
Domain-specific Adaptations of Product
Line Variability Modeling

Deepak Dhungana, Paul Griinbacher and Rick Rabiser
Christian Doppler Laboratory for Automated Software Engineering

Johannes Kepler Universitiit, Linz, Austria
dhungana@ase.jku.at

Abstract. Despite its increasing popularity the widespread adoption of product
line engineering is still hampered by a Hack of flexible and extensible
approaches that can be tailored to deal with diverse organizational specifics
such as architectural styles, languages, or modeling notations. Many existing
product line approaches focus on process aspects and provide general-purpose
modeling approaches. In this paper we present a flexible and extensible
variability modeling approach that can be adapted to domain-specific needs.
The approach is supported by the meta-tool DecisionKing. The tool treats
variability as a prime modeling concept and supports the domain-specific
definition of dependencies between model elements. We demonstrate the
feasibility of our approach with two case studies in the areas of industrial
automation and service-oriented systems.

1 Introduction

Conventional single-system software engineering is often insufficient to meet the
tight budget and schedule constraints faced by software industry. Companies
therefore aim at understanding the relationships between similar products to exploit
commonalities regarding marketing, technical, or end-user aspects. Software product
line engineering (PLE) is based on creating and managing artifacts and processes
such that they can be reused for building different yet related products. It has been
shown that PLE can increase productivity, reliability, and quality of software
development thereby also reducing cost and time-to-market [3, 4, 14, 17, 22]. This is
achieved by modeling techniques for capturing the variability of reusable core assets
such as requirements, architecture, code, processes, documents, or models.

Please use the following)Cormat when citing this chapter:

D hungana, D., Grfinbacher, P., Rabiser, R., 2007, in IFIP International Federation for Information Processing, Volume

244, Situational Method Engineering: Fundamentals and Experiences, eds. Ralyt6, J., Brinkkemper, S., Henderson-

Sellers B., (Boston Springer), pp. 238-251.

Domain-specific Adaptations of Product Line Variability Modeling 239

While there is a strong consensus on the benefits of PLE, it remains challenging
for organizations to identify methods and techniques applicable for their particular
context, to adapt these methods and techniques to address the specific needs of their
domain, and to integrate them with their current practices, tools, and standards [16].
A reason for these problems lies in the inflexibility of existing product line modeling
approaches and tools which often do not support the diverse needs of different
organizations. A key goal of our research is thus to make our methods and tools as
flexible as possible.

Variability modeling is central in PLE to capture commonalities and variability
of a product line's core assets. Variability has to be understood and modeled at
different levels (e.g., requirements, architecture, or implementation level) and for
diverse domain-specific artifacts [7]. The traceability between variation points, i.e.,
decision points describing possible choices about assets' functions or qualities, and
the management of variability mechanisms implementing these points are important
aspects. The need for a flexible variability modeling approach becomes evident when
considering the heterogeneous languages, modeling notations, or architectural styles
used by different organizations. There are two important problems faced by both
research and industry [7]: (1)there is a lack of integrated variability modeling
approaches that work well with arbitrary and heterogeneous types of assets in the
product line; (2) there is a lack of flexible and extensible tools that can be tailored to
support a particular organization's needs.

In our ongoing research collaboration with Siemens VAI we are developing an
approach addressing these issues. DOPLER (Decision-Oriented Product Line
Engineering for effective Reuse) is an approach that works with heterogeneous
domain-specific artifacts while being independent of specific architectural styles,
languages, or modeling notations. The approach is supported by the meta-tool
DecisionKing [7] supporting the identification, design, implementation, and
maintenance of a product line's assets. Unlike existing general purpose recta-tools
[11, 21, 26] DecisionKing provides support for variability as a first class modeling
concept. Furthermore, it adopts a rule engine to master the complexity of
dependencies in the models. Organizations can also incorporate company-specific
capabilities by exploiting the tool's plug-in architecture.

This paper is organized as follows: We describe our variability modeling
approach and show how it allows domain-specific adaptations. We present the meta-
tool DecisionKing [7] and discuss method engineering concepts used in our
approach. Two case studies illustrate the benefits and feasibility of our approach in
two significantly different domains: (i) Together with Siemens VAI, the world's
leader in building plants for the iron, steel, and aluminum industries, we are using
DOPLER to model the variability of their automation software for continuous
casting in steel plants; (ii) In an ongoing research project [5, 10] we are modeling
service variability by complementing the i* modeling language [25] with variability
modeling. We conclude the paper with a discussion of related work and an outlook
on future work.

240 Deepak Dhungana, Paul Griinbacher and Rick Rabiser

2 Product Line Variability Modeling

Leveraging reuse in PLE relies on documenting tacit knowledge about variability
and making it explicit and manageable in models [4]. Variability models cover the
product line's problem space (stakeholder needs and desired features) and its
solution space (architecture and components of the technical solution). Variability
models define a product line's assets with organization- and domain-specific
properties and dependencies. They capture different variants of features and solution
components and their valid combinations, i.e., the possible variants together with
constraints and dependencies. Variability models also document fundamental
system-wide decisions for the configuration and derivation of a product [8] and the
rationale for these decisions.

DOPLER can deal with diverse product line assets and allows arbitrary
dependency links between the assets. It relates the assets with decisions for product
derivation and customization. The approach is based on a generic variability meta-
model (Fig. 2) which has to be extended and adapted to organizational needs. The
meta-modei does not encompass every modeling element that may be relevant in
certain organizations. It defines just the basic concepts to be modeled on a higher
level of abstraction. Unlike a general-purpose meta-model, our approach treats
variability as a prime concept by modeling decisions. Fig. 1 depicts the DOPLER
modeling process encompassing domain modeling (the adaptation of the meta-
model), asset modeling (the definition of the PL's assets based on the meta-model),
and decision modeling (the definition of variability):

is based on . Va r i ab i l i t y . documen ts va r i ab i l i t y us i ng

Mode l

cons i s t s o f

Domain~
Knowtedg~,j

................. 1 1 ;
Domain-
Specific

Meta-Model
Product Lin~e

Assetsy ~
Asset
Models

-f

.-~. Sales &-'~
Marketing)-I

Plans ~ /~

Decision
Model

Technicat~ ¢b
Solution

Constraints/

Fig. 1 DOPLER variability modeling approach [7].

(1) Domain Modeling. Managing different kinds of assets in a PL relies on the
precise definition of their specific characteristics in a domain-specific meta-model.
Building such a model requires knowledge about the domain and the organization's
settings and specifics. The meta-model defines the types of assets to be included in
the product line (e.g., Components, Services, Documents, Properties, etc.) and the
possible relationships between the different asset types.

Domain-specific Adaptations of Product Line Variability Modeling 241

(2) Asset Modeling. An asset model is created on the basis of a domain-specific
meta-model and describes the concrete reusable elements in a product line and
dependencies among them. Asset models can often be created semi-automatically if
product line development does not start from scratch and core assets already exist.
For example, call dependencies defined in existing system configuration files can be
utilized to automatically derive requires dependencies among software components
that reflect the underlying technical restrictions (cf. Section 5.1). Modeling these
dependencies is essential for later product derivation.

Structural Hierarchical
Depen dency i 1 Dependency

i [~ A s q Inclusion ~ ~ Condition'-"

Functional ~ t Logical
Depen dency Dependency

Fig. 2 Core meta-model for variability [8].

(3) Decision Modeling: Variability stemming from technical or marketing
considerations is expressed using decisions to be taken when deriving products from
the product line [19]. Decision models link external variability (visible to customers,
sales people, or marketing staff) with internal variability (visible to engineers). A
decision model is a graph where the nodes represent decisions and the edges
represent relationships between them. Decisions are variables which can have special
dependencies to other variables. These dependencies are expressed using a rule
language. Decisions are presented to decision-takers in the form of questions.
Validity conditions restrict the range of possible values. In order to link assets and
decisions, assets specify an inclusion condition which has to be satisfied for a
particular asset to be included in the final product. This expression can be composed
of arbitrary decisions. Decisions and inclusion conditions also establish trace links
between user demands and assets [8]. Decision models reduce modeling complexity
as they represent variability at a higher level of abstraction. For instance, variability
mechanism in the asset base can be changed without having to change the variation
points of the system. Experience also shows that fewer decisions are necessary to
reach the desired variability than adding variability specifications to all assets [8].
The core meta-model (Fig. 2) currently supports hierarchical dependencies
specifying how the decisions are organized and logical dependencies specifying the
known consequences of taking decisions:

Hierarchical dependencies are Boolean expressions that specify when a particular
decision is visible to the user. For example, the user needs to decide if an archiving
feature is required before taking more specific decisions on the type of database used
for archiving. Considering the example in Fig. 3, this kind of relationship is modeled
between the decision DeburrerPredecessor and Deburrer. The decision

DeburrerPredecessor is visible to the user only if the value of decision Deburrer is true.
Logical dependencies specify actions that need to be executed after a decision has

been taken. Typically, these are business rules that need to be checked (before and)
after a decision is taken. In the example presented in Fig. 3, we can see such a

242 Deepak Dhungana, Paul Grtinbacher and Rick Rabiser

relationship between DeburrerPredecessor and MarkingPredecessor. If the user enters

INPUT as the value for DeburrerPredecessor the value of the variable

MarkingPredecessor is also set to INPUT. After a decision is taken, its effects are
propagated automatically to all the other affected decisions in the model. This is
important to guarantee the consistency of selected options and taken decisions during
product derivation.

IDeburrer]
I' [_W. _ ei_g___h_.! L.1..c__o..nn e_c..t io .n - [H M I U s e d _]

d e b u t t e r . :: = t.r" u e T J
. t

I s °rl .. D e b u r r e r P r e d e c e W o i g h t L I C o n n e e t i o n - - t r u e .,
; /

/ I | (t tMl [t s(,~d :..:. f a l s e)
I t (D(,bur, ' t .~, ' l , 'c 'du(:(. ' - ' ;~o, ' . . . INI 'UT) {]
Mar'ki ngPt'(zd(;(:(;~:s()r-INI~I[JT; WeighJngMachine Man,tat W(;igh LEn t.r'y- tal.~(.~

/ t /

/ W e i q h i n g M a e h i n e = = t ~ u e ,,
i / " : /" \

\ .,,-

"~. i MarkingMachine I ManualWeightEntry}

• T
,,.
'....

