Skip to main content

Advanced Wire Bonding Technology: Materials, Methods, and Testing

  • Chapter
Materials for Advanced Packaging

Abstract

Wirebonding is the most dominant form of first-level chip or integration circuit interconnect method used throughout the world-wide electronics industry today. Many trillion of wirebonds are made annually using automated machines. Wirebonding is reliable, flexible, and low cost when compared to other forms of first-level microelectronic interconnection. Failures are typically at the single digit parts per million level or below. As the number of interconnections on the integrated circuit grows with increased functionality, the bonding pads are becoming much smaller and closer together. Similarly rigid inorganic substrates and package structures have given way to their more flexible organic counterparts. Everywhere in the microelectronic industry new applications, materials, and structures are appearing and challenging the performance and, hence, the dominance of wirebonding.

This chapter focuses on the basic wirebonding methods, the materials, and the testing techniques required to produce high quality wirebonds. It addresses the organic substrate problem, stacked chip bonding, and interconnection over extreme temperature ranges. Reliability of the wirebonded interconnect is explored along with testing and control methods designed to improve bond quality. High frequency bonding and the bonding to soft substrates are given special attention. Wire properties are considered along with the changing bond shapes and sizes as the number of chip’s inputs and outputs increase. Methods for chip bumping using a wirebonding machine are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ASTM Standard Test Method: F458-06 (2006), “Standard Non-Destructive Pull Testing of Wire Bonds,” in Annual Listing of ASTM Standards, ASTM International West Conshohocken, Pennsylvania, USA

    Google Scholar 

  2. ASTM Standard Test method: F459-06(2006), “Standard Test Methods for Measuring Pull Strength of Microelectronic Wire Bonds” in Annual Listing of ASTM Standards ASTM International, West Conshohocken, PA, USA

    Google Scholar 

  3. ASTM Standard Test Method: F1269-06(2006), “Test Method for Destructive Shear Testing of Ball Bonds,” in Annual Listing of ASTM Standards, ASTM International West Conshohocken, Pennsylvania, USA

    Google Scholar 

  4. Banda, C. V., Mountain, D. J., Charles, Jr., H. K., Lehtonen, J. S., Keeney, A. C., Johnson, R. W., Zhang, T., and Hou, Z. “Development of Ultra-thin Flip Chip Assemblies for Low Profile SiP Applications,” in Proc. 37th Int. Microelectronics Symposium, Long Beach, CA, pp. 551–555 (2004)

    Google Scholar 

  5. Banda, C.V., Johnson, R.W., Zhang, T., Hou, Z., and Charles, Jr., H.K. “Flip Chip Assembly of Silicon Die on Flex Substrates” IEEE Trans on Electronic Packaging Manufacturing, Vol. 31, No. 1, pp 1–8, (2008)

    Article  CAS  Google Scholar 

  6. Bardeen, J. and Brattain, W. H. “The Transistor, A Semiconductor Triode,” Physical Review, 74, 230 (1948)

    Article  Google Scholar 

  7. Benoit, J., Chen, S., Grzybowski, R., Lin, S., Jain, R., and McClusky, P., “Wire Bond Metallurgy for High Temperature Electronics” Proc. 4th International High TemperatureElectronics Conference, Albuqyerque, NM, pp 109–113 (1998)

    Google Scholar 

  8. Bischoff, A., Aldinger, F., and Heraeus, W. “Reliability Criteria of New Low Cost Materials for Bonding Wires and Substrates,” in Proc. 34th Electronic Components Conference, New Orleans, Louisiana, USA, pp. 411–417 (1984)

    Google Scholar 

  9. Breach, C., Wulff, W., Ditter, K., Calpito, D. R., Garnier, M., Boillot, V., and Wei, T. C., “Reliability and Failure Analysis of Gold Ball Bonds in Fine and Ultra-fine Pitch Applications”, Proceedings of Semicon Singapore, pp. 1–10 (2004)

    Google Scholar 

  10. Charles, Jr., H. K., Romenesko, B. M., Uy, O. M., Bush, A. G., and Von Briesen, R. “Hybrid Wirebond Testing – Variables Influencing Bond Strength and Reliability,” The International Journal for Hybrid Microelectronics 5(1), 260–269 (1982a)

    Google Scholar 

  11. Charles, Jr., H. K., Romenesko, B. M., Wagner, G. D., Benson, R. C., and Uy, O. M. “The influence of contamination on aluminum-gold intermetallics,” in Proc. Int. Reliability Physics Symposium, San Diego, California, USA pp. 128–139 (1982b)

