Skip to main content

The number one technique for medical imaging and non-destructive evaluation (NDE) is ultrasound. This is due to its non-ionizing character, low cost and to the fact that images and measurements contain data linked to several physical and structural parameters of the explored media.

The overall performance of an ultrasonic system is mainly determined by the transducer characteristics. Consequently, each application having its specific requirements, very different transducers need to be designed. Furthermore, the measurement techniques and imaging modalities are in constant evolution, requiring higher performance and versatility of the transducers. Not only must frequency bandwidth and sensitivity be increased, but transducers must also be able to operate in various modes such as pulse-echo (classical A, B or C modes), burst (Doppler or other velocity measurements) or harmonic reception (non-linear acoustics). Innovations such as ultrasound stimulated elastography and combination of different techniques such as ultrasound and MRI or ultrasound therapy and imaging are only possible if specific transducers are developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arditi M, Foster FS, Hunt JW (1981) Transient fields of concave annular arrays. Ultrasonics Imag-ing, vol. 3, pp. 37-61.

    Article  Google Scholar 

  • Assaad J, Dubus B, Hamonic B, Decarpigny JN, Debus JC (1991) Finite element modelling of ultrasonic transducers using the ATILA code. Proceedings of Ultrasonics International, pp. 371-374.

    Google Scholar 

  • Banno H (1983) Recent development of piezoelectric ceramic products and composites of synthetic rubber and piezoelectric ceramic particles. Ferroelectrics, vol. 50, pp. 329-338.

    Google Scholar 

  • Bove T, Wolny W, Ringaard E, Pedersen A (2001) New piezoceramic PZT-PNN material for med-ical diagnosis applications. Journal of the European Ceramic Society, vol. 21, pp. 1469-1472.

    Article  Google Scholar 

  • Desilets CS, Fraser JD, Kino GS (1978) The design of efficient broadband piezoelectric transduc-ers. Ultrasonics, vol. 25, pp. 115-125.

    Google Scholar 

  • Desmare R, Tran-Huu-Hue LP, Levassort F, Lethiecq M (1999) Modeling of multilayer piezoelec-tic structures. Ferroelectrics, vol. 224, pp. 623-630.

    Article  Google Scholar 

  • Ferroperm Piezoceramics (2007) www.ferroperm-piezo.com.

  • Gentry KL, Zara JM, Bu S, Eom C, Smith SW (2000) Thick film sol PZT transducer using dip coating. IEEE Ultrasonics Symposium Proceedings, vol. 2, pp. 977-980.

    Google Scholar 

  • Goldberg RL, Smith SW (1994) Multilayer piezoelectric ceramics for 2D array transducers. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 41, pp. 761-771.

    Article  Google Scholar 

  • Hashimoto KY, Yamaguchi M (1986) Elastic, piezoelectric and dielectric properties of composite materials. IEEE Ultrasonics Symposium Proceedings, pp. 697-702.

    Google Scholar 

  • IEEE (1987) Standard on Piezoelectricity ANSI/IEEE Std.

    Google Scholar 

  • Inoue T, Ohta M, Takahashi S (1987) Design of ultrasonic transducers with multiple acoustic matching layers for medical application. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 34, pp. 8-16.

    Article  Google Scholar 

  • Jensen JA (2007) www.es.oersted.dtu.dk/staff/jaj/field.

  • Kawai M (1969) The piezoelectricity of polyvinilydene fluoride. Japanese Journal of Applied Physics, vol. 8, pp. 975-976.

    Article  Google Scholar 

  • Kino GS (1987) Acoustic waves: devices imaging and analog signal processing: processing. Prentice-Hall, Englewood Cliffs, New Jersey.

    Google Scholar 

  • Kobayashi M, Olding TR, Zou L, Sayer M, Jen CK, Rehman AU (2000) Piezoelectric thick film ul-trasonic transducers fabricated by spray technique. IEEE Ultrasonics Symposium Proceedings, vol. 2, pp. 985-989.

    Google Scholar 

  • Kossof G. (1966) The effects of backing and matching on the performance of piezoelectric ceramic transducers. IEEE Transactions on Sonics and Ultrasonics, vol. 13, pp. 20-30.

    Google Scholar 

  • Krimholtz R, Leedom DA, Matthei GL (1970) New equivalent circuit for elementary piezoelectric transducers. Electronic letters, vol. 38, pp. 338-339.

