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Abstract 

T 
he recent publication of the complete genome sequences of Leishmania major, 
Trypanosoma brucei and Trypanosoma cruzi revealed that each genome contains 
8300-12,000 protein-coding genes, of which -6500 are common to all three genomes, 

and ushers in a new, post-genomic, era for trypanosomatid drug discovery. This vast amount of 
new information makes possible more comprehensive and accurate target identification using 
several new computational approaches, including identification of metabolic "choke-points", 
searching the parasite proteomes for orthologues of known drug targets, and identification of 
parasite proteins likely to interact with known drugs and drug-like small molecules. In this 
chapter, we describe several databases (such as GENEDB, BRENDA, KEGG, METACYC, the THEM- 
PEUTIC TARGET DATABASE, and CHEMBaNK) and algorithms (including PATHOLOGIC, PATHWAY 
HUNTER TOOL, AND AUTODOCI0 which have been developed to facilitate the bioinformatic 
analyses underlying these approaches. While target identification is only the first step in the 
drug development pipeline, these new approaches give rise to renewed optimism for the dis- 
covery of new drugs to combat the devastating diseases caused by these parasites. 

Traditionally, drug discovery in the trypanosomatids (and other organisms) has proceeded 
from two different starting points: screening large numbers of existing compounds for activity 
against whole parasites or more focused screening of compounds for activity against defined 
molecular targets. Most existing anti-trypanosomatids drugs were developed using the former 
approach, although the latter has gained much attention in the last twenty years under the 
rubric of "rational drug design". Until recently, one of the major bottlenecks in 
anti-trypanosomatid drug development has been our ability to identify good targets, since only 
a very small percentage of the total number of trypanosomatid genes were known. That has 
now changed forever, with the recent (July, 2005) publication of the "Tritryp" (Trypanosoma 
brucei, Trypanosoma cruzi and Leishmania major) genome sequences. TM This vast amount of 
information now makes possible several new approaches for target identification and ushers in 
a post-genomic era for trypanosomatid drug discovery. 

Tritryp Genome Content 
According to the latest data released at GeneDB (http://www.genedb.org), the haploid ge- 

homes of T. brucei, T. cruzi and L. major encode 9878, - 12000, and 8373 likely protein-coding 
genes (and pseudogenes), respectively (see Table 1). The gene densities of the two trypanosome 
genomes are quite similar (300-400 genes/Mb) and somewhat higher than that of L. major 
(250 gene/Mb). The average coding sequence (CDS) is slightly larger in Leishmania, as a result 
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Table I. Tritryp genome statistics 

T. brucei T. cruzi t. major 

Protein-coding genes 8599 a -10,000 b 8302 
Pseudogenes 1279 ~2000 c 71 
Average CDS length (bp) 1,592 1,51 3 1,901 
Average inter-CDS size 1,279 1,024 2,045 
Gene density (gene/Mb) 317 385 252 
Function known 5% n.d. d 4% 
Function inferred 38% 43% 28% 
Hypothetical, conserved 51% 48% 56% 
Hypothetical, species-specific 6% 9% 8% 
Orthologues in all Tritryps 73% 54% 80% 
Tb+Tc only 5% 4% - 
Tb+Lm only 1% - 1% 
Tc+Lm only - 4% 6% 
Species-specific 21% 38% 13% 

a) Excludes 612 genes annotated as hypothetical protein, unlikely, b) Total number in both haplotypes 
is 18,980. c) Number in both haplotypes is 3,590. d) Not determined. 

of small sequence insertions relative m the trypanosomes, but the lower gene density in Leish- 
mania is mostly explained by its larger inter-CDS regions. Each species contains a number of 
gene families of varying size. Predicted functions have been ascribed to -40% of the 
protein-coding genes, but this has been confirmed experimentally for only -5% of the pro- 
teins. Most of the remaining genes encode conserved hypothetical proteins, of which slightly 
more than half are found only in trypanosomatids. Interestingly, -2-3% of the Tritryp proteins 
are related to those found in prokaryotes but not other eukaryotes. At least some of these 
appear to have arisen from horizontal gene transfer, and may represent excellent candidates for 
drug targets. The Tritryp genomes display a remarkable degree of synteny, with -75% of the 
genes in L. major having orthologues in both other species and >90% of these occurring in the 
same genomic context (see Table 1). The proteins within this Tritryp "core" proteome exhibit 
an average 57% identity between T. brucei and T. cruzi, and 44% identity between L. major 
and the two other trypanosomes, reflecting the expected phylogenetic relationships. 5'6 Inter- 
estingly, substantially fewer orthologues are shared only between L. major and T. brucei than 
between L. major and T. cruzi, perhaps reflecting the common intracellular environment of 
their mammalian stages. 