    Chapter  Google Scholar 

  12. Charles, Jr., H. K., Clatterbaugh, G. V., and Weiner, J. A. “The Ball Bond Shear Test: Its Methodology and Application,” in Gupta D C (ed), Semiconductor Processing, ASTM STP 850, 429–457 (1984)

    Google Scholar 

  13. Charles, Jr., H. K. “Ball Bond Shearing: An Interlaboratory Comparison,” in Proc. International Microelectronics Symposium, Atlanta, GA, pp. 265–274 (1986)

    Google Scholar 

  14. Charles, Jr., H. K. and Clatterbaugh, G. V. “Thin Film Hybrids.,” in Minges M L. (ed), Electronic Materials Handbook, Vol. 1, Packaging, ASM International, Materials Park, Ohio, USA, 313–331 (1989)

    Google Scholar 

  15. Charles, Jr., H. K., Mach, K. J., and Edwards, R. L. “Multichip Module (MCM) Wirebonding,” in Proc. International Symposium on Electronic Packaging Technology (ISEPT ’96), Shanghai, Peoples Republic of China, pp. 336–341 (1996)

    Google Scholar 

  16. Charles, Jr., H. K., Mach, K. J., Edwards, R. L., Lehtonen, S. J., and Lee, D. M. “Wirebonding on Various Multichip Module Substrates and Metallurgies,” in Proc. 47th Electronic Components and Technology Conference, San Jose, California, USA, pp. 670–675 (1997)

    Chapter  Google Scholar 

  17. Charles, Jr., H. K., Mach, K. J., Edwards, R. L., Francomacaro, A. S., Lehtonen, S. J., and DeBoy, J. S. “Wirebonding: Reinventing the Process for MCMs,” in Proc. International Symposium on Microelectronics, San Diego, California, USA, pp. 645–655 (1998)

    Google Scholar 

  18. Charles, Jr., H. K., Mach, K. J., Edwards, R. L., Francomacaro, A. S., Lehtonen, S. J., and DeBoy, J. S. “Multichip Module and Chip-On-Board Wirebonding, in Proc. 12th European Microelectronics Conf., Harrogate, Yorkshire, England, pp. 525–532 (1999)

    Google Scholar 

  19. Charles, Jr., H. K., Mach, K. J., Edwards, R. L., Francomacaro, A. S., DeBoy, J. S., and Lehtonen, S. J. “High Frequency Wirebonding: Its Impact on Bonding Machine Parameters and MCM Substrate Bondability,” in Proc. 34th International Microelectronics Symposium, Baltimore, MD, pp. 350–360 (2001)

    Google Scholar 

  20. Charles, Jr., H. K., Mach, K. J., Lehtonen, S. J., Francomacaro, A. S., DeBoy, J. S., and Edwards, R. L. “High-Frequency Wirebonding: Process and Reliability Implications,” in Proc. 52nd IEEE Electronic Components and Technology Conference, San Diego, CA, pp. 881–890 (2002)

    Google Scholar 

  21. Charles, Jr., H. K., Mach, K. J., Lehtonen, S. J., Francomacaro, A. S., DeBoy, J. S., and Edwards, R. L. “Wirebonding at High Ultrasonic Frequencies: Reliability and Process Implications,” Microelectronics Reliability, Vol. 43, pp. 141–153 (2003)

    Article  Google Scholar 

  22. Charles, Jr., H.K. “The Wirebonded Interconnect: Mainstay for Electronics” Chapter 3 in Micro-and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging, Vol.2. E. Suhir, Y.C.Lee, and C.P. Wong editors, Springer, pp 71–120 (2007)

    Google Scholar 

  23. Chen, G. K. C. “The Role of Micro-Slip in Ultrasonic Bonding of Microelectronic Dimensions,” in Proc. 1972 International Microelectronic Symposium, Washington DC, October 30 – November 1, 1972, pp. 5¬A-1-1 to 5-A-1-9

    Google Scholar 

  24. Ching, T. B. and Schroen, W. H. “Bond Pad Structure Reliability,” 24th Annual Proc. Reliability Physics Symposium, Monterey, CA, pp. 64–70 (1988)