    Google Scholar 

  • Kuwata J, Uchino K, Nomura S (1981) Phase transitions in the Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 system. Ferroelectrics, vol. 37, pp. 579-582.

    Google Scholar 

  • Kuwata J, Uchino K, Nomura S (1982) Dielectric and piezoelectric properties of 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 single crystals. Japanese Journal of Applied Physics, vol. 21, pp. 1298-1302.

    Article  Google Scholar 

  • Kwok KW, Chan HLW, Choy CL (1997) Evaluation of the material parameters of piezoelectric materials by various method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 44, pp. 733-742.

    Article  Google Scholar 

  • Levassort F, Lethiecq M, Certon D, Patat F (1997) A matrix method for modeling electroelastic moduli of 0-3 piezo-composite. IEEE Transactions on Ultrasonics, Ferroelectrics, and Fre-quency Control, vol. 44, pp. 445-452.

    Article  Google Scholar 

  • Levassort F, Lethiecq M, Millar CE, Pourcelot L (1998) Modeling of highly loaded 0-3 piezoelec-tric composites using a matrix method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 45, pp. 1497-1505.

    Article  Google Scholar 

  • Levassort F, Tran-Huu-Hue LP, Lethiecq M, Bove T, Wolny W (2000) New piezoceramics films for high resolution medical imaging applications. IEEE Ultrasonics Symposium Proceedings, vol. 2, pp. 1125-1128.

    Google Scholar 

  • Levassort F, Tran-Huu-Hue LP, Holc J, Bove T, Kosec M, Lethiecq M (2001) High performance piezoceramic films on substrates for high frequency imaging. IEEE Ultrasonics Symposium Proceedings.

    Google Scholar 

  • Levassort F, Filoux E, Lou-Møller R, Ringgaard E, Lethiecq M, Nowicki A (2006) Curved piezo-electric thick films for high resolution medical imaging. Proceedings of IEEE International Ultrasonics Symposium, pp. 2361-2364.

    Google Scholar 

  • Levassort F, Holc J, Ringgaard E, Bove T, Kosec M, Lethiecq M (2007) Fabrication, modelling and use of porous ceramics for ultrasonic transducer applications. Journal of Electroceramics, vol. 19, pp. 125-137.

    Google Scholar 

  • Lukacs M, Olding T, Sayer M, Tasker R, Sherrit S (1999) Thickness mode material constants of a supported piezoelectric film. Journal of Applied Physics, vol. 85, pp. 2835-2843.

    Article  Google Scholar 

  • Millar CE, Wolny WW, Pardo L (1992) Field dependence of the electromechanical properties of fine grained hydrothermally process lead titanate ceramics. IEEE ISAF Proceedings, pp. 59.

    Google Scholar 

  • Millar E, Pedersen L, Pardo L, Ricote J, Alemany C, Jimenez B, Feuillard G, Lethiecq M (1994) Effect of processing on surface acoustic wave properties of modified lead titanate ceramic. IEEE ISAF Proceedings, pp. 138-141.

    Google Scholar 

  • Najamura K, Kawamura Y (2000) Orientation dependance of electromechanical coupling factors in KnbO3. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 47, pp. 750-755.

    Article  Google Scholar 

  • Newnham RE (1986) Composite electroceramics. Ferroelectrics, vol. 68, pp. 1-32.

    Google Scholar 

  • Newnham RE, Skinner DP, Cross LE (1978) Connectivity and piezoelectric-pyroelectric compos-ites. Mat. Res. Bull., vol. 13, pp. 525-536.

    Article  Google Scholar 

  • Nguyen TN, Lethiecq M, Levassort F, Pourcelot L (1996) Experimental verification of elastic prop-erties using scattering approximation in (0-3) connectivity composite materials. IEEE Trans-actions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 43, pp. 640-645.

    Article  Google Scholar 

  • Oakley CG, Zipparo MJ (2000) Single crystal piezoelectrics: a revolutionary development for transducers. IEEE Ultrasonics Symposium Proceedings, vol. 1, pp. 1157-1167.

    Google Scholar 

  • Omote K, Park KS, Li G, Ohigashi H (1994) Performance of multilayered ultrasonics transducers comprising vinylidene fluoride and trifluorethylene copolymer films and ferroelectric ceramic plates. Japanese Journal of Applied Physics, vol. 33, pp. 2966-2971.

