
Modularization Constructs in Method
Engineering: Towards Common Ground?

Piir J. A~gerfalk l, Sjaak Brinkkemper 2, Cesar Gonzalez-Perez 3, Brian
Henderson-Sellers 4, Fredrik Karlsson 5, Steven Kelly 6 and Jolita Ralyt~ 7

1 Lero- The Irish Software Engineering Research Centre, University of
Limerick, Ireland, and Uppsala University, Sweden, par.agerfalk@lero.ie
2 Institute for Information and Computing Sciences, Utrecht University,

Netherlands, S.Brinkkemp er@cs.uu.nl
3 European Software Institute, cesargon@verdewek.com

4 University of Technology, Sydney, Australia, brian@it.uts.edu.au
5 Methodology Exploration Lab, Dept. of Informatics (ESI), Orebro

University, Sweden, fredrik.karlsson@esi.oru.se
6 MetaCase, Finland, stevek@metacase.com

7 CUI, University of Geneva, Switzerland, jolita.ralyte@cui.unige.ch

Abstract. Although the Method Engineering (ME) research community has
reached considerable maturity, it has not yet been able to agree on the
granularity and definition of the configurable parts of methods. This state of
affairs is causing unnecessary confusion, especially with an ever increasing
number of people contributing to ME research. There are several competing
notions around, most significantly 'method fragments' and 'method chunks',
but also 'method components' and 'process components' are used in some
quarters and have also been widely published. Sometimes these terms are used
interchangeably, but there appears to be important semantic and pragmatic
differences. If the differences are unimportant, we should be able to come to
an agreement on what construct to promote. Alternatively, the different
constructs may serve different purposes and there is a need for them to coexist.
If this is the case, it should be possible to pinpoint exactly how they are related
and which are useful in what contexts. This panel is a step towards finding
common ground in this area, which arguably is at the very core of ME.

1 Introduction

Since its inception in the early to mid 1990s, the Method Engineering (ME)
research community has reached considerable maturity. Nonetheless, there is still

Please use theJbItowingJbrmat when citing this chapter:

Agerthlk, P. J., Brinkkemper, S., Gonzalez-Perez, C., Henderson-Sellers, B., Karlsson, F., Kelly, S., Ralyt6, J., 2007, in
IFIP International Federation for Information Processing, Volume 244, Situational Me[hod Engineering: Fundamentals
and Experiences, eds. Ralyt6, J., Brinkkemper, S., Henderson-Sellers B., (Boston Springer), pp. 359-368.

360 P/Jr J. Agerfalk et al.

some ambiguity with regards to fundamental concepts and terminology. Since
situational ME is fundamentally concerned with the assembly and configuration of
information systems engineering methods, understanding the basic building blocks
of methods is arguably core to the discipline. In order to devise appropriate ME
processes and tools, we need to understand what building blocks those processes and
tools are to handle. To date, a number of different such 'modularization constructs'
have been suggested. Among the most cited are 'method fragments', 'method
chunks', 'method components' and 'process components'. Along with these
constructs come certain interpretations of related concepts such as method,
technique, notation, process, deliverable, work product, tool etc. Sometimes the
constructs are used interchangeably, but there appears to be important semantic and
pragmatic differences. If the differences are unimportant, we should be able to come
to an agreement on what construct to promote. Alternatively, the different constructs
may serve different purposes and there is a need for them to coexist. If this is the
case, it should be possible to pinpoint exactly how they are related and which are
useful in what contexts. This panel is a significant step towards finding common
ground in this area.

The remainder of this panel introduction consists of a brief description of the four
modularization constructs mentioned above, followed by a brief introduction of the
panellists. The aim of this document is to provide some background and context for
the panel. The actual discussion and its outcome will be reported elsewhere.

2 Method Fragments

One of the earliest and arguably most important modularization construct in ME
is that of the methodfragrnent. It was first proposed and elaborated by Brinkkemper
and colleagues [1-4] and has since been widely adopted in ME research. Essentially,
method fragments are standardized building blocks based on a coherent part of a
method [1]: '... a description of an IS engineering method, or any coherent part
thereof'. A complete method, such as 'OMT', is a method fragment and so is any
single concept used within that method, such as 'object'. A method fragment thus
resides on a certain so-called layer of granularity, of which five are possible:
method, stage, model, diagram, or concept [4]. Consequently, 'object' resides on the
concept layer while 'OMT' resides on the method layer. Furthermore, a method
fragment is either a process fragment or a product fragment. Process fragments
represent the activities, stages etc that are to be carried out and product fragments
represent deliverables, diagrams etc that are to be produced, or that are required,
during development. Method fragments are stored in a method base from which they
can be retrieved using a query language, such as the Method Engineering Language
(MEL) [5]. This way, a situational method can be constructed by combining a
number of method fragments into a situational method. To be meaningful and useful,
such a combination must follow certain assembly rules that adhere to the
construction principles in the process perspective on the one hand and in the product
perspective on the other hand. This has been explored by Brinkkemper et al. [4].

Modularization Constructs in Method Engineering: Towards Common Ground? 361

Currently the team of Brinkkemper at Utrecht University is focussing on the
methodological support for product software companies, i.e. companies that develop
and market softwareproducts for a particular market. About 10% of the total ICT
spending is spend on software products and examples of such companies are
Microsoft, SAP, Oracle, and Business Objects [6]. As these companies keep the
ownership of the software code and all auxiliary materials belonging to the software
product, these companies create and maintain a proprietary software development
method. From the start-up phase where they begin with bug tracing to a more
consolidated company with all kinds of quality engineering processes in place. The
gradual growth of the product software company calls for a more incremental growth
from simple method fragments to more complex fragments at a later stage [7, 8]. The
evolution from simple to complex processes properly supported with development
tools while keeping the historical documentation and the methodological context in
place are a significant scientific challenge for the coming years.

3 Method Chunks

The method chunk concept was proposed by Rolland and colleagues [9-13] as a
way to capture more of the situational aspects in ME and to appropriately support the
retrieval process. The concept was introduced together with a contextual ME
approach using scenarios [10] and suggests an organization of the method base in
two levels, one method knowledge level and one method recta-knowledge level [9].
The former level is represented by the method chunk body and the latter captures the
situational and intentional aspect of method chunks in the method chunk descriptor.
In [9] the method knowledge level is operationalized in a three level abstraction
model and method chunks are classified into component, pattern or framework. A
method component is a complete method description. A pattern is, for example, a set
of generic guidelines for writing test scripts. Finally, a framework is a meta-method
that guides the construction of a way-of-working within a specific method.

In the latest work [11-13] the concept of method chunk is defined as
autonomous, cohesive and coherent part of a method providing guidelines and
related concepts to support the realisation of some specific system engineering
activity (e.g. business modelling, requirements specification, design etc). In fact, the
method knowledge is captured in the method chunk body and interface. The interface
defines pre and post conditions of chunk application formalised by a couple
<situation, intention>. The situation specifies the required input product part(s)
while the intention defines the goal that the chunk helps to achieve. For example, the
interface of the method chunk supporting identification of Business Actors and Use
Cases within the RUP could be modelled as <(Business knowledge, problem
description, interview results), Identify and describe business actor(s) and use
case(s)>.

The body of the method chunk includes two kinds of knowledge: product and
process. The product knowledge defines the work products (input and output) used
by the method chunk (e.g. the definitions of the concept "actor" and "use case and
their relationships). This knowledge is generally expressed in terms of meta-models.

362 Par J. Agerfalk et al.

The process knowledge captured in a method chunk provides guidelines how to
obtain target product(s) from input product(s) (e.g. the guidelines how to identify
system actors and their business use cases). The guideline can be represented as an
informal description or expressed by using different process modelling formalisms
such as NATURE context trees [14] or MAP graphs [15] depending on how rich and
complex it is. The fact that a guideline can be complex (i.e. composed of a set of
sub-guidelines) means that the corresponding method chunk can be an aggregate of a
collection of smaller chunks.

The descriptor (i.e. method meta-knowledge) of the method chunk extends the
contextual knowledge defined in the interface with a set of criteria that help to better
locate the engineering situation in which the method chunk is useful. A detailed
classification of these criteria related to the information systems development, named
Reuse Frame, is proposed in [13].

A method chunk is selected for a specific situation based on the characterization
of that situation and how relevant it is to achieve the intention of the method chunk.
Hence, the intention of a method chunk, the goal that can be achieved through
application of the way of working prescribed by the method chunk, is central.

Method chunks are retrieved from the method base through the use of meta-
knowledge. Based on the structure of the method base, where method chunks have
been clustered and described using interfaces and descriptors, it is possible to query
the method base using a query language. For example, it is possible to select a chunk
from the RUP if it has a representation in the method base. Hence, a method chunk
query language has similarities with MEL when using method fragments.

Some initial comparisons of method fragments and method chunks are to be
found in [13] and [16].

4 Method Components

First introduced by Goldkuhl and colleagues [17, 18], the method component
concept has recently been further developed by Karlsson and others [19-22]. The
basic idea is to view methods as constituted by exchangeable and reusable
components. Fundamentally, each component consists of descriptions for ways of
working (a process), notations, and concepts [17]. A process describes rules and
recommendations for and informs the method (component) user what actions to
perform and in what order. Notation means semantic, syntactic and symbolic rules
for documentation. Concepts are categories included in the process and the notation.
Concepts and notation together constitute what is sometimes referred to as a
modelling language, such as the UML. A method component can also be used
separately and independently from other components. Each method component
addresses a certain aspect of the problem at hand.

Building further on this original method component concept, Karlsson [21]
defines it as 'a self-contained part of a method expressing the transformation of one
or several artifacts into a defined target artifact and the rationale for such a
transformation.' The method component construct thus draws significantly on the
idea of method rationale - the systematic treatment of the arguments and reasons

Modularization Constructs in Method Engineering: Towards Common Ground? 363

behind a particular method [20, 23, 24, 25]. While the intention of a method chunk is
typically expressed in terms of the action that immediately satisfies the intention,
method rationale aims to direct method engineers' attention to the underlying
assumptions of those actions and promote a critical attitude towards the different
parts of a method.

A method component consists of two parts: its content and the rationale
expressing why the content is designed as it is and what it can bring about. The
content of a method component is an aggregate of method elements [21]: A method
element is a part of a method that manifests a method component's target state or
facilitates the transformation from one defined state to another. The concept of
method element can be specialized into five categories. Firstly, there are three
interrelated parts of prescribed action, concept and notation. These categories are
complemented with artefact and actor role as two further sub-types of method
element. Artefacts act as deliverables from the transformation process as well as
input to this process. Methods are here viewed as heuristic procedures (heurithms)
and consequently specified inputs are considered to be recommended inputs.
However, a method component needs to have at least one input. Otherwise the
method component will not have any meaningful support in the method. One
exception to this is method components that initiate new activities that are later
integrated with the result from other method components. The selection of actor roles
are determined by the prescribed actions that need to be part of the transformation
process. Actor roles are played either as drivers of the prescribed actions in the
method component or as participants.

The rationale part of the method component concept consists of two parts: goals
and values. Method elements exist for reasons, which are made explicit by means of
associating method elements to the goals. These goals are anchored in values of the
method creator [18, 25]. Taken together, goals and values are often considered
important constituents of a methods underlying perspective [18] or 'philosophy'
[26]. In method engineering, method rationale is more important than the deliverable
as such. Through the method rationale it is possible to address the goals that are
essential in order to fulfil the overall goal of a specific project. Prescribed actions
and artefacts are only means to achieve something and method rationale can thus
help developers not to lose sight of that ultimate result, and also help them find
alternative ways forward.

it is important to point out that in our current understanding, method components
always reside on the 'artefact layer of granularity' and represent a non-hierarchal
concept. This is to reflect the notion that method components are the smallest
coherent parts of a method that are practically useful. This design choice is based on
two empirical observations [21]: The first, and most important, is that systems
developers' tend to focus on the artefacts (a.k.a. deliverables) when discussing
situational methods, and these are viewed as non-hierarchal patterns. Second, it has
proven difficult to balance precision and cost with hierarchal concepts in situational
method engineering.

364 Par J. Agerfalk et al.

5 OPFMethod/Process Components

The OPEN Process Framework [27, 28] also utilizes the concept of a method
fragment but stresses that each fragment needs to be generated from an element in a
prescribed underpinning metamodel. This metamodel has recently been upgraded
with the recent availability of the International Standard ISO/IEC 24744 'Software
Engineering Metamodel for Development Methodologies' [29]. While many of the
OPF fragments focus on 'process' there are also significant numbers for products
and producers (people and tools involved in software development). These are the
three acknowledged top-level meta-elements for methodologies leading to: process-
focussed fragments (e.g. a kind of task or technique), product-focussed fragments (a
kind of diagram, document or other work product) and producer-focussed fragments
(e.g. a role played by a member of the software development team, a testing too l) -
the last of which (producers) is not represented in other SME approaches. In the
OPF, these method fragments are defined separately and then linked together using
instances of metamodel classes such as ActionKind, representing a single usage event
that a given process fragment exerts upon a given product fragment. This class
contains an attribute, Type, that specifies what kind of action the process part is
exerting on the product part. For example, imagine a methodology that contains a
requirements validation task. This task takes a draft requirements document as input
and modifies it accordingly through the validation process, creating, as well, a
requirements defect list. Modelling this task plus the two involved products (one of
which is both an input and an output) can be easily modelled by using two actions:
one action would map the requirements validation task to the requirements
document, specifying a type 'modify', and a second action would map the same
requirements validation task to the requirements defect list, specifying the type as
'create'. The relationships between process- and product-oriented fragments are thus
clearly specified. (It must be noted that the actions are lightweight entities in the
methodology that act as mappings between heavyweight process- and product-
oriented fragments. Actions are not containers, as are chunks.).

6 The MetaEdit Experience

Research in the MetaPHOR project, object-oriented ideas in the implementation
of MetaEdit+, and experience with customers, led MetaCase largely to avoid the
question of the size or definition of 'chunks' or 'fragments'. Rather they are able to
reuse anything, from a single Property type (e.g. the 'Actor Name' field of the Actor
type in UML Use Case diagrams) through Object types (e.g. Actor) to Graph types
(e.g. Use Case Diagram) and interlinked sets of Graph types (e.g. UML).
Accompanying these central and clearly identifiable elements go various rules that
map to the 'harder' end of the process scale, generators that form the operational
semantics, along with 'softer' parts of processes and things like problem domain
semantics. Mainly, though, the focus has been on support for creating entirely new
modelling languages, and how reuse and linking of types in the metamodel allows
reuse and linking on the model level.

Modularization Constructs in Method Engineering: Towards Common Ground? 365

7 About the Panellists

Prof. P~ir J. Agerfalk (panel moderator) is a Senior Researcher at Lero - The Irish
Software Engineering Research Centre and holds the Chair in Computer Science in
Intersection with Social Sciences at Uppsala University. He received his PhD in
Information Systems Development from Link6ping University and has held fulltime
positions at I~rebro University, University of Limerick, and J6nk6ping International
Business School. His current research centres on open source software development,
globally distributed and flexible development methods and how IS development can
be informed by language/action theory. His work has appeared in a number of
leading IS journals and conferences and he is currently an associate editor of the
European Journal of Information Systems and a senior associate editor for a special
issue of Information Systems Research on Flexible and Distributed IS Development.

Prof. Sjaak Brinkkemper is professor of Organisation and Information at the
Institute of Information and Computing Sciences of the Utrecht University, the
Netherlands. Before he was a consultant at the Vanenburg Group and a Chief
Architect at Baan. Before Baan he held academic positions at the University of
Twente and the University of Nijmegen, both in the Netherlands. He holds a MSc
and a PhD in of the University of Nijmegen. He has published five books and more
than hundred papers on his research interests: software product development,
information systems methodology, meta-modelling, and method engineering.

Dr. Cesar Gonzalez-Perez has been a research project leader at the European
Software Institute until last June, where he led research efforts in the areas of method
engineering, metamodelling and conceptual modelling. Previously, he worked over 3
years at the Faculty of IT of the University of Technology, Sydney, from where he
co-edited the standardisation projects that resulted in the standard metamodels
AS4651 and ISO/IEC 24744. Cesar is also the founder and former technical director
of Neco, a company based in Spain specialising in software development support
services, which include the deployment and use of OPEN/Metis at small and mid-
sized organisations. Cesar has also worked for the University of Santiago de
Compostela in Spain as a researcher in computing and archaeology, and got his PhD
in this topic in 2000.

Dr. Fredrik Karlsson received his PhD in Information Systems Development
from Link6ping University and is currently a Senior Lecturer at Orebro University.
His research focuses on tailoring of systems development methods, systems
development methods as reusable assets, and CAME tools. He has developed the
CAME tool MC Sandbox that supports method configuration. At Orebro University
he heads the Methodology Exploration Lab and is an active member of the Swedish
research network VITS. His work has appeared in, for example, European Journal of
Information Systems and Information and Software Technology.

Dr. Steven Kelly is the CTO of MetaCase and co-founder of the DSM Forum. He
has over a dozen years of experience of building metaCASE environments and
acting as a consultant on their use in Domain-Specific Modelling. He is architect and
lead developer of MetaEdit+, MetaCase's domain-specific modelling tool. Ever
present on the program committee of the OOPSLA workshops on Domain-Specific
Modelling, he co-organized the first workshop in 2001. He is author of over 20

366 P~ir J. Agerfalk et al.

articles in both academic and industry publications, and is a member of IFIP WG 8.1
and the editorial board for the Journal of Database Management. Steven has an M.A.
(Hons.) in Mathematics and Computer Science from the University of Cambridge,
and a Ph.D. from the University of Jyv~iskyl/i.

Dr. Jolita Ralyt6 is currently a senior researcher and lecturer at the University of
Geneva, Department of Information Systems. She obtained a PhD in Computer
Science from the University of Paris 1 - Sorbonne in 2001. The research areas of Dr.
Ralyt6 include situational method engineering, requirement engineering, information
systems evolution and interoperability and distributed information systems
development. She is in charge of the International Method Engineering Task Group
within the IFIP WG 8.1 and the task group TG6 dealing with methods and method
engineering techniques supporting various systems interoperability issues within the
European NoE INTEROP. Her work has been published in various international
conferences and journals. Dr Ralyt6 has been involved in the organisation of a
number of international conferences and workshops (ME'07, OOIS'03, EMSISE'03,
Interop-ESA'05, SREP'05, SREP'07 and Doctoral Symposium at I-ESA'06) and co-
edited a special issue of SPIP with revised best papers from SREP'05.

References

1. Harmsen, F., Brinkkemper, S., and Oei, H. (1994). Situational Method Engineering for
Information System Project Approaches. In: A.A. Verrijn Stuart and T.W. Olle (Eds.),
Methods and Associated Tools for the Information Systems Life Cycle. Proceedings of the
IFIP WG 8.1 Working Conference, Maastricht, Netherlands, September 1994, IF1P
Transactions A-55, North-Holland, 1994, ISBN 0-444-82074-4, pp. 169-194. Also in:
Memoranda Informatica 94-03, ISSN 0924-3755, 34 pages, January 1994.

2. Brinkkemper, S. (1996). Method engineering: Engineering of information systems
development methods and tools. Information and Software Technology, 38(4), 275-280.

3. Harmsen, A.F. (1997). Situational method engineering. Doctoral dissertation, Motet Ernst
& Young Management Consultants, Utrecht, The Netherlands.

4. Brinkkemper S., Saeki, M., and Harmsen, F. (1999). Meta-Modelling Based Assembly
Techniques for Situational Method Engineering, Information Systems, 24(3), pp. 209-228.

5. Brinkkemper S., Saeki M., and Harmsen, F. (2001). A Method Engineering Language for
the Description of Systems Development Methods (Extended Abstract). In: K.R. Dittrich,
A Geppert, and M.C. Norrie (eds.), Proceedings of the 13th International Conference
CAiSE'O1, pp. 173-179, Interlaken, Switzerland, 2001, Lecture Notes in Computer Science,
Springer Verlag. ISBN 3-540-42215-3.

6. Xu, L. and Brinkkemper, S. (2007). Concepts for Product Software. To appear in European
Journal of Information Systems.

7. Weerd, I. van de, Brinkkemper, S., Souer, J., and Versendaal, J. (2006). A Situational
Implementation Method for Web-based Content Management System-applications:
Method Engineering and Validation in Practice. Software Process: Improvement and
Practice 11 (5), 521-538.

8. Weerd, I. van de, Brinkkemper, S., Versendaal J. (2007). Concepts for Incremental Method
Evolution: Empirical Exploration and Validation in Requirements Management. In
Proceedings of the 19th International Conference on Advanced Information Systems
Engineering, LNCS 4495, 469-484.

Modularization Constructs in Method Engineering: Towards Common Ground? 367

9. Rolland, C. and Prakash, N. (1996). A proposal for context-specific method engineering. In
S. Brinkkemper, K. Lyytinen & R. Welke (Eds.), Method Engineering: Principles of
method construction and tool support (Vol. 191-208): Chapman & Hall.

10.Rolland, C., Plihon, V. and Ralyt6, J. (1998). Specifying the Reuse Context of Scenario
Method Chunks. Proceedings of the l Oth International Conference on Advanced
Information System Engineering (CAISE'98), Pisa, Italy, June 1998. B. Pernici, C. Thanos
(Eds), LNCS 1413, Springer-Verlag, pp. 191-218.

11.Ralyt6, J. and Rolland, C. (2001). An Approach for Method Reengineering. Proceedings of
the 20th International Conference on Conceptual Modeling (ER2001), LNCS 2224,
Springer-Verlag, pp.471-484.

12.Ralyt6, J., Deneck6re, R., and Rolland, C. (2003). Towards a Generic Model for Situational
Method Engineering, In Proceedings of 15th International Conference on Advanced
Information Systems Engineering (CAiSE 2003), Klagenfurt, Austria, June 16-18, 2003,
(Eds, Eder J, et al.) Heidelberg, Germany: Springer-Verlag, pp. 95-110.

13.Mirbel, I. and Ralyt6, J. (2006). Situational method engineering: combining assembly-
based and roadmap-driven approaches, Requirements Engineering, 11 (1), pp. 58-78.

14. Jarke, M., Rolland, C., Sutcliffe, A., and Domges, R. (1999). The NATURE requirements
Engineering. Shaker Verlag, Aachen.

15.Rolland, C., Prakash, N., and Benjamen, A. (1999). A multi-model view of process
modelling. Requirements Engineering, 4(4), 169-187.

16.Henderson-Sellers, B., Gonzalez-Perez, C., and Ralyt6, J. (2007). Situational method
engineering: chunks or fragments? CAiSE Forum, Trondheim, 11-15 June 2007, 89-92

17.R6stlinger, A., and Goldkuhl, G. (1996). Generisk flexibilitet: Pgt viig mot en
komponentbaserad metodsyn, In Swedish: "Generic flexibility: Towards a component-
based view of methods", Technical Report LiTH-IDA-R-96-15, Dept. of Computer and
Information Science, LinkSping University. Originally presented at VITS H6stseminarium
1994.

18.Goldkuhl, G., Lind, M., and Seigerroth, U. (1998). Method integration: The need for a
learning perspective, lEE Proceedings Software, 145, 113-118.

19.Agerfalk, P.J. (2003). Information Systems Actability: Understanding Information
Technology as a Tool for Business Action and Communication. Doctoral dissertation. Dept.
of Computer and Information Science, Link6ping University, 2003.

20.Wistrand, K. and Karlsson, F. (2004). Method Components: Rationale Revealed. In
Persson, A. and Stirna, J. (eds.) Proceedings of the 16th International Conference on
Advanced Information Systems Engineering (CAiSE 2004), Riga, Latvia, June 7-11, 2004.
Heidelberg, Springer-Verlag.

21.Karlsson, F. (2005) Method Configuration: Method and Computerized Tool Support.
Doctoral dissertation. Dept. of Computer and Information Science, Link6ping University.

22.Karlsson, F. and Wistrand, K. (2006). Combining method engineering with activity theory:
theoretical grounding of the method component concept. European Journal of Information
Systems, 15, 82-90.

23.Agerfalk, P.J. and Wistrand, K. (2003). Systems Development Method Rationale: A
Conceptual Framework for Analysis. In Camp, O., F ilipe, J., Hammoudi, S. & Piattini, M.
(Eds.) Proceedings of the 5th International Conference on Enterprise Information Systems
(ICEIS 2003). Angers, France.

24.Rossi, M., Ramesh, B., Lyytinen, K., and Tolvanen, J.-P. (2004). Managing evolutionary
method engineering by method rationale. Journal of the Association for Information
Systems, 5(9), 356-391.

25.Agerfalk, P.J. and Fitzgerald, B. (2006). Exploring the Concept of Method Rationale: A
Conceptual Tool for Method Tailoring. In Siau, K. (Ed.) Advanced Topics in Database
Research Vol 5. Hershey, PA, Idea Group.

368 P~ir J. Agerfalk et al.

26.Fitzgerald, B., Russo, N. L., and Stolterman, E. (2002). Information systems development-
methods in action. London: McGraw-Hill.

27.Henderson-Sellers, B. and Graham, I.M. (1996). OPEN: toward method convergence?
IEEE Computer, 29(4), 86-89

28.Firesmith, D.G. and Henderson-Sellers, B. (2002). The OPEN Process Framework. An
Introduction, Addison-Wesley, 330pp

29.ISO/IEC (2007). Software Engineering. Metamodel for Development Methodologies.
ISO/IEC 24744: International Standards Organization / International Electrotechnical
Commission, Geneva.

Printed in the USA