    Google Scholar 

  25. Clatterbaugh, G. V., Weiner, J. A., and Charles, Jr., H. K. “Gold-Aluminum Intermetallics,” Ball Bond Shear Testing and Thin Film Reaction Couples,” IEEE Trans. Components, Hybrids Manufacturing Technology, CHMT-7(4), 349–356 (1984)

    Google Scholar 

  26. Clatterbaugh, G. V. and Charles, Jr., H. K. “The effect of high temperature intermetallic growth on ball shear induced cratering,” IEEE Trans. Components, Hybrids and Manufacturing Technology, CHMT-13, No. 4, pp. 167–175 (1990)

    Google Scholar 

  27. Demmin, J. C. “Ultrasonic Bonding Tools for Fine Pitch, High Reliability Interconnects,” in Proc. Int. Conference on Multichip Modules, Denver, Colorado, USA, pp. 397–402 (1996)

    Google Scholar 

  28. Ehrlich, V. J. and Tsao, J. Y. “Laster Direct Writing for VLSI,” in VLSI Electronics: Microstructure Science, Vol. 7, Academic Press, pp. 129–164 (1983)

    Google Scholar 

  29. Endicott, H. W., James, H. K., and Nobel, F. “Effects of Gold-Plating Additives on Semiconducting Wire Bonding,” Plating and Surface Finishing V, pp. 58–61 (1981)

    Google Scholar 

  30. Evans, K. L., Guthrie, T. T. and Hayes, R. G. “Investigations of the Effect of Thallium on Gold/Aluminum Wire Bond Reliability,” in Proc ISTFA, Los Angeles, CA, pp. 1–10 (1984)

    Google Scholar 

  31. Gehman, B. L. “Bonding Wire for Microelectronic Interconnections,” IEEE Trans. Components Hybrids and Manufacturing Technology, CHMT-3(8), 375–380 (1980)

    Google Scholar 

  32. Geppert, L. “Solid State,” IEEE Spectrum 35(1), 23–28 (1998)

    Article  Google Scholar 

  33. Glaser, A. B. and Subak-Sharpe, G. E. Integrated Engineering: Design Fabrication and Applications, Addison-Wesley, Reading, West Virginia, USA (1979)

    Google Scholar 

  34. Goldfarb, S., “Wire Bonds on Thick Film Conductors”, proc. 21st IEEE Electronics Components Conference, Washington, DC pp 295 – (1971)

    Google Scholar 

  35. Gonzalez, B., Knecht, S., and Handy, H. “The Effect of Ultrasonic Frequency on Fine Pitch Al Wedge Wirebonds,” in Proc. 46th Electronic Components and Technology Conference, Orlando, Florida, USA, pp. 1078–1087 (1996)

    Chapter  Google Scholar 

  36. Gonzalez, C. G., Wessel, R. A., and Padlewski, S. A. “Epoxy-Based Aqueous-Processable Photodielectric Dry Film and Conductive Via Plug for PCB Build-Up and IC Packaging,” in Proc. 48th Electronic Components and Technology Conference, Seattle, Washington, USA, pp. 138–143 (1998)

    Google Scholar 

  37. Harman, G. G. “Wirebonding – Towards 6σ Yield and Fine Pitch,” in Proc. 42nd Electronic Components and Technology Conference, San Diego, California, USA, pp. 903–910 (1992)

    Chapter  Google Scholar 

  38. Harman, G. G., “Metallurgical Interconnections for Extreme High and Low Temperature Environments”, Chapter 4, Micro- and Opto-Electronic Materials and Structures: Physics, Mechanics, Design, Reliability, Packaging: Volume 2, Ephraim Suhir, Y. C. Lee, and C. P. Wong (Editors), Springer, 2007

    Google Scholar 

  39. Harman, G. G. “Wire Bonding to Multichip Modules and Other Soft Substrates,” in Proc 1999 International Conference and Exhibition on Multichip Modules, Denver, Colorado, USA, pp. 292–301 (1995)

    Google Scholar 

  40. Harman, G. G. Wire Bonding in Microelectronics: Materials Processes, Reliability and Yield, McGraw-Hill, New York, New York, USA (1997)

    Google Scholar 

  41. Harman, G. G. and Canon, C. A. “The Microelectronic Wire Bond Pull Test, How to Use It, How to Abuse It,” IEEE Trans. Components, Hybrids and Manufacturing Technology, CHMT-1(3), 203–210 (1978)

    Google Scholar 

  42. Heinen, G., Stierman, R. J., Edwards, D., and Nye, L. “Wire Bond Over Active Circuits,” in Proc. 44th Electronic Components and Technology Conference (ECTC), Washington, D.C., pp. 922–928 (1994)