. M a P k i n g M a c h i n e = = t r u e
1

...... ..~[M a r k i n g P r e d e c e s s o r]

Fig. 3 Example of a Decision Model based on an existing variability model of the
Siemens VAI subsystem Runout. Decision variables (nodes) are modeled with their

hierarchical and logical dependencies (edges) thereby forming a graph.

3 Adopting Method Engineering Concepts

Method Engineering offers important concepts for achieving a higher level of
flexibility: (i) Meta-models have proven to be useful to identify and describe the
concepts of a generic method, (ii) Generic methods can be adapted to the actual
situation of a project using concepts of Situational Method Engineering (SME) [15],
and (iii) Meta-tools provide a automated support for such adaptations. Our approach
is based on these concepts: we provide a generic meta-model, which has to be
adapted to domain-specific needs. We also offer tool support through adaptations of
our meta-tool DecisionKing.

Meta-model adaptation and evolution. Every domain has its own concepts,
dependencies, and rules. These characteristics are defined by a meta-model
specifying the attributes, dependencies, syntax, and semantics of these concepts. A
meta-model defines the "language" in which domain models can be expressed and
from which tools for writing domain models can be generated. While the meta-model
is specified by method experts, the models are developed by domain experts using
the generated domain-modeling tools. For example, in our approach the core meta-
model (Fig. 2) is refined using new asset types together with attributes and
relationships among them to support domain-specific concepts. The behavior of

Domain-specific Adaptations of Product Line Variability Modeling 243

model elements is defined by semantic classes, i.e., model element interpreters and
dependency resolvers for relationships between the assets.

Meta-models can change just like other models. Variability modeling tools and
techniques must be adaptable to provide an effective model-driven development
cycle. We allow domain evolution via updates to the meta-model [20] thereby also
adapting the variability modeling tool. This allows us to react to changing
requirements of the problem domain. For instance, the introduction of new asset
types as well as the modification of existing assets requires techniques for schema
evolution of already existing models, automatic adaptation of tools, and methods for
checking the semantic consistency of the evolved models. The evolution of the recta-
model is of particular interest when introducing a new product line. In order to
master the complexity, one can begin with a relatively simple meta-model which is
extended as the product line evolves.

Meta-tools and tool extensions. Meta-tools are needed to benefit from the
flexibility offered by meta-modeling and meta-model evolution. Such meta-tools
allow the generation of specific tools for a target environment. Recent developments
in the area of software tools such as the Eclipse platform allow the development of
extensible meta-tools that can be augmented with domain-specific capabilities. For
instance, the plug-in approach supports a compact core that can be extended with
plug-in components tailored to the users' needs to improve focus and reduce clutter
by providing a customized user environment [24]. In DOPLER we used a plug-in
approach to incorporate a domain-specific rule language, an off-the-shelf rule engine,
a model visualization system, and domain-specific tools for semi-automatically
creating initial decision models from existing assets.

4 DecisionKing" A Meta-Tool for Variability Modeling

DecisionKing can be configured to support domain-specific variability modeling
with domain meta-models specifying relevant characteristics of the application
domain. DecisionKing distinguishes itself from more general-purpose recta-tools like
MetaEdit+ [21] or Pounamu [11, 26] by treating variability as a primary modeling
concept. Also, the dependencies among model elements are not just plain trace links
as they are interpreted using a rule engine. The plug-in-based architecture of the tool
makes it flexible and extensible to domain-specific adaptations (cf. Fig. 4). The
result of adapting DecisionKing for a particular organization is a domain-specific
variability model editor for domain-specific assets. Implementing tool-extensions
allows a tight integration of this editor with current practices, standards, and existing
tools of the organization. Fig. 4 shows an overview of the DecisionKing's
capabilities for domain-specific adaptations:

Meta-model editor. An editor allows the creation of domain-specific meta-
models by specifying domain-specific asset types (e.g., components, services, data,
code, settings, documents, component descriptions), their attributes (e.g., description,
URL, cost), and dependencies (e.g., component requires component). Domain-
specific behavior can be added to model elements and relationships by providing
model element interpreters and dependency resolvers as domain-specific plug-ins.

244 Deepak Dhungana, Paul Griinbacher and Rick Rabiser

The meta-model adaptation framework (cfi Fig. 4) adjusts the variability modeling
editor according to the domain-specific recta-model.

Domain-specific tool extensions and plug-ins. The DecisionKing customization
framework supports two types of extensions:

(i) We provide extension points for adapting the functionality of the tool. Default
implementations of these capabilities can easily be replaced with domain-specific
plug-ins without having to touching the tool's implementation. We have created
default plug-ins of a rule language, a constraint editor, a rule engine, and a model
visualizer. For example, one can provide a model viewer with domain-specific
graphical layouts and symbols. Another example is the rule specification language
needed to model dependencies among decisions. The language used for this purpose
and choice of technology depends highly on the domain and current practices of the
organization. We have experimented with different domain-specific languages for
rule specification, using JBOSS ~ Rules as the rule engine. We have also tried JESS 2,
where we modeled our decisions as facts of an expert shell.

