Skip to main content

Biochemistry of Alcoholic Fermentation

  • Chapter
Wine Chemistry and Biochemistry

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Refernces

  • Aerny, J. (1997) Composés azotés des moûts et des vins. Rev. Suisse Vitic. Hortic., 28, 161–165.

    Google Scholar 

  • Alexandre, H., & Charpentier, C. (1998) Biochemical aspects of stuck and sluggish fermentation in grape must. J. Ind. Microbiol. Biotechnol., 20, 20–27.

    Article  CAS  Google Scholar 

  • Alexandre, H., Rousseaux, I., & Charpentier, C. (1994) Relationship between ethanol tolerance, lipid composition and plasma membrane fluidity in Saccharomyces cerevisiae and Kloeckera apiculata. FEMS Microbiol. Lett., 124, 17–22

    Article  CAS  Google Scholar 

  • Barnett, J.A. (2003) A history of research on yeasts 5: the fermentation pathway. Yeast, 20,509–543.

    Article  CAS  Google Scholar 

  • Barnett, J.A., & Entian, K.D. (2005) A history of research on yeasts 9: regulation of sugar metabolism. Yeast, 22, 835–894.

    Article  CAS  Google Scholar 

  • Barre, P., Blondin, B., Dequin, S., Feuillat, M., Sablayrolles, J.M., & Salmon, J.M. (1998). La levure de fermentation alcoolique. In C. Flanzy (Ed.), Oenologie: fondements scientifiques et technologiques (pp. 454–497). Paris: Tec Doc Lavoisier.

    Google Scholar 

  • Beech, F.W., Burroughs, L.F., Timberlake, C.F., & Whiting, G.C. (1979) Progres recents sur l’aspect chimique et antimicrobienne de l’ahidride sulfureux. Bull. OIV, 52, 1001–1022.

    CAS  Google Scholar 

  • Beltran, G., Torija, M.J., Novo, M., Ferrer, N., Poblet, M., Guillamón, J.M., Rozes, N., & Mas, A. (2002) Analysis of yeast populations during alcoholic fermentation: a six year follow-up study. Syst. Appl. Microbiol., 25, 287–293.

    Article  CAS  Google Scholar 

  • Bertrand, A., & Miele, A. (1984) Influence de la clarification du moût de raisin sur sa teneur en acides gras. Conn. Vigne Vin, 48, 293–297.

    Google Scholar 

  • Bisson, L.F. (1999) Stuck and sluggish fermentations. Am. J. Enol. Vitic., 50, 107–119.

    CAS  Google Scholar 

  • Bisson, L.F., & Butzke, C.E. (2000) Diagnosis and rectification of stuck and sluggish fermentations. Am. J. Enol. Vitic., 51, 168–177.

    CAS  Google Scholar 

  • Boulton, R.B., Singleton, V.L., Bisson, L.F., & Kunkee, R.E. (1996). Yeast and biochemistry of ethanol fermentation. In R.B. Boulton (Ed.), Principles and Practices of Winemaking(pp. 139–172). New York: Chapman & Hall.

    Google Scholar 

  • Cabib, E., Roberts, R., & Bowers, B. (1982) Synthesis of the Yeast Cell Wall and its Regulation. Ann. Rev. Biochem., 51, 763–793.

    Article  CAS  Google Scholar 

  • Chatonnet, P., Dubourdieu, D., & Boidron, J.N. (1995) The influence of Brettanomyces/Dekkera sp. yeasts and lactic acid bacteria on the ethylphenol content of red wines. Am. J. Enol. Vitic., 46, 463–468.

    CAS  Google Scholar 

  • Ciriacy, M. (1996) Alcohol dehydrogenases. In F.K. Zimmerman & K.D. Entian (Eds.), Yeast Sugar Metabolism: Biochemistry, Genetics, Biotechnology, and Applications (pp. 213–224). Boca Raton: CRC Press.

    Google Scholar 

  • Constantí, M., Poblet, M., Arola, L., Mas, A., & Guillamón, J.M. (1997). Analysis of yeasts populations during alcoholic fermentation in a newly established winery. Am. J. Enol. Vitic., 48, 339–344.

    Google Scholar 

  • Constantí, M., Reguant, C., Poblet, M., Zamora, F., Mas, A., & Guillamón, J.M. (1998) Molecular analysis of yeast population dynamis: Effect of sulphur dioxide and the inoculum in must fermentation. Int. J. Food Microbiol., 41, 169–175.

