
Robustness of learning techniques in 
handling class noise in imbalanced datasets 

D. Anyfantis, M. Karagiannopoulos, S. Kotsiantis and P. Pintelas 
Educational Software Development Laboratory 

Department of Mathematics, University of Patras, Greece 
{dany,mariosk,sotos,pintelas}@math.upatras.gr, 

WWW home page: http://www.math.upatras.gr/~esdlab 

Abstract. Many real world datasets exhibit skewed class distributions in 
which almost all instances are allotted to a class and far fewer instances to a 
smaller, but more interesting class. A classifier induced from an imbalanced 
dataset has a low error rate for the majority class and an undesirable error rate 
for the minority class. Many research efforts have been made to deal with class 
noise but none of them was designed for imbalanced datasets. This paper 
provides a study on the various methodologies that have tried to handle the 
imbalanced datasets and examines their robustness in class noise. 

1 Introduction 

In many applications classifiers are faced with imbalanced data sets, which can 
cause the classifier to be biased towards one class. This bias is the result of one class 
being seriously under represented in the training data compared to the other classes. 
It can be qualified to the way in which classifiers are designed. Inductive classifiers 
are normally designed to minimize errors over the training examples. Learning 
algorithms, because of the fact that the cost of performing well on the over-
represented class outweighs the cost of poor accuracy on the smaller class, can 
ignore classes containing few examples [16]. For a number of application domains, a 
massive disproportion in the number of cases belonging to each class is common. 
For example, in detection of fraud in telephone calls [9] and credit card transactions 
the number of legitimate transactions is much higher than the number of fraudulent 
transactions. Moreover, in direct marketing [19], it is fi'equent to have a small 
response rate (about 1%) for most marketing campaigns. Other examples of domains 
with intrinsic imbalance can be found in the literature such as rare medical diagnoses 
[22] and oil spills in satellite images [18]. 

The machine learning community has mostly addressed the issue of class 
imbalance in two ways. One is to give distinct costs to training instances [8]. The 
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other is to re-sample the original dataset, either by oversampling the minority class 
and/or under-samp ling the majority class [17], [12]. Thus, existing research 
endeavors have made significant progress in exploring techniques for handling 
imbalanced datasets with assumptions that the input data are noise-free or noise in 
the data sets is not significant. However, real-world data are rarely perfect and can 
often suffer from corruptions that may impact interpretations of the data, models 
created from the data, and decisions made on the data. 

Many research efforts have been made to deal with class noise [14], [23], [4], 
[11], [24], and have suggested that in many situations, eliminating instances that 
contain class noise will improve the classification accuracy. Although, many 
research efforts have focused on noise identification and data cleansing, none of 
them was originally designed for imbalanced datasets. In this study, the effectiveness 
of techniques for handling imbalanced datasets in class noise is evaluated over 7 
imbalanced datasets using the C4.5 [20], Naive Bayes [6] and 5NN [1] as classifiers 
and the geometric mean of accuracies as performance measure [17]. 

Section 2 reviews the attempts for handling imbalanced datasets, while section 3 
presents experimental results of the techniques for handling imbalanced datasets in 
class noise. Finally, section 4 discusses the results and suggests directions. 

2 Review of existing techniques for handling imbalanced datasets 

A simple method that can be used to imbalanced data sets is to reweigh training 
examples according to the total cost assigned to each class [6]. The idea is to change 
the class distributions in the training set towards the most costly class. The effect of 
imbalance in a dataset is also discussed in [12]. Japkowicz mainly evaluated two 
strategies: under-sampling and resampling. She noted that both the sampling 
approaches were helpful. In [17] the researchers selectively under-sampled the 
majority class while keeping the original population of the minority class with 
satisfied results. Batista et al. [2] used a more sophisticated under-sampling 
technique in order to reduce the amount of potentially useful data. Another approach 
is that of [19]. They combined over-sampling of the minority class with under-
sampling of the majority class. However, the over-sampling and under-sampling 
combination did not provide significant improvement. In [5] they recommend an 
over-sampling approach in which the minority class is over-sampled by creating 
"synthetic" instances rather than by over-sampling with replacement with better 
results. 