(ii) A generic extension point is provided in the form of a model API which
allows arbitrary tools to manipulate, use, or create models. This API has for instance
been useful to develop model importers, which analyze the existing asset base to
semi-automatically create asset models. The integration of existing domain-specific
tools is another important aspect.

(. . . . D e c i s i o n K i n g C u s t o m i z a t i o n F r a m e w o r k .
|
f Predefined extension points" Generic extension-point providing

Rule language/Evaluation engine, Model API for arbitrary domain-specific
Model visualizer, Constraint Editor tool-extensions

~---Meta-model Adaptation Framework . - ~

l Domain-specific asset types, attributes, and dependencies between them
Semantic asset interpreters and inter-asset dependency resolvers

~ - - - N e t a - m o d e l i n g Core . ,}

Meta-modet consisting of Support for meta-model evolution |
_ _ _ Assets a___nd2ecisions Schemz?volution for existing models J

Fig. 4 Overview of DecisionKing's adaptation mechanisms.

5 Case Studies

To demonstrate the feasibility of our approach, we present two case studies from
two different contexts. The goal of the case studies was to validate the generic meta-
model and to gain experience with method engineering concepts (cf. Section 3) in
practical settings. The case studies were also instrumental to demonstrate the
usefulness and usability of our tools in different contexts. We describe the meta-

I http://www.jboss.com/products/rules
2 http://herzberg.ca.sandia.gov/jess/

Domain-specific Adaptations of Product Line Variability Modeling 245

model adaptations and domain-specific extensions of our tools developed for the
case study contexts, as well as key experiences gained.

5.1 Case study 1" Industrial automation

Siemens VAP is the world's leading engineering and plant-building company for
the iron, steel, and aluminum industries. In an ongoing research project, we are
modeling the variability of their software product line for process automation,
optimization, supervision, and material tracking of continuous casting in steel plants.

"~errL.~12s 'e'al. me .: ~j

: C on I Ip,)ll"P-fll . "

A FA,~,nu~

A [t e s Q q l l iO l l _
1"1

,~ h K h l d e d l F

~, U R L

" Io ,pn luos -'. (n in i l) (,n~

• ,neqt l lnes .:. Pl , -) l~.e l ly .,~

condrnl,nate~ I . . ~ . c . i

" C , ~ l l t l l b l d e s l o .:> He,,.

I {e s,n.lll Ce

Hame

;. htch,d.dlF

Fi le N ; l l l l e

Plice

. l e t l l . l i l eS .. ' IR,~s,~tl112.

- C ~ . l h l b l l l ~ s I ~ ~ C m

c , H ~ r l l | l l l e % l o - R*,!
, .

P u ~ + e u W

~alune

,~ o ~ s c i tl+liOll

I I ICII i l le<II~

h e y

V a l q e

, ¢ ~ l l t r i b l l l e ~ T ~ _:.,.- I~P(

[iO l : l i i i~-i l l

A I I+] l l te

A {_i~ s c i i l t l lO l l

...'.. JI.. Iqde,dlF

• ll+tlllllil++5 > [hLI'LIlIII,~II

, L O l l l l J h l / l e % t ~ , : " [J t+ t

. g o l l t l i l q l T e s t , c , :+ I~o ~,

C n l f l l l l , t l l e s T o

<

t~: t art oriel

f o m p o n ~ , r R

r-~-,)c r ~: ~ IC~

A t t r , b u t e ~

; . d : r -~, .-sH'r :~ ,~t ,+

,.. / l , . n , e

D e s c t l t ~ l i .) n

,;, l u n u l , d e d l F

a I I R L

R e l a t i o n s h I p s

-,n e,q~ m .,.'s : t .¢

• J eq tn i r . r , s : Pr

• e l ; I I I I i I ~ I I I £ . sT I) :

• c . ~ i l t | t b t l l e S t ~ :

:.

[~.: c,¢._tlrrlcer ql~.',c , '~~

. :~~:~ I '~Q :

t :1

--.-, -- 4-

• plug 1 I i i ~ c . • ~. ~Tu: X , ' I .

p i ug i ..-,s_c 1 ~. mvc \x, wcAla]

.pluqi::~. elf. ,~vc~.mwcArc]

pluq~ns c12 • m v c . ~ r , v c E f f I

plugl n~_cl 2 ~muc \mwcgid

plugl r , s _ c 1L . o p t i,'r, iz~r". ~

D]ugl r.:_c i ~ opt ~ :r. lzcr".~

pluqln~, c12 opt1:r, lzer'~

plugz :-.~_c 1 f • opt lmlzer ,

pluglr, g_c 1 ~ , o p t 1

• ;,lu,~x:.-._t 12 , , i , r ; : t zg :P l y " ,

pluqlns elf o p t

plUqlnG Cl~ ©p%~,'r,~zcr'~

Dluqln ~ . cl : 'ODt l:r.~zer'~

plugln~_cl: opt ~.'r.~zer .~

;)lu,41:,~, , 1 ~ , , ; ,~ 1 3 . ~ : : ~ r " '

} . : - t e - r , -

• Uar~ , s ' +a r t : qand l c r~ i 3

HoJelC_uppl ~erBiO

• :~. Int er~'-xHe~t Lss zqnr~en :

• :~ I D_-,enera t or ~:iO

• :~ ,Zut. i~ t D~ccz ~ L o: B/9

I]T,-c~t. FTO.4.':c t. Tr l (C P ~ 1 ?'~.

; 5t~ -~r~dVor~.otTracker~LU

Tur re t %,,,5 t enBi,_-,
.......................... >-

N+~_,+ , p [, , . j i h ~ (i ~ I , l~wc / i p J b l c
.

. i _ ~ l

| 'Lt+rJ~-: T {~1 w h l t h c~ i .m ' . i ..-.~.::1

.... + f i j

..~. t o p,t l u b t J l ~ . T o ~.

... q l , . I c k i u ~ U S e r v e u . , l ~ ! : : ,~:Sb',ar~ ^

.: ,.: C a . ~ l

'.; ~: L 1 Ct~~

' ; r Czr..tetl

; . . ~,,~'=.v ~

k"' o l x : m ~

.7

..: >

~ - 0 e q u n e s

1 F, l u (j i n s _ d 2 i l | W c IIIV~. ::~. P~,~i'r,~ ""

:r - I J lung i rm_ d 2 o [, l i n . i z e ::,, H e ~ T

• +. (, i s l ' e l B [(l ::~ 5 h r ~

':c I ~ o l d F n r m a t M o d M B L (~':: LIC,~'~
- l 9~,,~,<

~i.: L r ~ El, .,.
i L ~ C ~ v

< > < >

Fig. 5 DecisionKing' s Meta-Model Editor (left) and Variability Model Editor (right). The
variability model on the right is based on the meta-model on the left.

Meta-model adaptation. In various workshops conducted with the engineers and
sales experts of Siemens VAI, we identified the types of core assets to be reused in
the product line: Components (specified using Spring 4 XML files), Properties
(configuration parameters for components), Resources (legacy hard- or software
elements, configuration files, etc), and Documents (e.g., descriptions of components,
notes, fragments of end user documentation, etc). We also identified the functional
dependency requires between assets. E.g., a software component may rely on
another component to function properly (similar modeling capabilities are available

3 http ://www.industry.siemens.com/metals/en/
4 http://www.springffamework.org/

246 Deepak Dhungana, Paul Grfinbacher and Rick Rabiser

in architecture description languages such as xADL [6]). A domain-specific resolver
for the relationship requires adds all components required by a certain component as
soon as the parent is added to the final system (i.e., by taking a decision during
product derivation), information about the deployment structure of the system is
modeled using the relationship contributesTo (e.g., a component contributes to the
sub-system it belongs to).

Domain-specific extensions and plug-ins. We developed a tree-based graphical
viewer for Siemens VAI variability models based on GEF viewers 5 which is
seamlessly integrated in the modeling environment of DecisionKing. In order to
represent the relationships between the decisions needed to derive a product, we have
implemented a default rule language with Java-like syntax that includes a simple
interpreter as part of the rule engine. As already mentioned, Siemens VAI's software
components are described using Spring XML. To expedite the modeling process and
to ensure consistency of the models with the technical solution we developed a
model importer extension capable of analyzing existing component descriptions and
creating an initial asset model based on these descriptions. This model importer
extension is also capable of suggesting decisions if two Spring XML describe two
different implementations of the same interface. The user can decide whether to
contribute the decision to the decision model.

Experiences. Despite its simplicity, the meta modeling core provided a good
match to describe the variability for the different asset types. A key to accelerate the
modeling process are automatic importers. Support for domain evolution turned out
to be essential because the characteristics of the problem domain needed to stabilize
in the initial stages of product line adoption. We were able to adapt our modeling
paradigm to these often-changing requirements. The concepts of domain evolution
are important for organizations introducing product lines. It allows them to start with
a simple domain-model and adapting it over time as new modeling aspects are
needed (cf. Section 4).

5.2 Case study 2" Multi-Stakeholder distributed Systems

Multi-stakeholder distributed systems (MSDS) are distributed systems in which
subsets of the nodes are designed, owned, or operated by distinct stakeholders [12].
MSDS are quickly gaining importance in today's networked world as, e.g., shown in
the field of service-oriented computing. We have been using the i* language [25] to
model a service-oriented multi-stakeholder distributed system in the travel domain to
validate the usefulness of i* for that purpose. A major goal of the project was to
enhance i* with capabilities for variability modeling in the context of our MSDS
framework [5].

Meta-model adaptation. We identified four asset types in our framework
relevant to variability modeling: goals, service types, services, and service instances.
The element Goal in DecisionKing's meta-model maps to the element "actor goal"
in i*. Different Service types contribute to fulfilling these goals. Available services
realizing a service type are modeled as a Service. Finally, available runtime
implementations of services can be modeled as Service instances. We also identified

5 http://www.eclipse.org/gef/

Domain-specific Adaptations of Product Line Variability Modeling 247

two kinds of relationships between the assets: A requires relationship is used
whenever the selection of a service leads to the selection of another service. This can
be the result of logical dependencies between goals, conceptual relationships
between service types, relationships between services, or functional dependencies
between service instances. The contributes To relationship is used to capture
structural dependencies between assets of different levels. Service instances for
example contribute to services. Services contribute to service types which
themselves contribute to goals. It is however also possible that a goal is split up into
sub-goals. Such compositional relationships between goals can also be modeled
using the eontributes To relationship.

.... "~ " . . ' ~ :~ S . r n~a

" i . ' ~ i : ~ : : : . . " I ' .~i;~::. ~ ' . . ' i~ , :+ i : ' !

]~ - . A l l r l ~n r _

I~ - Ve l S tO l l

_ (-,.+,..
I~ - [

,, Na l l ~

N l¢ l l l dPd lF

~, DeSC l ll~llnll , , .~

, racemes -:- tit> ,

- :. Semi te I yl~e

la lne

k) c lm le~ t l F

~+ A,.+~lal+Mtly

~, DOSC l l l> l l ,+n

• . l~.qllil+~S " $e

• ¢O ld r lh l l 1+s lo

- ~2 s,,,,,vi,-es

~, l , l ,~ l l l e

k i c l u , l ~d iF

A'+',si l,II +d i l~

,, Des~.~ i l , lh '~r l

I+P+IIIJ +~% -> .~e

. < o l d r i h l l t e ~ I u

;, N,ir11~

k~chM~ ,d l l :

• j. r e , l l U l ~ s

. ,~ CO l l t l i lm l t +~ l+

[I _ ~ : " ~ ~ , . , ' J " " "

.... "" ' 7 " . . ' : . " :.'. i ' , : ' " :'.

..,
~r ^

~dd new a t t r £u (e

- Hame

l uchv l ed l f

~, Av ,d l a l , i l i l } t

,x Dusc0 ip l i o~+

• " l ~q t l i l e s

• ¢~H i t t i L~ t l l e .~ ,

: I L l

. . . . - _ +

' . C IH I I |H I I I~ I $_'q'l|~: l l l o [lO l | ~ i ~S '> i s t , 11 l ce

, .": l:l]l,,lll ~s~l lCl l l Oltt[~ SllPlJ~11[

• . / Hl l l lh | l l $.+q | ,h l ¢)lllbll+ ~$~i$I , | I I~~ .

I de l l ? i? i l] , ' l l h+ l l 1,1+de F i l l ~ l e l l ~ l l i d

' h l ~ l l l l ? iC , l l l , ~ l l I , I~¢1e Lo l J i l i

+'+. P , i i l l l e l d W o l i l ~ i i l e SlllJ[++~ll

) P , ' l) l l l~ l l t I i~/Cl+hlll l ; , l l(l

."-. P,l'.wqli~41t t ly m l + l ¢ y l l , l l S l + l

.~ ~ 1 ~ A s y t K h l o f l O l l S ~III,I)i,II

11 ,+P+I q+~l+VlC e 4" ,illlllil ICJ

.) l l , l , ~ l S+I'++C.+ [k,lltt

[l ,~V+l SP l ' ~ l c+ I h+ l+ l

R e t ~ l el l l e s

',arve ~: l l '+ , | i l ,~, ' : ,yh+:| l l¢~i '~t t ! ; S l i p | ' ~,,:pul:.i,C
........

. i !~. j

: ,,.:o rul

. j - t o n t l l b t l t e ~ , I o

'.}_. t.sy.,¢l,sct,~ o r , o . s c ,J~ ~:!r~Icm+,.<~ ^

.~..i~a-n#

..: ,-. < >

?-, ,_+ougm~r $ ~ , a h r ~ . ~ "-

}> tXmv.~n S ~ c l a , u m , . ~ As~

,;+ I~'+',M~etmo Modo F+'O

• .) Pa.~n~e~ b~¢ Cr~Clt c~rd

'havel $ecv~ze C~mx~r~ ""
• : >

Fig. 6 DecisionKing's Meta-Model Editor (left) and Variability Model Editor (fight). The
variability model on the right is based on the meta-model for service-oriented systems on the

left.

Domain-specific extensions and plug-ins. The dependencies among decisions
were expressed using a domain-specific language; the rules were transformed to
JBOSS rules using a rule-converter. We use the JBOSS rule engine to evaluate the
dependencies among decisions and the inclusion conditions between assets and
decisions (cf. Section 2). We have not yet implemented a specific visualization for
service-oriented variability models. The model can however be visualized using the
default model viewer. We will develop a connector to tools for the i* modeling
approach, e.g., the REDEPEND tool [9] that is capable of storing i* models in XML.

Experiences. The use of DecisionKing in the project confirmed the need for a
general-purpose model API that allows arbitrary external tools to update and query
the variability model. This capability will a]low us to use DecisionKing as one
component in our framework for service monitoring and adaptation. We are planning
to utilize variability models to support the controlled runtime adaptation of service-

248 Deepak Dhungana, Paul Grtinbacher and Rick Rabiser

oriented systems, e.g., by replacing a malfunctioning service with a similar service
specified in the variability model.

6 Related Work

We focus the discussion of related work on variability modeling approaches and
tools, meta-tools, and plug-in frameworks.

Variability modeling approaches and tools. Many variability modeling
approaches have been proposed. Our work was strongly influenced by the work of
John and Schmid [19] who presented an approach for orthogonal variability
modeling and management across different stages of the software development life-
cycle. Similar to their approach we also use decision models for describing the
variation of products in a product line. Bachmann et al. [1] have described an
approach for representing variability in a uniform way separated from the
representation of concrete assets. Their view on variability is similar to our approach.
Berg et al. [2] emphasize on the importance of mapping variability between the
problem and solution space, an aspect we also address with our approach. Numerous
commercial and research tools for variability modeling and management have been
developed, for example: Pure: :variants [18] by pure-systems GmbH is a variant and
variability management tool for managing software product lines based on feature
models and family models. Feature models describe the variability whereas asset
modeling is supported by family models describing the software in terms of
architectural elements. The family model is extensible; however no specialization
hierarchy for the model elements is supported. No explicit support is provided to
model domain-specific asset types such as hardware resources, data models,
development process guidance, libraries, etc. Gears [13] by Big Lever Software Inc.
is a development environment for maintaining product family artifacts and
variability models. Variability is handled at the level of files and captured in terms of
features, product family artifacts, and defined products that can be derived from the
variability model. The tool supports the identification of common and variable
source code files. Our approach differs form this because we treat all assets as model
elements and don't deal with them at file level.

Meta-Tools. Meta-tools can be seen as generators for domain-specific tools.
Examples for Meta-tools are MetaEdit+ [21] and Pounamu [11, 26]. MetaEdit+ [21]
is a tool for designing a modeling language, its concepts, rules, notations, and
generators. The language definition is stored as a meta-model in the MetaEdit+
repository. MetaEdit+ follows the given modeling language definition and
automatically provides full modeling tool functionality like diagramming editors,
browsers, generators, or multi-user support. Pounamu [26] is a meta-tool for the
specification and generation of multiple-view visual tools. The tool permits rapid
specification of visual notational elements, the tool information model, visual
editors, the relationships between notational and model elements, and behavior.
Tools are generated on the fly and can be used for modeling immediately. Changes
to the meta-tool specification are immediately reflected in tool instances. Typically
meta-tools provide support for their target domain environments but are restricted in

Domain-specific Adaptations of Product Line Variability Modeling 249

their flexibility and integration capabilities with other tools [23]. They do not treat
variability as a prime modeling concept, which hampers their use for product line
modeling.

Plug-in frameworks. Plug-in concepts are widely used in modem development
platforms. DecisionKing is an Eclipse 6 Rich Client Application based on the Eclipse
plug-in platform [24]. it uses the platform's plug-in mechanisms to define extension
points allowing the integration of different domain-specific plug-ins.

7 Conclusions and FurtherWork

In this paper we described the DOPLER approach which adopts method
engineering concepts supporting the creation of domain-specific variability modeling
tools. We presented DecisionKing, a rneta-tool that can easily be tailored to a
particular organization's needs by refining its core meta-model and exploiting its
plug-in architecture. DOPLER provides tools for the creation and management of the
models. The approach does not assume any particular approach to software product
line engineering beyond the basic tenets implied by the definition of a software
product line. We showed the adaptability of the approach using two case studies in
different domains. It is noteworthy mentioning that an automated approach is only as
good as the model underlying the approach. Meta-model evolution capabilities allow
us to start with a small language first that can be extended in the project after the
team has gained some experience and confidence.

We are currently working on the following issues and will report about them in
the future:

Use of variability models to support runtime adaptation of systems. We are
currently adapting DecisionKing to the domain of ERP systems. We are developing
plug-ins allowing to adapt an ERP system at runtime based on variability models.

Validation of the model evolution capability. Our model evolution framework is a
great help in coping with changing architectures and implementations of a product
line under development. We are currently refining and evolving the variability
models for Siemens VAI to further validate our capabilities for model evolution and
meta-model evolution.

Improvement of generic visualization support. We intend to make the current
model visualization more generic. The graphical representation of a model has to be
changed for different domains because of domain-specific symbols and layouts. This
enables the use of symbols and layouts which stakeholders of the domain already
know and understand. In particular, we are interested in using graphical ways to
specify variability to overcome shortcomings of a purely text-based approach.

6 http://eclipse.org

250 Deepak Dhungana, Paul Griinbacher and Rick Rabiser

Acknowledgements

This work has been conducted in cooperation with Siemens VAI and has been
supported by the Christian Doppler Forschungsgesellschaft, Austria. We would like
to express our sincere gratitude to Klaus Lehner, Christian Federspiel, and Wolfgang
Oberaigner from Siemens VAI for their support and the valuable insights.

References

1. F. Bachmann, M. Goedicke, J. Leite, R. Nord, K. Pohl, B. Ramesh, and A. Vilbig, "A Meta-
model for Representing Variability in Product Family Development," in Lecture Notes in
Computer Science: Software Product-Family Engineering. Siena, Italy: Springer Berlin /
Heidelberg, 2003, pp. 66-80.

2. K. Berg, J. Bishop, and D. Muthig, "Tracing Software Product Line Variability- From
Problem to Solution Space," presented at 2005 annual research conference of the South
African institute of computer scientists and information technologists on IT research in
developing countries, White River, South Africa, 2005.

3. G. B6ckle, P. Clements, J. D. McGregor, D. Muthig, and K. Schmid, "Calculating ROI for
Software Product Lines," IEEE Software, vol. 21, pp. 23-31,2004.

4. P. Clements and L. Northrop, Software Product Lines: Practices and Patterns: SEI Series in
Software Engineering, Addison-Wesley, 2001.

5. R. Clotet, F. Xavier, P. Griinbacher, L. L6pez, J. Marco, M. Quintus, and N. Seyff,
"Requirements Modelling for Multi-Stakeholder Distributed Systems: Challenges and
Techniques. ," presented at RCIS'07: 1st IEEE Int. Conf. on Research Challenges in
Information Science, Quarzazate, 2007.

6. E. M. Dashofy and A. van der Hoek, "Representing Product Family Architectures in an
Extensible Architecture Description Language," presented at 4th International Workshop
on Software Product-Family Engineering, Bilbao, Spain, 2001.

7. D. Dhungana, P. Gruenbacher, and R. Rabiser, "DecisionKing: A Flexible and Extensible
Tool for Integrated Variability Modeling," in First International Workghop on Variability
Modelling of Software-intensive Systems - Proceedings, K. Pohl, P. Heymans, K.-C. Kang,
and A. Metzger, Eds. Limerick, Ireland: Lero - Technical Report 2007-01, 2007, pp. 119-
128.

8. D. Dhungana, R. Rabiser, and P. Griinbacher, "Decision-Oriented Modeling of Product Line
Architectures," presented at Sixth Working IEEE/IFIP Conference on Software
Architecture, Mumbai, India, 2007.

9. G. Grau, X. Franch, N. A. M. Maiden, and " REDEPEND-REACT: an architecture analysis
tool," presented at 13th IEEE International Conference on Requirements Engineering,
2005. Proceedings.

10. P. Griinbacher, D. Dhungana, N. Seyff, M. Quintus, R. Clotet, F. Xavier, L. L6pez, and J.
Marco, "Goal and Variability Modeling for Service-oriented System: Integrating i* with
Decision Models," presented at Software and Services Variability Management Workshop:
Concepts, Models, and Tools, Helsinki, 2007.

11. J. Grundy, J. Hosking, N. Zhu, and N. Liu, "Generating Domain-Specific Visual Language
Editors from High-level Tool Specifications " presented at 21st IEEE International
Conference on Automated Software Engineering (ASE'06), Tokyo, Japan, 2006.

Domain-specific Adaptations of Product Line Variability Modeling 251

12. R. J. Hall, "Open modeling in multi-stakeholder distributed systems: requirements
engineering for the 21st Century," presented at First Workshop on the State of the Art in
Automated Software Engineering, Irvine, California, 2002.

13. C. W. Krueger, "Software Mass Customization," BigLever Software, Inc 2005.
14. C. W. Krueger, "New Methods in Software Product Line Development," presented at 10th

International Software Product Line Conference, Baltimore, USA, 2006.
15. K. Kumar and R. J. Welke, "Method Engineering: a proposal for situation-specific

methodology construction " in Systems Analysis and Design : A Research Agenda: John
Wiley & Sons, Inc., 1992 pp. pp257-268.

16. D. Muthig, I. John, M. Anastasopoulos, T. Forster, J. D6rr, and K. Schmid, "GoPhone - A
Software Product Line in the Mobile Phone Domain," IESE-Report No. 025.04/E, 2004.

17. L. Northrop, "SEI's Software Product Line Tenets," IEEE Software, vol. 19, pp. 32-40,
2002.

18. pure-systemsGmbH, "Technical White Paper, Variant Management with pure: :variants,,"
2004.

19. K. Schmid and i. John, "A Customizable Approach to Full-Life Cycle Variability
Management," Journal of the Science of Computer Programming, Special Issue on
Variability Management, vol. 53, pp. 259-284, 2004.

20. D. C. Schmidt, A. Nechypurenko, and E. Wuchner, "MDD for Software Product-lines:
Fact or Fiction?," presented at 8th international Conference on Model driven Engineering
Languages and Systems (MODELS '05), Jamaica, 2005.

21. J.-P. Tolvanen and M. Rossi, "MetaEdit+: defining and using domain-specific modeling
languages and code generators," presented at Conference on Object Oriented Programming
Systems Languages and Applications, Anaheim, CA, USA, 2003.

22. F. van der Linden, "Software Product Families in Europe: The Esaps & Cafe Projects,"
IEEE Software, vol. 19, pp. 41-49, 2002.

23. A. I. Wasserman, "Tool integration in software engineering environments," presented at
Proceedings of the international workshop on environments on Software engineering
environments Chinon, France, I990

24. R. Wolfinger, D. Dhungana, H. Pr~ihofer, and H. M6ssenb6ck, " A Component Plug-in
Architecture for the .NET Platform," presented at Proceedings of 7th Joint Modular
Languages Conference, (JMLC'06), Oxford, UK, 2006.

25. E. S.-K. Yu., "Modeling Strategic Relationships for Process Reengineering," vol. PhD
Thesis. Toronto: University of Toronto 1996.

26. N. Zhu, J. Grundy, and J. Hosking, " Pounamu" A Meta-Tool for Multi-View Visual
Language Environment Construction," presented at 2004 IEEE Symposium on Visual
Languages and Human Centric Computing, 2004.