    Google Scholar 

  43. Hirota, J., Machinda, K., Okuda, T., Shimotomai, M., and Kawanaka, R. “The Development of Copper Wirebonding for Plastic Molded Semiconductor Packages,” in Proc. 35th IEEE Electronics Component Conference, Washington, DC, pp. 116–121 (1985)

    Google Scholar 

  44. Horsting, C. “Purple Plaque and Gold Purity,” 10th Annual Proc. IRPS, Las Vegas, NV, pp. 155–158. (1972)

    Google Scholar 

  45. Ito, S., Kuwamura, M., Akizuki, S., Ikemura, K., Fukushima, T., and Sudo, S. “Solid Type Cavity Fill and Underfill Materials for New IC Packaging Applications,” in Proc. 45th IEEE Electronic Components and Technology Conference, Las Vegas, Nevada, USA (1995)

    Google Scholar 

  46. Jaecklin, V. P. “Room Temperature Ball Bonding Using High Ultrasonic Frequencies,” in Proc. Semicon: Test, Assembly and Packaging, Singapore, pp. 208–214 (1995)

    Google Scholar 

  47. Jellison, J. L. “Effect of Surface Contamination on the Thermocompression Bondability of Gold,” IEEE Trans. Parts, Hybrids and Packaging, Vol. PHP-11, pp. 206–211 (1975)

    Article  CAS  Google Scholar 

  48. Jellison, J.L., “Kinetics of Thermocompression Bonding to Organic Contaminated Gold Surfaces” IEEE Trans. Parks, Hybrids and Packaging, PHP-13, pp 132–137 (1977)

    Google Scholar 

  49. Jellison, J.L., and Wagner, J. A. “role of Surface Contaminants in the Deformation Welding of Gold to Thick and Thin Films” Proc. 28th Electronic Components Conference pp 336–345, (1979)

    Google Scholar 

  50. Johnston, C. N., Susko, R. A., Siciliano, J. V., and Murcko, R. J. “Temperature Dependent Wear-out Mechanism for Aluminum/Copper Wire Bonds,” in Proc. International Microelectronics Symposium, Orlando, FL, pp. 292–296 (1991)

    Google Scholar 

  51. Kilby, J. S. “Invention of the Integrated Circuit,” IEEE Trans. Electronic Devices, ED-23, 648–654 (1976)

    Google Scholar 

  52. Klein, H. P., Durmutz, U., Pauthner, H., and Rohrich, H. “Aluminum Bond Pad Requirements for Reliable Wire Bonds,” in Proc. IEEE Int. Symposium on Physics and Failure Analysis of ICs, Singapore, pp. 44–49. (1989)

    Google Scholar 

  53. Koch, T., Richling, W., Whitlock, J., and Hall, D., “A Bond Failure Mechanism” Proc. 24th Annual Reliability Physics Symposium, Anaheim, CA. pp 55–60 (1986)

    Google Scholar 

  54. Kurtz, J., Cousens, D., and Defour, M. “Copper Wire Ball Bonding,” in Proc. Int. Electronic Packaging Society Conference, New Orleans, Louisiana, USA, pp. 1–5 (1984)

    Google Scholar 

  55. Langenecker, B. “Effects of Ultrasound on Deformation Characteristics of Metals,” IEEE Transactions on Sonics and Ultrasonics, Vol. SU-13, pp. 1–8 (1966)

    Google Scholar 

  56. Levinson, L. M., Eichelberger, C. W., Wognarowski, and Carlson, R. O. “High-Density Interconnect Using Laser Lithography,” in Proc. International Symposium on Microelectronics, Seattle, Washington, October 17–19, 1988, pp. 301–306

    Google Scholar 

  57. Ling, J. and Albright, C. E. “The Influence of Atmospheric Contamination in Copper to Copper Ultrasonic Welding,” in Proc. 34th Electronic Components Conference, New Orleans, Louisiana, USA, pp. 209–218 (1984)

    Google Scholar 

  58. Liu, D., Zhang, C., Graves, J., and Kegresse, T. “Laser Direct-Write (LDW) Technology and Its Applications in Low Temperature Co-Fired Ceramic (LTTC) Electronics,” in Proc. 2003 International Symposium on Microelectronics, Boston, Massachusetts, Nov. 18–20, 2003, pp. 298–303

    Google Scholar 

  59. Lo, George and Sitaraman “G-Helix: Lithography-Based, Wafer-Level Compliant Chip-to-Substrate Interconnect,” in Proc. 54th Electronic Components and Technology Conference, Las Vegas, Nevada, June 1–4, 2004, pp. 320–325

    Google Scholar 

  60. Meisser, C. “Bonding Techniques for Plastic MCMs,” Semiconductor International 14, 120–124 (1991)

    Google Scholar 

  61. Microbonds, Inc., 151 Amber Street, Unit 1 Markham, Ontario, Canada L3R3B3, www.microbonds.com

  62. Miller, L. F. “Controlled Collapse Reflow Chip Joining,” IBM J. Res. Dev., 13, 239–250 (1969)

    Article  CAS  Google Scholar 

  63. Moore, G. E. “VLSI: Some Fundamental Challenges,” IEEE Spectrum, 16(4), 30–37 (1979)

    Google Scholar 

  64. Mundt, R., O’Dell, G., and Ruben, D., “Laser Ribbon Bonding: A novel Interconnect Method” Proc. 37th International Microelectronics Symposium, Long Beach, CA. Session THA12-2 (2004)

    Google Scholar 

  65. Newsome, J.L., Oswalkm R.G., and rodrigues de Miranda, W.R., “Metallurigical Aspects of Aluminum Wire Bonds to Gold Metallization” Proc. 14th Annual Reliability Physics Symposium, Las Vegas, NV, pp 63–74 (1976)

    Google Scholar 

  66. Onoda, H., Itashimoto, K., and Touchi, K. “Analysis of Electromigration-Induced Failures on High Temperature Sputtered Al-Alloy Metallization,” J. Vacuum Science Technology, A(13), 1546–1555 (1995)

    Google Scholar 

  67. Onuki, J., Suwa, M., Iizuka, T., and Okikawa, S. “Study of Aluminum Ball Bonding for Semiconductors,” in Proc. 34th Electronic Components Conference, New Orleans, Louisiana, USA, pp. 7¬12 (1984)

    Google Scholar 

  68. Otsuka, K. and Tamutsa, T. “Ultrasonic Wire Bonding Technology for Custom LSIC with Large Number of Pins,” in Proc. 31st IEEE Electronic Components Conference, Atlanta, Georgia, USA, pp. 350–355 (1981)

    Google Scholar 

  69. Philofsky, E. “Intermetallic Formation in Gold-Aluminum Systems,” Solid State Electronics 13(10), 1391–1399 (1970)

    Article  CAS  Google Scholar 

  70. Prather, J.B. Robertson, S.D., and Slemmons, J.W., “Aluminum Wire Bonding to Gold Thick-Film Conductors” Electronic Packaging and Productions, p. 68 – (1974)

    Google Scholar 

  71. Ramsey, T. H. and Alfaro, C. “The Effect of Ultrasonic Frequency on Intermetallic Reactivity of Au-A1 Bonds,” Solid State Technology, Vol. 34, pp. 37–38, (1991)

    CAS  Google Scholar 

  72. Ravi, K. V. and Philofsky, E. M. “Reliability Improvement of Wire Bonds Subjected to Fatigue Stresses,” in Proc. 10th IEEE Reliability Physics Symposium, Las Vegas, Nevada, USA, pp. 143–149 (1972)

    Chapter  Google Scholar 

  73. Riddle, J. “High Cycle Fatigue (Ultrasonic) Not Corrosion in Fine Microelectronic Bonding Wire,” in Proc. 3rd ASM Conference on Electronics Packaging, Materials, Processes, and Corrosion in Microelectronics, Minneapolis, Minnesota, pp. 185–191 (1987)

    Google Scholar 

  74. Romensko, B. M., Charles, Jr., H. K., Clatterbaugh, G. V., and Weiner, J. A. “Thick-film Bondability: Geometrical and Morphological Influences,” The Int. J. for Hybrid Microelectronics, Vol. 8, pp. 408–419 (1985)

    Google Scholar 

  75. Romenesko, B. M., Charles, Jr. H. K., Cristion, J. A., and Sui, B. K. “Gold-Aluminum Wirebond Inteface Testing Using Laser-Induced Ultrasonic Energy,” in Proc. 50th Electronic Components and Technology Conference, Las Vegas, NV, pp. 706–710 (2000)