Changing the class distribution is not the only technique to improve classifier 
performance when learning from imbalanced data sets. A different approach to 
incorporating costs in decision-making is to define fixed and unequal 
misclassification costs between classes. Cost model takes the form of a cost matrix, 
where the cost of classifying a sample from a true class j to class i corresponds to the 
matrix entry Xij. This matrix is usually expressed in terms of average 
misclassification costs for the problem. The diagonal elements are usually set to 
zero, meaning correct classification has no cost. We define conditional risk for 
making a decision ai as: R(cii \x) = \ \.P{y. \ x). The equation states that the 
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risk of choosing class i is defined by fixed misclassification costs and the uncertainty 
of our knowledge about the true class of x expressed by the posterior probabilities. 
The goal in cost-sensitive classification is to minimize the cost of misclassification, 
which can be realized by choosing the class (vj) with the minimum conditional risk. 

An alternative to balancing the classes is to develop a learning algorithm that is 
intrinsically insensitive to class distribution in the training set. An example of this 
kind of algorithm is the SHRINK algorithm [17] that finds only rules that best 
summarize the positive instances (of the small class), but makes use of the 
information from the negative instances. MetaCost [6] is another method for making 
a classifier cost-sensitive. The procedure begins to learn an internal cost-sensitive 
model by applying a cost-sensitive procedure, which employs a base learning 
algorithm. Then, MetaCost procedure estimates class probabilities using bagging and 
then re-labels the training instances with their minimum expected cost classes, and 
finally releams a model using the modified training set. 

3 Experiments 

For the aim of our study the most well-known decision tree algorithm - C4.5 [20] 
- was used. One of the latest researches that compare decision trees and other 
learning algorithms is made in [21] and shows that the mean error rates of most 
algorithms are similar and that their differences are statistically insignificant. But, 
unlike error rates, there are huge differences between the training times of the 
algorithms. C4.5 has one of the best combinations of error rate and speed. Decision 
tree classifiers, regularly, employ post-pruning techniques that evaluate the 
performance of decision trees as they are pruned using a validation set. Any node can 
be removed and assigned the most common class of the training examples that are 
sorted to the node in question. As a result, if a class is rare, decision tree algorithms 
often prune the tree down to a single node that classifies all instances as members of 
the common class leading to poor accuracy on the examples of minority class. The 
extreme skewness in class distribution is problematic for Naive Bayes [7]. The prior 
probabiHty of the majority class overshadows the differences in the attribute 
conditional probability terms. Instance-based learning algorithms belong to the 
category of lazy-learning algorithms, as they delay the induction until classification 
is performed. One of the most straightforward instance-based learning algorithms is 
the nearest neighbour algorithm [1]. In our study, we made use of the commonly 
used 5-NN algorithm. In imbalanced data sets as the number of the instances of the 
majority class grows, so does the likelihood that the nearest neighbour of any 
instance will belong to the majority class. This leads to the problem that many 
instances of the minority class will be misclassified. 

In Table 1, there is a brief description of the data sets that we used for our 
experiments. Except for the "eap" data set, all were drawn from the UC Irvine 
Repository [3]. Eap data is from Hellenic Open University and was used in order to 
determine whether a student is about to drop-out or not [15]. 
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Table 1. Description of the data sets 

Data sets 

breast-cancer 
credit-g 
Diabetes 
Haberman 
Hepatitis 
Ionosphere 
Eap 

Instances 

286 
1000 
768 
306 
155 
351 
344 

Categorical 
Features 

9 
13 
0 
0 
13 
34 
11 

Numerical 
Features 

0 
7 
8 
3 
6 
0 
0 

Instances of minority 
class 

85 
300 
268 
81 
32 
126 
122 

Classes 

2 
2 
2 
2 
2 
2 
2 

For most of the datasets we used, they don't actually contain noise, so we use 
manual mechanisms to add class noise. For class noise, we adopt a pairwise scheme 
[24]: given a pair of classes (X, Y) and a noise level x, an instance with its label X 
has an x*100% chance to be corrupted and mislabeled as Y, so does an instance of 
class Y. Meanwhile, we only report the value x of class noise (which is not the actual 
class noise level in the dataset) in all tables below. 