    Article  Google Scholar 

  • Crabtree, H.D. (1929) Observations on the carbohydrate metabolism of tumours. Biochem. J., 23, 536–545.

    CAS  Google Scholar 

  • Del Nobile, M.A., D’Amato, D., Altieri, C., Corbo, M.R., & Sinigaglia, M. (2003) Modeling the yeast Growth-Cycle in a model wine system. J. Food Sci., 68, 2080–2085.

    Article  CAS  Google Scholar 

  • Edwards, C.G., Reynolds, A.G., Rodríguez, A.V., Semon, M.J., & Mills, J.M. (1999) Implication of acetic acid in the induction of slow/stuck grape juice fermentation and inhibition of yeast by Lactobacillus sp. Am. J. Enol. Vitic., 50, 204–210.

    CAS  Google Scholar 

  • Fleet, G.H. (1993) The microorganisms of winemaking – isolation, enumeration and identification. In G.H. Fleet (Ed.), Wine Microbiology and Biotechnology (pp. 1–25). Reading: Hrawood Academic.

    Google Scholar 

  • Fleet, G.H., & Heard, G.M. (1993) Yeast-growth during fermentation. In G.H. Fleet (Ed.), Wine Microbiology and Biotechnology (pp. 27–54). Reading: Hrawood Academic.

    Google Scholar 

  • Gancedo, J.M. (1988) La regulation du metabolisme des sucres chez la levure. In P. Bidan & J.R. Bonneviale (Eds.), Application à l’œnologie des progrès récents en microbiologie et en fermentation (pp. 133–143). Paris: OIV.

    Google Scholar 

  • Gancedo, J.M. (1992) Carbon catabolite repression in yeast. Eur. J. Biochem., 206, 297–313.

    Article  CAS  Google Scholar 

  • Gao, Y.C., Zhang, G., Krentz, S., Darius, S., Power, J., & Lagarde, G. (2002) Inhibition of spoliage lactic acid bacteria by lysozyme during wine alcholic fermentation. Aust. J. Grape Wine Res., 8, 76–83.

    Article  CAS  Google Scholar 

  • Geneix, C., Lafon-Lafourcade, S., & Ribéreau-Gayon, P. (1983) Effet des acides gras sur la viabilité des populations de Saccharomyces cerevisiæ. C.R. Acad Sci., 296, 943–947.

    Google Scholar 

  • Gerland, C. (2000) Gestion de la flore bactérienne lactique: enjeu important pour l’élaboration des vins de qualité. Rev. Oenol., 96, 31–36.

    Google Scholar 

  • Heerde, E., & Radler, F. (1978) Metabolism of the anaerobic formation of succinic acid by Saccharomyces cerevisiae. Arch. Microbiol., 117, 269–276.

    Article  CAS  Google Scholar 

  • Heinisch, J.J., & Rodicio, R. (1996) Fructose-1,6 biphospohate aldolase, triose phosphate isomerase, glyceraldehide-3-phospkate deshidrogenases and phosphoglycerate mutase. In F.K. Zimmerman & K.D. Entian (Eds.), Yeast Sugar Metabolism: Biochemistry, Genetics, Biotechnology, and Applications (pp. 119–140). Boca Raton: CRC Press.

    Google Scholar 

  • Hensche, P.A., & Jiranek, V. (1993) Yeast – metabolism of nitrogen compounds. In G.H. Fleet (Ed.), Wine Microbiology and Biotechnology (pp. 77–164). Reading: HrawoodAcademic.

    Google Scholar 

  • Hernández-Orte, P., Cacho, J., & Ferreira, V. (2002) Relationship between varietal amino acid profile of grapes and wine aromatic composition. Experiments with model solutions and chemometric study, J. Agric. Food Chem., 50, 2891–2899.

    Article  Google Scholar 

  • Hernández-Orte, P., Ibarz, M.J., Cacho, J., & Ferreira, V. (2006) Addition of amino acids to grape juice of the Merlot variety: Effect on amino acid uptake and aroma generation during alcoholic fermentation. Food Chem., 98, 300–310.

    Article  Google Scholar 

  • Hohmann, S. (1996) Pyruvate decarboxylases. In F.K. Zimmerman & K.D. Entian (Eds.), Yeast Sugar Metabolism: Biochemistry, Genetics, Biotechnology, and Applications (pp. 187–212). Boca Raton: CRC Press.

