high level of expression across the range of ALI models 
used and in human ALI samples. Whereas we were the first 
to report that PBEF is significantly upregulated in the lung 
as well as in models of lung injury [131], the published 
literature on PBEF is quite sparse [261, 262]. This gene 
encodes for a proinflammatory cytokine, originally described 
for its role in the maturation of B-cell precursors, with gene 
expression upregulated in amniotic membranes from 
patients undergoing premature labor, especially with amniotic 
infections. PBEF protein levels were significantly increased 
in both BAL fluid and serum of human, murine, and canine 
ALI models as well as in cytokine- or CS-activated lung 
microvascular endothelium [131, 136]. Triple immunohis-
tochemical staining of canine lungs revealed colocalization 
of increased PBEF expression in lung endothelium, type II 
alveolar epithelial cells, and infiltrating neutrophils, as well 
as upregulation of PBEF expression in inflammatory 
cytokine-stimulated human pulmonary microvascular ECs 
in  vitro [131]. These results support PBEF as a potential 
biomarker in ALI and potentially involved in inflammatory 
lung processes, a notion supported by recent studies in 
patients with sepsis which convincingly demonstrate that 
PBEF inhibits neutrophil apoptosis [131, 136]. Common 
variants in the human PBEF gene are also confirmed to be 
associated with susceptibility to sepsis-associated ALI 
[263]. The T allele in the C-1543T single-nucleotide poly-
morphism in the PBEF promoter region was associated 
with a nearly twofold decrease in the reporter gene expres-
sion. This result is consistent with our observations from 
animal models of ALI, human patients with ALI, and 
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in vitro cell culture experiments, and suggests that higher 
expression of PBEF is implicated in the pathogenesis of 
ALI. These results further suggest that genetically deter-
mined increased PBEF expression contributes to suscepti-
bility to ALI.

6 � Conclusion and Perspectives

Despite decades of frustration in the pursuit of potent barrier-
regulatory therapies, progress has now been made for alle-
viation of the human suffering associated with uncontrolled 
lung vascular leakage and alveolar flooding. Novel biologi-
cally compatible agents have now been identified which can 
preserve or restore vascular integrity, leveraging new insights 
into the mechanisms which govern the integrity of the vascular 
endothelium, particularly the role of cytoskeletal linkages to 
junctional proteins. In addition, several endothelial target 
proteins or protein pathway participants also serve as poten-
tially novel biomarkers in the management of these patients. 
The newly revised scientific armamentarium offers promise 
for the future management of pulmonary edema associated 
with increased vascular leak in the critically ill as well as 
other lung conditions which exhibit strongly dysregulated 
barrier function such as radiation pneumonitis, acute chest 
syndrome in sickle cell patients, and in subacute inflamma-
tory disorders such as asthma. Nearly each barrier-regula-
tory agent discussed herein has been successfully evaluated 
in preclinical models of ALI and one agent, FTY720, is in 
phase III trials, whereas three agents, statins, APC and 
MNTX, are currently approved by the Food and Drug Administration 
for other medical conditions. Thus, the prospects for the 
rapid translation of these lung vascular barrier-protective 
strategies to clinical practice are high. Additional transla-
tional bench-to-bedside genomic and genetic strategy 
approaches combined with dissection of the basic mechanisms 
of endothelial structure/function during inflammation will 
lead to greater specificity in advancing clinical trials of 
agents for the treatment of inflammatory lung injury in a 
manner which represents personalized medicine for critically 
ill individuals.
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