When comparing the performance of different classifiers in imbalanced data sets, 
accuracy as a measure is not enough. A classifier's performance of two class 
problems can be separately calculated for its performance over the positive instances 
(denoted as a ^ and over the negative instances (denoted as a"). The true positive rate 
(a^) or sensitivity is the fraction of positive instances predicted correctly by the 
model. Similarly, the true negative rate ( a ) or specificity is the fraction of negative 
instances predicted correctly by the classifier. In [17] they propose the geometric 
mean of the accuracies: g = yja^ x a' for imbalanced data sets. The basic idea behind 
this measure is to maximize the accuracy on both classes. Classification ability of the 
learning methods in our experiments was measured with geometric mean of the 
accuracies. For the examined models, the relationship between false negative and 
false positive costs was chosen to be the inverse of the assumed prior to compensate 
for the imbalanced priors. 

In Table 2, one can see the comparisons with class noise of the attempts that have 
tried to obtain the best performance of a given imbalance data set using Naive Bayes 
(NB) as base classifier. Three well-known algorithms were used for the comparison: 
Reweighing and Cost Sensitive method [6] and Metacost algorithm [8]. We also 
present the accuracy of the simple Bayes algorithm as borderline. It must be 
mentioned that we used the free available source code for these methods [22] for our 
experiments. In Table 2 and Table 3 except for geometric mean we also present the 
true-positive rate, and true-negative rate. It must be mentioned that positive class is 
the majority class for our experiments. In the last row of Table 2, the average value 
of the geometric means is also calculated in all data sets. It must be mentioned that 
for Naive Bayes classifier, modifying the decision boundary (Cost Sensitive method) 
is equivalent to reweighing training instances so as the relationship between false 
negative and false positive costs to be the inverse of the imbalanced priors. All the 
tested techniques give better results than the single Naive Bayes in class noise. The 
Reweighing and Cost Sensitive method gave better results with little class noise; 
however Metacost can handle better more class noise. 
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Table 2. Accuracy on majority class (a+), accuracy on minority class (a-) and geometric mean 
(g) with NB as base classifier 

Datasets 

breast-

cancer 

credit 

-g 

diabetes 

Haber-

man 

Heapa-

titis 

Iono

sphere 

eap 

Average 

g 
a+ 

a-

g 
a+ 

a-

g 
a+ 

a-

g 
a+ 

a-

g 
a+ 

a-

g 
a+ 

a-

g 
a+ 

a-

g 

ReWNB 

or 

CostNB 

Without 

Noise 

0.66 

0.74 

0.58 

0.72 

0.75 

0.69 

0.73 

0.78 

0.68 

0.56 

0.89 

0.35 

0.8 

0.83 

0.78 

0.82 

0.78 

0.87 

0.85 

0.87 

0.83 

0.73 

ReWNB 

or 

CostNB 

With 

10% 

Noise 

0.65 

0.65 

0.66 

0.72 

0.68 

0.77 

0.74 

0.76 

0.72 

0.58 

0.83 

0.4 

0.79 

0.81 

0.78 

0.83 

0.8 

0.86 

0.82 

0.79 

0.85 

0.73 

ReWNB 

or CostNB 

With 20% 

Noise 

0.54 

0.43 

0.69 

0.7 

0.59 

0.82 

0.71 

0.68 

0.75 

0.46 

0.26 

0.83 

0.78 

0.67 

0.91 

0.81 

0.81 

0.81 

0.78 

0.68 

0.89 

0.68 

Meta-cost 

NB 

Without 

Noise 

0.65 

0.79 

0.54 

0.66 

0.77 

0.57 

0.70 

0.75 

0.66 

0.57 

0.87 

0.38 

0.81 

0.79 

0.84 

0.77 

0.68 

0.88 

0.85 

0.88 

0.83 

0.72 

Meta-

cost 

NB 

With 

10% 

Noise 

0.67 

0.72 

0.62 

0.69 

0.73 

0.65 

0.71 

0.72 

0.71 

0.59 

0.84 

0.42 

0.8 

0.76 

0.84 

0.77 

0.68 

0.88 

0.84 

0.85 

0.83 

0.72 

Meta-

cost 

NB 

With 

20% 

Noise 

0.63 

0.59 

0.67 

0.7 

0.65 

0.75 

0.7 

0.66 

0.74 

0.5 

0.3 

0.82 

0.8 

0.73 

0.88 

0.76 

0.69 

0.84 

0.8 

0.72 

0.88 

0.7 

NB 

Without 

Noise 

0.6 

0.85 

0.43 

0.65 

0.86 

0.49 

0.71 

0.84 

0.6 

0.44 

0.94 

0.21 

0.78 

0.87 

0.7 

0.83 

0.8 

0.86 

0.84 

0.9 

0.78 

0.7 

NB 

With 

10% 

Noise 

0.62 

0.84 

0.46 

0.68 

0.85 

0.54 

0.72 

0.84 

0.62 

0.45 

0.94 

0.22 

0.79 

0.83 

0.75 

0.82 

0.83 

0.81 

0.82 

0.88 

0.76 

0.7 

NB 

With 

20% 

Noise 

0.61 

0.8 

0.46 

0.68 

0.84 

0.55 

0.72 

0.85 

0.61 

0.39 

0.95 

0.16 

0.8 

0.82 

0.78 

0.81 

0.84 

0.79 

0.82 

0.87 

0.78 

0.69 

In Table 3, one can see the comparisons with class noise of the attempts that have 
tried to obtain the best performance of a given imbalance data set using C4.5 as base 
classifier. The same three well-known techniques for handling imbalanced data sets 
were also used for this comparison. In general, all the tested techniques give better 
results than the single C4.5 in class noise. The Reweighing method gave better 
results with little class noise, however Metacost can handle better more class noise. 

In Table 4, one can see the comparisons of the proposed technique with other 
attempts that have tried to obtain the best performance of a given imbalance data sets 
using 5NN as base classifier. The same three well-known techniques for handling 
imbalanced data sets were also used for this comparison. It must be mentioned that 
for 5NN classifier, modifying the decision boundary (Cost Sensitive method) is 
equivalent to reweighing training instances so as the relationship between false 
negative and false positive costs to be the inverse of the imbalanced priors. In 
general, all the tested techniques give similar better results than the single 5NN in 
class noise and there was no difference between them. 
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Table 3. Accuracy on majority class (a+), accuracy on minority class (a-) and geometric mean 
(g) with C4.5 as base classifier 