    Google Scholar 

  • Horecker, B.L. (2002) The Pentose Phosphate Pathway. J. Biol. Chem., 277, 47965–47971.

    Article  CAS  Google Scholar 

  • Ingledew, W.M., & Kunkee, R.E. (1985) Factors influencing sluggish fermentations of grape juice. Am. J. Enol. Vitic., 36, 65–76.

    CAS  Google Scholar 

  • Jiranek, V., Langridge, P., & Henschke, P.A. (1995) Regulation of hydrogen sulfite liberation in wine-producing Saccharomyces cerevisiae strains by assimilable nitrogen. Appl. Environm. Microbiol., 61, 461–467.

    CAS  Google Scholar 

  • Jones, R.P., & Greenfield, P.F., (1987) Ethanol and the fluidity of the yeast plasma membrane. Yeast, 3, 223–232.

    Article  CAS  Google Scholar 

  • Kajiwara, S., Aritomi, T., Suga, K., Ohtaguchi, K., & Kobayashi, O. (2000) Overexpression of the OLE1 gene enhances ethanol fermentation by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol., 53, 568–574.

    Article  CAS  Google Scholar 

  • Kresge, N., Simoni, R.D., & Hill, R.L. (2005) Otto Fritz Meyerhof and the Elucidation of the Glycolytic Pathway. J. Biol. Chem., 280, 124–126.

    Google Scholar 

  • Kunkee, R.E. (1991). Relationship between nitrogen content of must and sluggish fermentation. In Proceedings of the International Symposium of Nitrogen in Grapes and Wine, 18–19 de Juny de 1991, Seattle, Washington (pp. 148–155). Davis CA: American Society of Enology and Viticulture.

    Google Scholar 

  • Lafon-Lafourcade, S. (1983). Wine and brandy. Biotechnology, In H.J. Rehm & G. Reed. (Eds.), Food and Feed Production with Microorganisms, Vol 5, (pp. 81–163). Weinheim: Verlag Chemie.

    Google Scholar 

  • Lafon-Lafourcade, S., & Peynaud, E. (1974) Sur l’action antibacterienne de l’anhidride sulfureux sous forme libre et sous forme combinée. Conn. Vigne Vin, 8, 187–203.

    CAS  Google Scholar 

  • Lafon-Lafourcade, S., Geneix, C., & Ribereau-Gayon, P. (1984). Inhibition of alcoholic fermentation of grape must by fatty acids produced by yeasts and their elimination by yeast ghosts. Appl. Environm. Microbiol., 47, 1246–1249.

    CAS  Google Scholar 

  • Lagunas, R. (1993) Sugar transport in Saccharomyces cerevisiae. FEMS Microbiol. Rev., 16,229–242.

    Google Scholar 

  • Lagunas, R., & Gancedo, C. (1983) Role of phosphate in the regulation of the Pasteur effect in Saccharomyces cerevisiae. Eur. J. Biochem., 137, 479–483.

    Article  CAS  Google Scholar 

  • Lagunas, R., Dominguez, C., Busturia, A., & Sáez, M.J. (1982) Mechanisms of appearance of the Pasteur effect in Saccharomyces cerevisiae: inactivation of sugar transport systems. J. Bacteriol., 152, 19–25

    CAS  Google Scholar 

  • Lambrechts, M.G., & Pretorius, S. (2000) Yeast and its importance to wine aroma – A Review. South Afric. J. Enol. Vitic., 21, 97–128.

    CAS  Google Scholar 

  • Laroche, C., Beney, L., Marechal, P.A., & Gervais, P. (2001) The effect of osmotic pressure on the membrane fluidity of Saccharomyces cerevisiae at different physiological temperatures. Appl. Microbiol. Biotechnol., 56, 249–254.

    Article  CAS  Google Scholar 

  • Larue, F., Lafon-Lafourcade, S., & Ribéreau-Gayon, P. (1982). Inhibition de Saccharomyces cerevisiae dans le moût de raisin. C.R. Acad. Sci., 294, 587–590.

    CAS  Google Scholar 

  • Los, D.A., & Murata, N. (2004) Membrane fluidity and its roles in the perception of environmental signals. Biochim. Biophy. Acta, 1666, 142–157.

    CAS  Google Scholar 

  • Manginot, C., Roustan, J.L., & Sablayrolles, J.M. (1998) Nitrogen demand of different yeast strains during alcoholic fermentation. Importance of stationary phase. Enz. Micro. Technol., 23,511–517.

    Article  CAS  Google Scholar 

  • Meijer, M.M.C., Boonstra, J., Verkleij, A.J., & Verrips, C.T. (1998) Glucose repression in Saccharomyces cerevisiae is related to the glucose concentration rather than the glucose flux. J. Biol. Chem., 273, 24102–24107.

    Article  CAS  Google Scholar 

  • Moreno-Arribas, M.V., & Polo, M.C. (2005) Winemaking biochemistry and microbiology: current knowledge and future trends. Crit. Rev. Food Sci. Nutr., 45, 265–286.

    Article  CAS  Google Scholar 

  • Mortimer, R., & Polsinelli, M. (1999). On the origin of wine yeast. Res. Microbiol., 150, 199–204.

    Article  CAS  Google Scholar 

  • Nakagawa, Y., Sakumoto, N., Kaneko, Y., & Harashima, S. (2002) Mga2p is a putative sensor for low temperature and oxygen to induce OLE1 transcription in Saccharomyces cerevisiae. Biochem. Biophys. Res. Comm., 291, 707–713.

    Article  CAS  Google Scholar 

  • Nes, D.W., Janssen, G.G., Crumley, F.G., Kalinowska, M., & Akihisa, T. (1993) The structural requirements of sterols for membrane function in Saccharomyces cerevisiae. Arch. Biochem. Bioph., 300, 724–733.

    Article  CAS  Google Scholar 

  • Neuberg, C. (1946). The Biochemistry of Yeast. Ann. Rev. Biochem., 15, 435–472.

    Article  CAS  Google Scholar 

  • Ough, C.S., (1964). Fermentation rates of juice.I. Effects of temperature and composition on white juice fermentation rates. Am. J. Enol. Vitic., 15, 167–177.

    CAS  Google Scholar 

  • Pasteur, L. (1861) Influence de l’oxygène sur le développement de la levûre et la fermentation alcoolique. Bulletin de la Société de Paris (Résumé de Séance du 28 juin 1861), 79–80.

    Google Scholar 

  • Peynaud, E., & Domercq, S. (1959) A review of microbiological problems in winemaking in France. Am. J. Enol. Vitic., 1, 69–77.

    Google Scholar 

  • Polakis, E.S., Bartley, W., & Meek, G.A. (1965) Changes in the activities of respiratory enzymes during the aerobic growth of yeast on different carbon sources. Biochem. J., 97, 298–302.

    CAS  Google Scholar 

  • Pretorius, I.S. (2000) Tailoring wine yeast for the new millennium: novel approcaches to the ancient art of winemaking. Yeast, 16, 675–729.

    Article  CAS  Google Scholar 

  • Pretorius, I.S., Van der Westhuizen, T.J., & Augustyn, O.P.H. (1999) Yeast biodiversity in vineyards and wineries and its importante to the South African wine industry. S. Afr. J. Enol. Vitic., 20, 61–74.

    Google Scholar 

  • Prior, B.A., & Hohmann, S. (1996) Glycerol production and osmoregulation. In F.K. Zimmerman & K.D. Entian (Eds.), Yeast Sugar Metabolism: Biochemistry, Genetics, Biotechnology, and Applications (pp. 313–338). Boca Raton: CRC Press.

    Google Scholar 

  • Quinn, A.J., & Chapman, D. (1980) The dynamics of membrane structure. CRC Crit. Rev. Biochem., 8, 1–117.

    Article  CAS  Google Scholar 

  • Racker, E. (1974) History of the Pasteur effect and its pathobiology. Mol. Cell. Biochem., 5, 17–23.

    Article  CAS  Google Scholar 

  • Ratledge, C., & Evans, C.T. (1989) Lipids and their metabolism. In A.H. Rose & J.S. Harrison (Eds.), The Yeasts (2nd ed.), Vol 3 (pp. 367–455). London: Academic Press.

    Google Scholar 

  • Ribéreau-Gayon, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2000a) Chemical nature, origins and consequences of the main organoleptic defects. In P. Ribéreau-Gayon (Ed.), Handbook of Enology, Vol 2, (pp. 209–253). Chichester: John Wiley & sons, Ltd.