    Article  Google Scholar 

  • Penttinen A, Luukkala M (1976) The impulse response and pressure nearfield of a curved ultra-sonics radiators. Journal of Physics D: Applied Physics, vol. 9, pp. 1547-1557.

    Article  Google Scholar 

  • Powers JE (1980) An ultrasonic annular array based on quadrature sampling. Ph. D. Thesis, Washington University, Saint Louis, MO.

    Google Scholar 

  • Rittenmeyer K, Shrout TR, Schulze WA, Newnham RE (1982) Piezoelectric 3-3 composites. Ferroelectrics, vol. 41, pp. 289-295.

    Google Scholar 

  • Ritter T, Shung KK, Geng X, Lopath PD, Park SE, Shrout TR (2000) Single crystal PZN-PT-polymer composites for ultrasound transducer applications. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 47, pp. 792-800.

    Article  Google Scholar 

  • Saitoh S, Kobayashi T, Harada K, Shimanuki S, Yamashita Y (1998) A 20 MHz single-element ultrasonic probe using 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 single crystal. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 45, pp. 1071-1076.

    Article  Google Scholar 

  • Saitoh S, Imuzi M, Shimanuki S, Hashimoto S, Yamashita Y (1999a) US Patent 5,295,487.

    Google Scholar 

  • Saitoh S, Takeuchi T, Kobayashi T, Harada K, Shimanuki S, Yamashita Y (1999b) Forty-channel phased array ultrasonic probe using 0.91Pb(Zn1/3Nb2/3)O3-0.09PbTiO3 single crystal. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 46, pp. 152-157.

    Article  Google Scholar 

  • Savakus HP, Klicker KA, Newnham RE (1981) PZT-epoxy piezoelectric transducers: a simpliflied fabrication procedure. Mat. Res. Bull., vol. 16, pp. 677-680.

    Article  Google Scholar 

  • Selfridge AR, Kino GS, Khury-Yakub BT (1980) A theory for the radiation pattern of a narrow strip acoustic transducer. Applied Physics Letters, vol. 37, pp. 35-36.

    Article  Google Scholar 

  • Shrout TR, Chang ZP, Kim N, Markgraf S (1990) Dielectric behavior of single crystals near the (1-x)Pb(Zn1/3Nb2/3)O3-(x)PbTiO3 morphotropic phase boundary. Ferroelectrics Letters Sec-tion, vol. 12, pp. 63-69.

    Article  Google Scholar 

  • Sung KM (1984) Piezoelectric multilayer transducers for ultrasonic pulse compression. Ultrason-ics, pp. 61-68.

    Google Scholar 

  • Tran-Huu-Hue LP, Levassort F, Lethiecq M, Certon D, Patat F (1997) Characterization of the piezoelectric and dielectric relaxation parameters of 0-3 composite and PVDF materials in thickness mode. Ultrasonics, vol. 34, pp. 317-324.

    Article  Google Scholar 

  • Tran-Huu-Hue LP, Levassort F, Felix N, Damjanovic D, Wolny W, Lethiecq M (2000) Comparison of several methods to characterize the high frequency behavior of piezoelectric ceramics for transducer applications. Ultrasonics, vol. 38, pp. 219-223.

    Article  Google Scholar 

  • Tran-Huu-Hue LP, Levassort F, Vander Meulen F, Holc J, Kosec M, Lethiecq M (2001) Preparation and electromechanical properties of PZT/PGO thick films on alumina substrate. Journal of the European Ceramic Society, vol. 21, pp. 1445-1449.

    Article  Google Scholar 

  • Vechembre J, Sagalowicz L, Setter N (1999) Screen printed PZT layer-fabrication and properties. Ferroelectrics, vol. 224, pp. 145-152.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lethiecq, M., Levassort, F., Certon, D., Tran-Huu-Hue, L.P. (2008). Piezoelectric Transducer Design for Medical Diagnosis and NDE. In: Safari, A., AkdoÄŸan, E.K. (eds) Piezoelectric and Acoustic Materials for Transducer Applications. Springer, Boston, MA. https://doi.org/10.1007/978-0-387-76540-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-0-387-76540-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-76538-9

  • Online ISBN: 978-0-387-76540-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics