
Mining XML Frequent Query Patterns

Cheng Hua^ Hai-jun Zhao^ Yi Chen̂
1 Guangdong Electronic Business Market Application Key Laboratory,
Guangdong University of Business Studies. #21, Chisha Road, Haizhu

District, Guangzhou, Guangdong Province. 510320, P.R.C.
huacheng@gdcc.edu.cn

WWW home page: http://gdec.gdcc.edu.cn
2 Ricoh Software Research Center (Beijing) Co., Ltd.

Abstract. With XML being the standard for data encoding and exchange over
Internet, how to find the interesting XML query characteristic efficiently
becomes a critical issue. Mining frequent query pattern is a technique to
discover the most frequently occurring query pattern trees from a large
collection of XML queries. In this paper, we describe an efficient mining
algorithm to discover the frequent query pattern trees from a large collection
of XML queries.

1 Introduction

With the increase in XML applications such as e-business transactions, XML
middlew^are systems, effective and efficient delivery of XML data has become an
important issue. Regular path expression (RPE) is a common feature of XML query
languages, and processing RPE queries can be expensive since it involves navigation
through the hierarchical structure of XML, which can be deeply nested.

Mining frequent sub tree is a technique to discover the most frequently occurring
sub trees from a large collection of relevant information, and it has been vŝ idely
applied in domains like bioinformatics, web mining, and structured-based document
clustering, and so on. In [1, 2, 3], some discussions have been given on mining
frequent query pattern. In this paper, we will describe an efficient mining algorithm
to discover the frequent query pattern trees from a large collection of XML queries.

The rest of the paper is organized as follows. Section 2 discusses some concepts
used in mining query patterns. Section 3 describes our approach to mine frequent
query patterns efficiently. Section 4 shows how the discovered query patterns can be
exploited in caching. We discuss the related work and conclude in Section 5.

Please use the following format when citing this chapter:

Hua, C , Zhao, H., Chen, Y., 2007, in IFIP International Federation for Information Processing, Volume 251, Integration

and Innovation Orient to E-Society Volume 1, Wang, W. (Eds), (Boston: Springer), pp. 26-34.

Cheng Hua^ Hai-jun Zhao', Yi Chen̂ 27

2 Preliminaries

In this section, we first define the concept of a query pattern tree which forms the
basis of the XQPMiner and XQPMinerTID. Then we explain why the simple tree
matching technique is not applicable in finding frequent query patterns for XML data.
Finally, we give a formal definition of the query pattern mining problem.

2.1 Query Pattern Tree

For each XML query q, issued, we can extract related information by transforming
the XML query into XML algebra[4]. This information includes the result that users
want, the filtering conditions applied and the XML files involved in the query. Such
information can be represented in the following form:

qi{resultPattern;predicates; documents}
where resultPattern is the result schema pattern; predicates is the filtering

conditions used in the XML query; and documents is the XML data files involved in
this query.

Note that this transformation only includes the paths or patterns of the original
schema instead of the restructured part. For example, given the following XML
query in XQuery [5] syntax:

Qi: for $b in document(book.xml) /book
where some $a in $b/author satisfies $a/last/data()="Buneman"

return
<result>

<book>{$b/title,$b/author,$b/price}<book>
</result>

Qi can be expressed using the algebra proposed in [4] as follows:
v(result)(v(book)(e($b/title,$b/author,$b/price)(cj$a/iast/data()="Buneman"(<t>$a=$b/author

((t>$b=/book(s(book.xml)))))))
After resolving the path expressions involved in the query, Qi relevant

information is extracted below:
Qi{ resultPattern ={^ook/author, /book/title, ̂ ook/price},

predicates={/book/Q.uthor/\a.st/ data()="Buneman"}, documents={book.xml}}
Some preprocessing is necessary. For example, substituting parent with the actual

parent node or its binding variable. After extracting the path expressions, we will
obtain three types of label: element tag name, wildcard *, and relative path //. The
wildcard "*" indicates any label (tag) in DTD; and the relative path "//" indicates
zero or more labels(descendant-or-self). Here, we use the same notations as those in
XQuery[4] and XPath[6]. According to the binding variable relationship, the pattern
tree can be easily constructed by combining resultPattern and predicates by
extracting the path and ignoring the constants. Note, when adding the path(s) of
predicates to resultPattern, if the content of the path(s) is already contained in
resultPattern, the path(s) will not be added. Take Qi for example, the content of path
"/book/author/last/" is contained in resultPattern, so this path will not be added to
resultPattern. Formally, a pattern tree is defined as follows

28 Mining XML Frequent Query Patterns

Definition 1 (Query Pattern Tree): A query pattern tree is a rooted tree
QPT=<V,E>, where V is the vertex set, where one distinguished node of V is the
root denoted as root{Q?l), and E is the edge set. For each edge e = (vi, V2), node Vi
is the parent of node V2. Each vertex v has a label with its value in
{"*","//",tagSet},where the tagSet is the set of all element and attribute names of a
DTD of the context, v's label is denoted as v.label.

For simplicity, we use label to represent a node. The query pattern tree QPTi of Qi
can be represented as:

<book>

<title></title>

<author></author>

<price></price>

</book>

The corresponding graph representation is shown in Figure 1(a).

book book

title author price title author
(a)QPTi (b)RSTi

Figure 1: The Query Pattern Tree For Ql And A Root Subtree.

Definition 2 (Rooted Subtree): Given a query pattern tree QPT=<V,E>, a rooted
subtree RST=<V\E'> of QPT is a subtree of QPT that satisfies the following
conditions:

• root(KSl)=root(Q?T)

• V'eV, E'eE

One of rooted subtrees of QPTi is shown in Figure 1(b).

Let r be a tree, the size of T is defined by the number of its nodes |T|.

2.2 Tree Pattern Matching

In general, a tree T=<V, E> matches another tree T'=<V', E'> if there exists a
mapping cp which satisfies:

• root(V)=(^(root{T)) and VVGV, 3v'eV',s.t. v'=(p(v),where v.label=vMabel.

• (p preserves the parent-child relation: if (v 1 ,v2) eE, then ((p(v 1), cp(v2)) eE'

we say that T is a subtree of T' or T is contained in T'.

Cheng Hua^ Hai-jun Zhao^ Yi Chen^ 29

Unfortunately, this definition is not applicable to our problem here because of the
presence of wildcards "*" and relative path expressions "//". For instance, when
comparing two trees Tl and T2 in

Figure 2, it is obvious that the path "book/section/figure/title" in T2 can match the
path "book//title" in T l , because "//" in "book//title" can be zero or more labels
between book and title. It is the same with "book/section/figure/image" and
"book//image". Hence the tree T2 can match T l . In other words, T2 is contained in
T l , which is written as T2 c T l . One might try to expand those non-deterministic
paths to deterministic paths such as expanding the path "book//title" to
"book/section/figure/title". But this is only feasible when the XML DTD (schema) is
a DAG. The method fails for a DTD with cycles.

book

//aiithor ~
/ \ address

title image

Tl

UUUK

section author

figure

title image
T2

Figure 2: An Example Of Pattern Tree Containment

Expanding "//" remains crucial. This is because without the context information,
one cannot tell whether a path is contained in "//" or not. For example, while it is
clear that the path "^ook/section/figure/title" is contained in "/book//title", we are
not sure if the path "/book/secfion/figure/" is contained in "/book//title". The reason
is that the former two paths share the same leaf. A more complicated example of
query pattern QPT is given in Figure 3. We cannot merge the two child nodes "//"
under node "book" because node "title" and node "image" may not share the same
parent node. Thus we have RSTi and RST2 are contained in QPT while RST3 is not
contained in QPT by simple tree matching.

book bO|Ok book book

section section section / \

figii re figure fieure
I 1 A title image

1[(\Q im'age title image
RSTi RST2 RST3 QPT

Figure 3: A Complex Query Pattern

We will expand a node "//" in QPT from XML schema as follows. Assuming the
node "//" to be expanded has a child n. The expansion is straightforward if no cycles

30 Mining XML Frequent Query Patterns

exist in XML schema. When a cycle exists and one of the expanded paths is
root/.../p/n where n's parent p has a child that points back to p's ancestor, we'll
introduce a node "//" between p and n. Consider Figure 4 as example. The XML
schema includes a cycle, and the QPT to be expanded is "part//num". By
straightforward expansion, we'll have "part/subpart/num",
"part/subpart/part/subpart/num" and so on. By using the "//"node, we can concisely
represent it as "part/subpart//num". After such expansion, we add context
information to the QPT and do not introduce a cycle in QPT.

P ^
Partf̂ ^ Part

I ^ suf)part
"subpart̂ // R> L

num num „,l
num

(a)XML Schema (b)QPT (c)expanded QPT

Figure 4: An Example Of Path Expansion

One may wonder why not extract the result XML schema and mine it? There are
two reasons. One is that it's unrealistic to extract the schema online. Another reason
is that this method effects only if the retrieved XML data is static. For dynamic
changing XML data, it will fail.

To decide whether one pattern tree is contained in another, the exact tree matching
cannot be naively used because of the existence of wildcards and relative path. By
analyzing the relationship among labels and paths, we can derive that any node
matches a node with label "*", and, on the other hand, it is contained in a node with
label "//". Thus, the path "^ook/*/flgure" is contained in the path "/bookZ/figure",
while "/book/section/figure/title" is contained in "/book/*/figure/title". Note that the
notion of containment here consists in the structure containment not in the extent. So
our definition is different from [1].

Based on the above discussion, we can infer that the labels in the two pattern trees
satisfy the partial order relationship<:

• Given label 1, /<1, i.e., a node with label 1 matches with a node with the same
label; Hence, we have *<* and //<//.

• /<*<//,i.e., a node with label 1 matches a node with label * and a node with
label * matches a node with label //.

Therefore, the tree matching definition should be generalized. To decide if a RST
is contained in a QPT, basically, it can be stated as follows:

(1) root nodes are matched. In our setting, they must have the same label.

(2) If node we RST is matched with node veQPT, it satisfies:

a) >v.label<v.label

b) each subtree of w is contained in some subtree of QPT

The corresponding procedure will be given in later section.

Cheng Hua', Hai-jun Zhao^ Yi Chen̂ 31

2.3 Frequent query pattern mining problem

After transforming a set of XML queries {qi,....,qN} into query pattern trees
D = { Q P T I , , Q P T N } , mining the frequent query pattern means to discover the
frequent rooted subtrees (RSTs) in the query pattern trees. A natural approach is to
divide the queries into different categories according to the XML data files that are
involved.

Given a rooted subtree RST, RST matches a query pattern tree QPT in D, or RST
occurs in D, if there exists a QPT that contains RST. The total occurrence of RST in
D is denoted as Freq(RST), and its support rate is denoted by
supp(RST)=Freq(RST)/|D|. For a positive number a, RST is a-frequent in D if
supp(RST)>a. Hence, the query pattern mining problem can be stated as:

Frequent Query Pattern Mining Problem:

Given a query pattern tree database D={QPTI , ,QPTN}, and a positive number
0<a<l called the minimum support, find all a-frequent rooted subtrees F such that
VRSTeF, supp(RST)> a.

For instance, consider the example in Figure 5. The RST occurs in two of query
pattern trees and thus is frequent with respect to this database with supp(RST)=2/3
and Freq(RST)=2.

took todc took took

titiesection price title section price tMe piWisher titiesecticn price

titie inBgs
(JTi (JT2 0^3 ^

Figure 5: An Example Of Frequent Rooted Subtree

3 Discovering Frequent Rooted Subtrees

In this section, we propose an efficient algorithm for discovering the frequent
query patterns. In our frequent pattern mining setting, the dataset of transactions D is
a set of pattern trees. Each transaction teD is a labeled directed pattern tree extracted
from a XML query. Given a minimum support minSupp, we would like to find the
frequently occurred rooted subtrees(RSTs) in at least minSup*\D\ transactions.

The main framework of our algorithm QPTMiner is shown in Figure 4. The
notation RST' ' denotes a k-edge rooted subtree; Fk a set of frequent k-edge rooted
subtree; and Ck a set of k-edge candidate RST. Edges in the algorithm correspond to
items in traditional frequent itemset discovery. Given a set of QPTs, QPTMiner
initially enumerates all the rooted subtrees of every QPT; and put them in a

32 Mining XML Frequent Query Patterns

candidate set Ck, and counts the frequency for each of these candidates. Next,
QPTMiner drops those RSTs that do not satisfy the minimal support requirement.

Cheng Hua^ Hai-jun Zhao^ Yi Chen̂ 33

Algorithm :QPTMiner(D,mw5M/?/7)
Input: D—pattern tree transaction database
minSupp—the minimum support
Output: the set of all frequent RST sets
(l){F,=(t)|i=l,...,n};
(2)for(k=l,k-H-,k<=n)
(3) read Q from database;
(4) for each QPTi in D
(5)
(6)
(7)
(8)
(9)
(10)

(11)
(12)

Sj=enumerate(QPTi)
for each RST^ in Si

for each candidate RST^eCk do
if Contains(RST^ , RST*') then

RST .̂count++;
else

Ck<- RST*̂
RST^ count =1;

(13)for(k=l,k++,k<=n)
(14) Fk={RST^eCk|RST^count >minSupp*\D\};

(15) save Ck to database;
(15) return {Fiii = l , . . . , n} ;

Figure 6: Algorithm To Find Frequent Rooted Subtree

We compute the frequent pattern trees in an incremental way. After being
computed, the frequent query pattern RST*' and their count RST'̂ .count is maintained
in a database (Ck in the algorithm), and every time when we have to re-compute the
frequent pattern trees, we read previous result from the database. In this way,
previous result can be reused and the computation cost minimized.

The support of each candidate is counted based on the query pattern tree matching
definition in section 2, the Contains algorithm can be constructed to compare two
trees recursively from root to leaf to decide whether a RST is contained in a QPT.
Due to the space limitation the detail of Contain algorithm is not included in this
paper, interested reader also can find it in [1].

4 Conclusion

In this paper, we have described a schema-guided mining approach to discover
frequent rooted subtrees from XML queries. This approach allows us to enumerate
only valid candidates RSTs. We have also developed a tree pattern containment
algorithm that takes into account the relative path "//" and wildcare "*" when
matching RSTs with query pattern trees.

Future work includes investigating how frequent query patterns can be applied to
the problem of view selection. By incorporating user information, the discovery of

34 Mining XML Frequent Query Patterns

frequent query patterns will reflect the user preferences and requirements. This is
especially useful in designing data warehouses for XML.

References

1. L. H. Yang, M. L. Lee, W. Hsu. Mining Frequent Query Patterns in XML. 8th Int.
Conference on Database Systems for Advanced Applications (DASFAA), 2003.

2. L. H. Yang, M. L. Lee, W. Hsu. Approximate Counting of Frequent Query Patterns over
XQuery Stream, (DASFAA), 2004.
3. Yi, Chen. Discovering Ordered Tree Patterns from XML Queries, PAKDD, 2004.
4. S. Boag (XSL WG), D. Chamberlin, MF. Fernandez, D. Florescu, J. Robie, and J. Simeon.
XQuery 1.0: An XML Query Language, W3C Recommendation 23 January 2007,
http://www.w3.orgA^R/2007/REC-xquery-0070123/.

5. P. Fankhauser, M. Fernandez, A. Malhotra, etc. The XML Query Algebra, W3C Working
Draft 04 December 2000,.
6. http://www.w3.org/TR/xpath.