However, all three genomes contain a significant number of species-specific genes, which 
account for .-21% and 38% of the protein-coding genes in T. brucei and T. cruzi, respectively, 
but only -13% of the L. major genes. These species-speciflc genes (and pseudogenes) mostly 
encode large families of surface proteins, exemplified by the variant surface glycoproteins (VSGs) 
and Procyclic Acidic Repetitive Proteins (EP/PARP/procyclin) of T. brucei; the trans-sialidases, 
dispersed gene family protein 1 (DGF-1), mucins, and mucin-associated surface proteins 
(MASPs) of T. cruzi; and the amastins andpromastigote surface antigens (PSA-2) of L. major. 
In addition to these species-speciflc genes, all three species demonstrate differential paralogous 
gene expansion or contraction, with the ESAG4 adenylate/guanylate cyclases and leucine-rich 
repeat proteins being over-represented in T. brucei; GP63 surface proteases and recombination 
hot spot (RHS) proteins in T. cruzi; and mitochondrial carrier protein, ATP-Binding Cassette 
(ABC) transporters, and Heat Shock Protein (HSP) 90 gene families in L. major. Many of these 
species-speciflc genes or paralogous expansions occur in telomeric and sub-telomeric gene dus- 
ters, possibly reflecting similar strategies used for immune evasion. 
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Transcription and RNA processing in the trypanosomatids is quite different from that in 
other eukaryotes, 7 with unique or unusual processes such as large polycistronic gene dusters, 8-1~ 
RNA polymerase I-mediated transcription of some protein-coding genes, 11'12 and 
trans-splicing. 13 While annotation of the Tritryp genomes uncovered most of the expected 
RNAP polymerase subunits, there was a dearth of transcription factors normally involved in 
regulation of transcription initiation by other eukaryotes. 3 However, recent experiments have 
identified several highly divergent transcription factors in T. brucei, 14-17 suggesting that Tritryp 
transcription initiation may represent an ancestral, less sequence-specific, mechanism mosdy 
replaced in other eukaryotes by the archetypal TATA-containing promoters. Conversely, the 
paucity of Tritryp genes encoding transcriptional regulators is offset by an abundance of proteins 
with RNA binding motifs, 18 consistent with their reliance on post-transcriptional models of 
gene regulation. 19 

DNA replication in trypanosomatids also appears to differ significandy from that in higher 
eukaryotes, with only one of the six subunits typically found in the eukaryotic replication 
origin complex being identified. 2 There are also substantial differences in the mitochondrial 
replication machinery, since the complexity of the kinetoplast DNA (the trypanosomatid equiva- 

�9 20 lent of a mitochondrial genome) structure dictates an unusual replication mechanism. 
Bioinformatic analyses of the Tritryp genomes suggests that they lack several classes of sig- 

naling molecules found in other eukaryotes, including serpentine receptors, heterotrimeric G 
proteins, most classes of catalytic receptors, SH2 and SH3 interaction domains, and regulatory 
transcription factors, but that they do possess a large and complex set of protein kinases and 
protein phosphatases. 2'21 However, the distribution of protein kinase classes differs from that 
in other organisms; with no tyrosine kinases (other than dual specificity kinases), receptor 
kinases or TKL and RGC group kinases. Since the trypanosomatids have complicated life 
cycles in different hosts, it is likely that these kinases play important roles in regulating their 
response to changes in these different environments. 