    Google Scholar 

  • Ribéreau-Gayon, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2000b) Conditions of yeast development. In P. Ribéreau-Gayon (Ed.), Handbook of Enology, Vol 2, (pp. 75–107). Chichester: John Wiley & sons, Ltd.

    Google Scholar 

  • Ribéreau-Gayon, P., Glories, Y., Maujean, A., & Dubourdieu, D. (2000c) Biochemistry of alcoholic fermentation and metabolic pathways of wine yeasts. In P. Ribéreau-Gayon (Ed.), Handbook of Enology, Vol 1, (pp. 51–74). Chichester: John Wiley & sons, Ltd.

    Google Scholar 

  • Rodríguez, S., Sánchez, A., Martínez, J.M., Prieto, J.A., & Randez, F. (2007) Fluidization of Membrane Lipids Enhances the Tolerance of Saccharomyces cerevisiae to Freezing and Salt Stress. Appl. Environm. Microbiol., 73, 110–116.

    Article  Google Scholar 

  • Romano, P., & Suzzi, G. (1993) Sulfur dioxide and wine microorganisms. In G.H. Fleet (Ed.), Wine Microbiology and Biotechnology (pp. 373–393). Reading: Harwood Academic.

    Google Scholar 

  • Rozès, N. (1992) Contribution à l’étude du métabolisme lipidique de Saccharomyces cerevisiæ. Application à la différenciation des levures de vin. Thèse de Doctorat de l’Université de Bordeaux II, Bordeaux, France.

    Google Scholar 

  • Sablayrolles, J.M., & Barre, P. (1986) Evaluation des besoins en oxygen de fermentations alcooliques en conditions oenologiques silées. Sci. Aliments, 6, 373–383.

    CAS  Google Scholar 

  • Sablayrolles, J.M., Dubois, C., Manginot, C., Roustan, J.L., & Barre, P. (1996). Efectiveness of combined ammoniacal nitrogen and oxygen additions for completion of sluggish and stuck fermentation. J. Fermen. Bioeng., 82, 377–381

    Article  CAS  Google Scholar 

  • Salmon, J.M., Vezinhet, F., & Barre, P. (1987) Anabolic role of L-malic acid in Saccharomyces cerevisiae in anaerobiosis during alcoholic fermentation. FEMS Microbiol. Lett., 42, 213–220.

    CAS  Google Scholar 

  • Sapis-Domerq, S. (1980) Étude de l’influence des produits de traitement de la vigne sur la microflore des raisins et des vins. Conn. Vigne Vin, 14, 155–181.

    Google Scholar 

  • Schaaf-Gersteenschaläger, I., & Miosga, T. (1996) The pentose phosphate pathway. In F.K. Zimmerman & K.D. Entian (Eds.), Yeast Sugar Metabolism: Biochemistry, Genetics, Biotechnology, and Applications (pp. 271–284). Boca Raton: CRC Press.

    Google Scholar 

  • Taylor, W.H. (1957) Formol Titration: An evaluation of its various modifications. Analyst, 82, 488–498.

    Article  CAS  Google Scholar 

  • Thurston, P.A., Taylor, R., & Ahvenainen, J. (1981). Effects of linoleic acid supplements on the synthesis by yeast of lipids and acetate esters. J. Inst. Brew., 87, 92–95.

    CAS  Google Scholar 

  • Torrija, M.J., Beltrán, G., Novo, M.T., Poblet, M., Guillamón, J.M., Mas, A., & Rozès, N. (2003) Effect of fermentation temperature and Saccharomyces species on the cell fatty acid composition and presence of volatile compounds in wine. Int. J. Food Microbiol., 85, 127–136.

    Article  Google Scholar 

  • Weber, F.J., & Bont, J.A.M., (1996) Adaptation mechanisms of microrganisms to the toxic effects of organic solvents on membranes. Biochim. Biophys. Acta, 1286, 225–245.

    CAS  Google Scholar 

  • Zamora, F. (2004) Las paradas de fermentación. Enólogos, 29, 28–32.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zamora, F. (2009). Biochemistry of Alcoholic Fermentation. In: Moreno-Arribas, M.V., Polo, M.C. (eds) Wine Chemistry and Biochemistry. Springer, New York, NY. https://doi.org/10.1007/978-0-387-74118-5_1

Download citation

Publish with us

Policies and ethics