    Google Scholar 

  76. Schaller, R. R. “Moore’s Law: Past, Present, and Future,” IEEE Spectrum, 34(6), 53–59 (1997)

    Article  Google Scholar 

  77. Shirai, Y., Otsuka, K., Araki, T., Seki, I., Kikuchi, K., Fujita, N., and Miwa, T. “High Reliability Wire Bonding Technology by the 120 kHz Frequency of Ultrasonic,” in Proc. 1993 International Conference on Multichip Modules, Denver, Colorado, pp. 366–375, (1993)

    Google Scholar 

  78. Spencer, T.H. “Thermocompression Bond Kinetics – The Four Principle Variables” Int. J. hybrid Microelectronics, Vol. 5 No. 1 pp. 404–408 (1982)

    Google Scholar 

  79. Takahashi, T., Rutter, Jr., E. W., Moyer, E. S., Harris, R. F., Frye, D. C., St. Joor, V. L., and Oakes, F. L. “A photo-definable benzocyclobutene resin for thin-film microelectronic applications,” in Proc. Int. Microelectronics Conference, Yokohama, Japan, pp. 64–70 (1992)

    Google Scholar 

  80. Takeda, K., Ohmasa, M., Kurosu, N., Hosaka, J. “Ultrasonic Wirebonding Using Gold Plated Wire onto Flexible Printed Circuit Board,” in Proc. 1994 International Microelectronics Conference, Oamya, Japan, pp. 173–177 (1994)

    Google Scholar 

  81. Tay, A. A. O., Yeo, K. S., Wu, J. H. “The Effect of Wirebond Geometry and Die Setting on Wire Sweep,” IEEE Trans. on Components, Packaging and Manufacturing Technology – Part B 18(1), 201¬209 (1995)

    Article  Google Scholar 

  82. Teverosky, A. “Effect of Vacuum on High Temperature Degradation of Gold/Aluminum Wire Bonds in PEMS”, Proc. 42nd Annual Reliability Physics Symposium, Phoenix, AZ, pp. 547–556 (2004)

    Google Scholar 

  83. Thomas, A. and Berg, H. M. “Micro-Corrosion of Al-Cu Bonding Pads,” in Proc. 23rd IEEE Reliability Physics Symposium, Orlando, Florida, USA, pp. 153–158 (1985)

    Chapter  Google Scholar 

  84. Tsujino, J., Mori, T., and Hasegawa, K. “Characteristics of Ultrasonic Wire Bonding Using High Frequency and Complex Vibration Systems,” in Proc. 25th Annual Ultrasonic Industry Association Meeting, Columbus, Ohio, pp. 17–18, (1994)

    Google Scholar 

  85. Tuckerman, D. B., Ashkenas, D. J., Schmidt, E., and Smith, C. “Die Attach and Interconnection Technology for Hybrid WSI,” 1986 Laser Pantography States Report UCAR-10195, Lawrence Livermore Laboratories (1986)

    Google Scholar 

  86. Tummula, R. R., Rymazewski, E. J., Klopfenstein, A. G. Microelectronics Packaging Handbook, Vols. I, II, & III, Chapman Hall, NY, USA (1997)

    Google Scholar 

  87. Wakabayashi, S., Murata, A., and Wakobauashi, N. “Effects of Grain Refinement in Gold Deposits on Aluminum Wire-Bond Reliability,” Plating and Surface Finishing V, pp. 63–68 (1981)

    Google Scholar 

  88. Weiner, J. A., Clatterbaugh, G. V., Charles, Jr., H. K., and Romenesko, B. M. “Gold Ball Bond Shear Strengths Effects of Cleaning, Metallization and Bonding Parameters,” in Proc. IEEE 33rd Electronic Components Conference. Orlando, Florida, USA, pp. 208–220 (1983)

    Google Scholar 

  89. The Welding Handbook, Vol. 2, eighth edition, “Ultrasonic Welding,” pp. 784–812 (1991)

    Google Scholar 

  90. Yao, Y. F., Lin, T. Y., and Chua, K. H. “Improving the Deflection of Wirebonds in Stacked Chip Scale Packages CSP,” in Proc. 53rd Electronic Components and Technology Conference, New Orleans, LA, pp. 1359–1363 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry K. Charles Ph.D .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Charles, H.K. (2009). Advanced Wire Bonding Technology: Materials, Methods, and Testing. In: Lu, D., Wong, C. (eds) Materials for Advanced Packaging. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-78219-5_4

Download citation

Publish with us

Policies and ethics