Computational Approaches for Drug Target Selection 
The experience gained by the pharmaceutical industry during the last few decades of drug 

development has lead to the postulation of a number of selection criteria for successful drug 
22 target identification. In the context of the trypanosomatids, these criteria include selectivity 

(i.e., the parasite target is absent from, or substantially different in, the host); "druggability" 
(the target structure has a small molecule-binding pocket); suitable biochemical properties (the 
target has a low turnover rate and/or catalyzes a rate-limiting step within a pathway); validation 
(the target is essential for growth and/or survival in the mammalian stage of the parasite lifecycle); 
"assayability" (specific, inexpensive and high-throughput screens are available using in vitro 
expressed target); and low potential for development of drug resistance (absence of different 
isoforms or alleles and/or biochemical "bypass" reactions). With these criteria in mind, several 
bioinformatic approaches have been proposed, which take advantage of the availability of the 
complete genome sequences described above to accelerate progress in developing effective clinical 
interventions for the important diseases caused by these parasites. 

Analysis of the Tritryp genomes has provided a comprehensive view of the parasites' meta- 
bolic potential by identifying numerous common and species-specific metabolic and transport 
processes. Manual examination of metabolic maps identified a number of pathways that ap- 
pear to be especially amenable to potential chemotherapeutic intervention; including glycoly- 
sis, the electron transport chain, the urea cycle, the glyoxylase pathway and associated 
trypanothione metabolism, glycosylphosphatidylinositol (GPI) anchor biosynthesis, fatty acid 
biosynthesis, as well as the ergosterol and isoprenoid biosynthetic pathway. 1 Since the particu- 
lars of target identification and drug development for each of these pathways (and others) have 

23 26 been described in detail in several of the accompanying chapters and elsewhere, - they will 
not be further explored here. Instead, several different computational attempts to catalogue 
metabolic pathways and identify "choke-points" will be described. 
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Databases of Tritryp Metabolism 
BRENDA (BRaunschweig ENzyme DAtabase) is a comprehensive collection of enzyme and 

metabolic information (http://www.brenda.uni-koeln.de), including Enzyme Commission (EC) 
classification and nomenclature, reaction and specificity, function and structure, isolation and 
stability, as well as links to primary literature references. The database is now based on a controlled 
vocabulary and ontology for some information fields, and search tools include EC and 
taxonomy-tree browsers, a chemical substructure search engine for ligand structure, and a 
thesaurus for ligand names. BRENDA contains more than 100,000 enzymes representing 4060 
different EC numbers from about ~ 10000 different organisms. There are currently (as of 
September, 2006) 842 entries for T. brucei, 751 for T. cruzi and 607 for L. major. 

KEGG (Kyoto Encyclopedia of Genes and Genomes) is a suite of databases and associated 
software, designed to integrate current knowledge of genes and proteins (GENES database), 
chemical compounds and reactions (LIGAND), metabolic, regulatory and interaction networks 
(PATHWAY), and ontologies (BRI~). Biological systems are represented in KEGG by nested graphs, 
which are used for pathway reconstruction and functional inference, and line graphs, which 
form the basis for integrating genome and chemical information with the networks. The BruTE 
database provides the pathway reconstruction through a series of functional hierarchies and 
represents the logical foundation for the KEGG project. KEGG maintains a gene catalogue of 
sequenced27.~lenomes and maps them onto 301 manually drawn and curated reference 
pathways. - Currendy, there are 83, 90, and 89 entries in the PATHWAY database for T. brucei, 
T. cruzi and L. major, respectively, mostly describing metabolic pathways. 

The BIoCYc collection of Pathway/Genome Databases (PGDBs) provides electronic refer- 
ence sources on the pathways and genomes of more than 200 different organisms (http:// 
biocyc.org). The databases within the BIoCYc collection are organized into tiers according to 
the amount of manual review and updating they have received. Tier 1 PGDBs are created 
through intensive manual efforts, and receive continuous updating. EcoCyc, which describes 
Escherichia coli K-12, is the only organism-specific Tier 1 database. Tier 2 PGDBs are 
computationally generated using PATHOLOGIC software, 32'33 and have undergone moderate 
amounts of review and updating. There are currently 12 databases in Tier 2, including 
HUMANCYC and PIASMOCYC (which describes the malaria parasite, Plasmodium falciparum). 
Tier 3 databases are computationally generated by the PATHOLOGIC program, and have under- 
gone no review and updating. ~ There are 191 PGDBs in Tier 3, representing mostly bacterial 
genomes. The individual BIoCYc web-sites can be used to visualize single or multiple meta- 
bolic pathways, including a complete metabolic map of the organism. An OMICS VIEWER can 
be used to analyze gene expression, proteomics, or metabolomics data to produce animated 
views of time-course gene-expression experiments. There are currently no BIoCYc PGDBs for 
any of the trypanosomatid genomes, although it should be relatively straightforward to gener- 
ate Tier 3 databases using the PATHOLOGIC software. 32 Other programs are also available for 
genome-scale reconstruction of metabolic networks. 35-38 However, since this process is largely 
dependent on sequence-based homology searches to identify the enzymes and the Tritryp ge- 
nomes are quite divergent from other eukaryotes, considerable manual curation will probably 
be necessary to obtain truly accurate representations of the metabolic networks in these organisms. 