Data-

sets 

breast-

cancer 

credit 

-g 

Diabe

tes 

Haber-

man 

Heapa-

titis 

Iono

sphere 

cap 

Ave-

rage 

g 
a+ 

a-

g 
a+ 

a-

g 
a+ 

a-

g 
a+ 

a-

g 
a+ 

a-

g 
a+ 

a-

g 
a+ 

a-

g 

ReW-

C4.5 

With

out 

Noise 

0.57 

0.72 

0.45 

0.66 

0.67 

0.65 

0.72 

0.72 

0.73 

0.63 

0.68 

0.58 

0.73 

0.62 

0.85 

0.89 

0.94 

0.85 

0.81 

0.86 

0.77 

0.72 

ReW-

C4.5 

With 

10% 

Noise 

0.58 

0.56 

0.6 

0.63 

0.57 

0.69 

0.69 

0.66 

0.72 

0.59 

0.56 

0.62 

0.72 

0.69 

0.75 

0.83 

0.88 

0.79 

0.78 

0.76 

0.8 

0.69 

ReW-

C4.5 

With 

20% 

Noise 

0.47 

0.29 

0.77 

0.6 

0.47 

0.76 

0.63 

0.47 

0.84 

0.42 

0.19 

0.95 

0.59 

0.55 

0.63 

0.8 

0.91 

0.7 

0.71 

0.57 

0.89 

0.6 

Cost-

C4.5 

With

out 

Noise 

0.5 

0.85 

0.3 

0.61 

0.82 

0.46 

0.72 

0.78 

0.67 

0.58 

0.66 

0.51 

0.64 

0.86 

0.48 

0.88 

0.94 

0.82 

0.83 

0.94 

0.74 

0.68 

Cost-

C4.5 

With 

10% 

Noise 

0.52 

0.84 

0.32 

0.63 

0.76 

0.52 

0.66 

0.79 

0.56 

0.58 

0.81 

0.41 

0.54 

0.77 

0.38 

0.82 

0.94 

0.71 

0.8 

0.84 

0.76 

0.65 

Cost-

C4.5 

With 

20% 

Noise 

0.44 

0.73 

0.27 

0.64 

0.68 

0.6 

0.65 

0.63 

0.68 

0.4 

0.19 

0.83 

0.51 

0.47 

0.56 

0.77 

0.92 

0.64 

0.79 

0.75 
0.84 

0.6 

Meta-

cost 

C4.5 

With

out 

Noise 

0.55 

0.84 

0.36 

0.64 

0.76 

0.54 

0.73 

0.78 

0.67 

0.62 

0.76 

0.52 

0.68 

0.83 

0.56 

0.9 

0.98 

0.82 

0.82 

0.89 

0.76 

0.71 

Meta-

cost 

C4.5 

With 

10% 

Noise 

0.61 

0.78 

0.48 

0.65 

0.71 

0.6 

0.7 

0.73 

0.68 

0.59 

0.61 

0.58 

0.67 

0.76 

0.59 

0.85 

0.92 

0.78 

0.79 

0.78 

0.8 

0.69 

Meta-

cost 

C4.5 

With 

20% 

Noise 

0.53 

0.39 

0.72 

0.66 

0.65 

0.68 

0.65 

0.59 

0.71 

0.38 

0.16 

0.91 

0.71 

0.63 

0.81 

0.78 

0.86 

0.71 

0.76 

0.69 

0.84 

0.64 

C4.5 

With

out 

Noise 

0.5 

0.95 

0.26 

0.58 

0.85 

0.4 

0.7 

0.82 

0.6 

0.52 

0.85 

0.32 

0.58 

0.9 

0.37 

0.88 

0.94 

0.82 

0.83 

0.94 

0.74 

0.66 

C4.5 

With 

10% 

Noise 

0.46 

0.9 

0.24 

0.6 

0.83 

0.44 

0.67 

0.8 

0.56 

0.56 

0.83 

0.38 

0.52 

0.87 

0.31 

0.82 

0.94 

0.71 

0.83 

0.94 

0.74 

0.64 

C4.5 

With 

20% 

Noise 

0.46 

0.85 

0.25 

0.61 

0.79 

0.47 

0.65 

0.87 

0.49 

0.43 

0.9 

0.21 

0.51 

0.84 

0.31 

0.77 

0.92 

0.64 

0.86 

0.92 

0.8 

0.61 

As a general conclusion, the Reweighing method is a more appropriate technique 
in the presence of httle class noise, however Metacost can handle better more class 

4 Conclusion 

Existing research endeavors have made significant progress in exploring 
techniques for handling imbalanced datasets with assumptions that the input data are 
noise-free or noise in the data sets is not significant. However, real-world data are 
rarely perfect and can often suffer from corruptions that may impact interpretations 
of the data, models created from the data, and decisions made on the data. In this 
study, the effectiveness of techniques for handling imbalanced datasets in class noise 
is evaluated over 7 imbalanced datasets. Metacost seems to be more robust as the 
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class noise increased. In a following study, we will examine multi-class imbalanced 
datasets and will propose a more robust technique in the class noise. 

Table 4. Accuracy on majority class (a+), accuracy on minority class (a-) and geometric mean 
(g) with 5NN as base classifier 

Data sets 

breast-

cancer 

credit-g 

diabetes 

haberman 

hepatitis 

ionosphere 

cap 

Average 

g 

a+ 

a-

g 
a+ 

a-

g 
a+ 

a-

g 
a+ 

a-

g 
a+ 

a-

g 
a+ 

a-

g 
a+ 

a-

g 

ReWSNN 

Or 

CostSNN 
Without 

Noise 
0.62 

0.73 

0.52 
0.66 

0.69 

0.63 

0.71 

0.69 

0.74 

0.57 

0.68 

0.47 

0.69 

0.79 

0.6 

0.83 

0.97 

0.71 

0.8 

0.84 

0.76 

0.7 

ReW5NN 

Or 

Cost5NN 
With 10% 

Noise 
0.6 

0.6 

0.61 
0.63 

0.58 

0.69 

0.67 

0.61 

0.74 

0.54 

0.55 

0.53 

0.68 

0.73 

0.63 

0.83 

0.88 

0.78 

0.75 

0.64 

0.87 

0.67 

ReW5NN 

Or 

Cost5NN 
With 20% 

Noise 
0.59 

0.47 

0.73 
0.58 

0.44 

0.77 

0.62 

0.51 

0.75 

0.5 

0.41 

0.61 

0.6 

0.55 

0.66 

0.76 

0.7 

0.83 

0.62 

0.44 

0.88 

0.61 

Metacost 

5NN 

Without 

Noise 

0.51 

0.86 

0.3 
0.63 

0.73 

0.55 

0.71 

0.75 

0.68 

0.59 

0.66 

0.52 

0.8 

0.84 

0.76 

0.79 

0.98 

0.63 

0.77 

0.87 

0.69 

0.69 

Metacost 

5NN 

With 
10% 

Noise 
0.59 

0.67 

0.52 
0.66 

0.64 

0.67 

0.69 

0.69 

0.7 

0.53 

0.53 

0.53 

0.7 

0.62 

0.78 

0.78 

0.94 

0.64 

0.75 

0.7 

0.8 

0.67 

Metacost 

5NN 

With 
20% 

Noise 
0.58 

0.51 

0.67 
0.59 

0.45 

0.78 

0.64 

0.58 

0.71 

0.49 

0.62 

0.39 

0.6 

0.41 

0.88 

0.75 

0.85 

0.67 

0.59 

0.4 

0.88 

0.61 

5NN 

Without 
Noise 

0.45 

0.96 

0.21 
0.57 

0.89 

0.37 

0.68 

0.83 

0.56 

0.39 

0.9 

0.17 

0.66 

0.94 

0.46 

0.78 

0.98 

0.62 

0.78 

0.9 

0.68 

0.62 

5NN 

With 

10% 

Noise 

0.44 

0.95 

0.2 
0.58 

0.85 

0.39 

0.65 

0.84 

0.5 

0.41 

0.84 

0.2 

0.6 

0.93 

0.41 

0.76 

0.95 

0.61 

0.76 

0.89 

0.65 

0.6 

5NN 

With 

20% 

Noise 

0.47 

0.92 

0.24 
0.59 

0.76 

0.46 

0.59 

0.78 

0.45 

0.44 

0.76 

0.25 

0.64 

0.83 

0.5 

0.73 

0.9 

0.6 

0.73 

0.88 

0.61 

0.6 
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