While most of the individual PGDBs within BIoCYc represent species-specific databases, 
METACYC (http://metacyc.org) is a collection of metabolic pathways and enzymes from more 
than 240 organisms (mostly bacteria and plants). The goal of METACYC is to represent every 
experimentally elucidated metabolic pathway, reaction, and chemical compound, as well as the 
genes encoding the enzymes that catalyze the reactions involved. 39 As well as being used as a 
reference source to look up individual facts, METACYC facilitates computational studies of the 
metabolism, such as design of novel biochemical pathways for biotechnology, studies of evolu- 
tion of metabolic pathways, and simulation of metabolic pathways. Additionally, desktop soft- 
ware is available for comparing the overall metabolic maps, specific pathways and genomic 
maps of two organisms. 
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Identification of Metabolic "Choke-Points" 
Careful manual examination of a metabolic pathway can identify metabolic "choke-points", 

i.e., the enzyme(s) which is (are) uniquely necessary to produce a critical metabolite. Obvi- 
ously, choke-points in pathways that result in metabolites critical for parasite survival would 
make excellent potential targets for development of novel anti-trypanosomatid drugs. The PATH- 
WAY HUNTER TOOL (http://www.pht.uni-koeln.de) uses an extended form of graph theory (in 
which enzymes are represented by edges between nodes representing metabolites) to identify 
choke-points and rank them according to their "load". 4~ Load is defined as the ratio of the 
number of shortest paths through the enzyme and nearest neighbors attached to it, compared 
to the average values for these properties in the entire network. Comparison of pathogen 
(trypanosomatid) and host (human) metabolic networks could be used to identify highly ranked 
choke-points that are unique to the parasite or are ranked much lower in the host. 

Another computational approach for identification of metabolic enzymes as drug targets 
involves the concept of minimal cut sets, which are defined as the minimal set of reaction in a 
network whose inactivation will definitively lead to a failure in a particular network fimction. 42 
Screening parasite metabolic networks for all possible minimal cut sets and identification of 
those which are small (i.e., contain few enzymes) and not present in the host could serve to 
identify potential drug targets. 

The approaches oudined above are designed to identify targets that meet only some of the 
criteria outlined at the beginning of this section; namely they have suitable biochemical 
properties, are likely to be essential for the parasite, and are sufficiently different from any host 
homologue. However, alternative approaches seek to make use of the finding that successful 
drugs have specific structural and physicochemical properties that allow them to be efficacious, 
bioavailable, and safe. These properties are exemplified by Lipinski's so-called "rule of five". 43 
This has lead to the concept of"druggable" proteins, based on their ability to bind potentially 
effective drug-like small molecules. 44--~6 Thus, it makes sense to search the Tritryps genomes for 
proteins that are likely to meet these criteria. Two different approaches have been proposed for 
developing computational solutions to this problem: searching the genome for proteins with 
similar properties to known drug targets in other organisms (primarily humans) and direct 
interrogation of the parasite proteins for their likelihood to bind drug-like chemicals. 

Searching for Parasite Orthologues of Known Drug Targets 
The Therapeutic Target Database (TTD) (http://xin.cz3.nus.edu.sg/group/cjttd/ttd.asp) 

represents a comprehensive and publicly available attempt to catalogue information about all 
the currently known protein and nucleic acid targets described in the literature. 46'47 The database 
also contains information about the drugs and ligands directed at these targets, as well as 
corresponding disease conditions. This database currently contains 153 5 targets and 2107 drugs/ 
ligands, including 19 entries listing potential anti-trypanosomatid use. The most simplistic 
approach for searching the Tritryp genomes for potential targets similar to these existing targets 
would be to carry out BLASTP or PsIBLAST searches of the Tritryp protein databases to identify 
parasite proteins with significant sequence similarity to those in the TTD. The resulting list of 
parasite proteins would need to be subsequently winnowed down by removing those that are 
too similar to the human orthologues and/or are similar to proteins involved in more than two 
pathways in humans, since drugs against these are likely to have deleterious effects on the 
human host. However, given what we know about the imprecise nature of the relationship 
between protein sequence and structure, it is likely that this method will have a significant false 
negative rate (i.e., it will miss many potentially useful targets because they won't have suf~cient 
sequence similarity). Statistical learning methods, such as support vector machines (SVM) and 
neural networks, have recently enjoyed considerable success for prediction of protein structure 
and may be useful for identifying targets missed by simple BLAST searching. A SVM method 
has been used to screen the human and HIV genome for druggable proteins, with a promising 
degree of accuracy. 46'48'49 Similar methods could be used to screen the Tritryp genomes. 
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Matching Drug-Like Chemicals to Parasite Proteins 
Algorithms such as AtyroDocK 5~ have been used for some time to predict small molecules 

that will potentially flU protein ligand-binding pockets, as a first step in rational drug design. 
This process has been reversed to some extent by using docking software with integrated mo- 
lecular dynamics simulation to predict which drugs are likely to bind (and inhibit) proteases 
from human coronavirus, 51 cytomegalovirus, 52 and human immunodeficiency virus (HIV). 53 
A recent publication describes the use of this method to screen 2500 compounds in the 
CHSMBANK database (http://chembank.broad.harvard.edu) against 13 proteins from Plasmo- 
dium falciparum whose structure had been determined by X-ray crystallography.54 This ap- 
proach found that the K/s predicted for three existing anti-malarial drugs compared well with 
their known values and that their predicted inhibitory activity ranked in the top 5th percentile 
of all tested drugs. Another 20 drugs were predicted to have multi-target activity, i.e., they 
showed high affinity with two or more proteins. Multi-target drugs are attractive because they 
are less likely to encounter problems with development of drug resistance. It should be possible 
to screen the Tritryp proteome for multi-target drugs using a similar approach. Obviously, one 
major constraint is the availability (or lack thereof) of trypanosomatid proteins with known 
structure. Currently, the protein structure database (PDB) contains 79 nonredundant structures 
from the genera Leishmania or Trypanosoma. However, this number has been increasing rapidly 
over the last few years due to the efforts of the Structural Genomics of Pathogenic Protozoa 
(SGPP) consortium (http://www.sgpp.org) and is likely to increase further in the near future. 

Conclusion 
The recent completion of the Tritryp genome sequencing project provides an unprecedented 

opportunity for development of novel anti-trypanosomatid chemotherapeutic agents. The iden- 
tification of more than 8000 new protein-coding genes, many of which are shared between the 
Leishmania and Trypanosoma genera, vastly expands the potential drug targets available for 
investigation. In fact, the situation has gone from a relative dearth of useful targets to an em- 
barrassment of riches, with far more potential targets available than can possibly be studied 
in detail. In this chapter, we have described several different computational approaches that 
should be useful in reducing this smorgasbord of genes to a manageable number of high-value 
targets, which will form the basis of detailed biological and pharmacological investigation. Of 
course, target identification is only the first stages in the lengthy and expensive process of drug 
development; with steps such as target validation, lead identification and optimization, as well 
as preclinical pharmacological screening, necessary before a potential drug can enter clinical 
trials. Nevertheless, these bioinformatic methods hold great promise in being able to identify 
targets (and potential lead compounds in some cases) which have a higher probability of suc- 
cessful drug development than traditional methods. While only time will reveal the validity of 
this promise, we hope that this advent of the post-genomics era for trypanosomatid biology 
heralds a renaissance in the discovery of much needed new drugs for the devastating diseases 
caused by these parasites. 
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