
Chapter 7 

A METHOD FOR DETECTING LINUX 
KERNEL MODULE ROOTKITS 

Doug Wampler and James Graham 

Abstract Several methods exist for detecting Linux kernel module (LKM) rootk-
its, most of which rely on a priori system-specific knowledge. We pro­
pose an alternative detection technique that only requires knowledge of 
the distribution of system call addresses in an uninfected system. Our 
technique relies on outlier analysis, a statistical technique that com­
pares the distribution of system call addresses in a suspect system to 
that in a known uninfected system. Experimental results indicate that 
it is possible to detect LKM rootkits with a high degree of confidence. 

Keywords: Linux forensics, rootkit detection, outlier analysis 

!• Introduction 
The primary goals of an intruder are to gain privileged access and 

to maintain access to a target system. A rootkit is essentially a set of 
software tools employed by an intruder after gaining unauthorized access 
to a system. It has three primary functions: (i) to maintain access to the 
compromised system; (ii) to attack other systems; and (iii) to conceal or 
modify evidence of the intruder's activities [5]. 

Detecting rootkits is a specialized form of intrusion detection. Effec­
tive intrusion detection requires the collection and use of information 
about intrusion techniques [21]. Likewise, certain a priori knowledge 
about a system is required for effective Linux rootkit detection. Specifi­
cally, an application capable of detecting unauthorized changes must be 
installed when the system is deployed (as is typical with host-based in­
trusion detection), or system metrics must be collected upon system de­
ployment, or both. But the time, effort and expertise required for these 
activities is significant. It should be noted that some Linux rootkit de­
tection methodologies are not very effective when installed on an infected 

Please use the following format when citing this chapter: 

Wampler, D., Graham, J., 2007, in IFIP International Federation for Information Processing, Volume 242, Advances in 
Digital Forensics III; eds. P. Craiger and S Slienoi;(Boston: Springer), pp. 107-116. 



108 ADVANCES IN DIGITAL FORENSICS III 

system. On the other hand, rootkit detection apphcations for Microsoft 
Windows are typically based on heuristics; these applications may be 
installed to detect kernel rootkits even after infection has occurred. 

This paper focuses on the detection of Linux kernel rootkits. The 
methodology engages a statistical technique based on knowledge about 
the operating system and architecture instead of a priori system-specific 
knowledge required by most current rootkit detection techniques. 

2. Background 
This section presents an overview of rootkits, an analysis of rootkit at­

tack techniques, and a summary of existing rootkit detection techniques. 

2.1 Rootkits 
The earliest rootkits date back to the early 1990s [20]. Some compo­

nents (e.g., log file cleaners) of known rootkits were found on compro­
mised systems as early as 1989. SunOS rootkits (for SunOS 4.x) were 
detected in 1994, and the first Linux rootkits appeared in 1996 [5]. Linux 
kernel module (LKM) rootkits were first proposed in 1997 by Halfiife [5]. 
Tools for attacking other systems, both locally and remotely, began ap­
pearing in rootkits during the late 1990s. 

In 1998, Cesare [4] proposed the notion of non-LKM kernel patching. 
He discussed the possibility of intruding into kernel memory without 
loadable kernel modules by directly modifying the kernel image (usually 
in /dev/mem) [5]. The first Adore LKM rootkit, which was released 
in 1999, altered kernel memory via loadable kernel modules. The KIS 
Trojan and SucKit rootkits were released in 2001; these rootkits directly 
modified the kernel image. In 2002, rootkits began to incorporate sniffer 
backdoors for maintaining access to compromised systems [5]. 

2.2 Rootkit Classification 
Rootkits are generally classified into three categories. The first and 

simplest are binary rootkits, which are composed of Trojaned system 
binaries. A second, more complex, category includes library rootkits -
Trojaned system libraries that are placed on systems. These two cat­
egories of rootkits are relatively easy to detect: either by manually in­
specting the /p roc file system or by using statically-linked binaries. 

The third, and most insidious, category of rootkits constitutes kernel 
rootkits. There are two subcategories of kernel rootkits: (i) loadable 
kernel module rootkits (LKM rootkits), and (ii) kernel patched rootkits 
that directly modify the memory image in /dev/mem [22]. Kernel rootkits 
attack system call tables by three known mechanisms [12]: 



Wampler & Graham 109 

• Sys tem Call Table Modification: The attack modifies certain 
addresses in the system call table to point to the new, malicious 
system calls [8]. 

• Sys tem Call Target Modification: The attack overwrites the 
legitimate targets of the addresses in the system call table with 
malicious code, without changing the system call table. The first 
few instructions of the system call function are overwritten with a 
jump instruction to the malicious code. 

• System Call Table Redirection: The attack redirects all refer­
ences to the system call table to a new, malicious system call table 
in a new kernel address location. This attack evades detection by 
many currently used tools [12]. System call table redirection is 
a special case of system call target modification [1] because the 
attack modifies the system_call function that handles individual 
system calls by changing the address of the system call table in 
the function. 

2,3 Rootkit Detection 
The first kernel rootkits appeared as malicious loadable kernel mod­

ules (LKMs). UNIX processes run either in user space or kernel space. 
Application programs typically run in user space and hardware access is 
typically handled in kernel space. If an application needs to read from a 
disk, it uses the openO system call to request the kernel to open a file. 
Loadable kernel modules run in kernel space and have the ability to mod­
ify these system calls. If a malicious loadable kernel module is present in 
kernel space, the openO system call will open the requested file unless 
the filename is "rootkit" [5, 20]. Many systems administrators counter 
this threat by simply disabling the loading of kernel modules [20]. 

Host-based intrusion detection systems, e.g.. Tripwire and Samhain, 
are very effective at detecting rootkits [20]. Samhain also includes func­
tionality to monitor the system call table, the interrupt description table, 
and the first few instructions of every system call [5]. This is an example 
of using a priori knowledge about a specific system in rootkit detection. 

The Linux Intrusion Detection System (LIDS) is a kernel patch that 
requires a rebuild (recompile) of the kernel. LIDS can offer protection 
against kernel rootkits through several mechanisms, including sealing 
the kernel from modification; preventing the loading/unloading of kernel 
modules; using immutable and read-only file attributes; locking shared 
memory segments; preventing process ID manipulation; protecting sen­
sitive / d e v / files; and detecting port scans [6]. 



110 ADVANCES IN DIGITAL FORENSICS III 

Another detection method is to monitor and log program execution 
when execveO calls are made [6]. Remote logging is used to maintain a 
record of program execution on a system, and a Perl script implemented 
to monitor the log and perform actions such as sending alarms or killing 
processes in order to defeat the intruder [6]. 

Several applications are available for detecting rootkits (including ker­
nel rootkits). These include chk roo tk i t [13], k s t a t [2], r k s t a t [23], St. 
Michael [23], s c p r i n t [19], and kern_check [17]. c h k r o o t k i t is a user-
space signature-based rootkit detector while others, e.g., k s t a t , r k s t a t 
and St. Michael, are kernel-space signature-based detectors. These tools 
typically print the addresses of system calls directly from /dev/kmem 
and/or compare them with the entries in the System.map file [18]. This 
approach relies on a trusted source for a priori knowledge about the sys­
tem in question in that the systems administrator must install these tools 
before the system is infected by a rootkit. Since chk roo tk i t , k s t a t , 
r k s t a t and St. Michael are signature-based rootkit detectors, they suf­
fer from the usual shortcomings of signature-based detection. The re­
maining two tools, s c p r i n t and kern_check, are utilities for printing 
and/or checking the addresses of entries in system call tables. 

Some rootkit detection techniques count the numbers of instructions 
used in system calls and compare them with those computed for a 
"clean" system [16]. Other detection techniques involve static analy­
sis of loadable kernel module binaries [11]. This approach leverages the 
fact that the kernel exports a well-defined interface for use by kernel 
modules; LKM rootkits typically violate this interface. By carefully an­
alyzing the interface, it is possible to extract an allowed set of kernel 
modifications. 

Until recently, rootkit detection involved software-based techniques. 
Komoku Inc. now offers a low-cost PCI card ("CoPilot") that monitors 
a system's memory and file system [10, 14]. However, CoPilot uses 
"known good" MD5 hashes of kernel memory and must be installed 
and configured on a "clean" system to detect future deployments of 
rootkits [15]. 

Spafford and Carrier [3] have presented a technique for detecting bi­
nary rootkits using outlier analysis on file systems in an offline manner. 
Our technique is unique in that it permits the real-time detection of 
kernel rootkits via memory analysis. 

3, LKM Rootkit Detection Technique 

Our technique for detecting LKM rootkits does not require the prior 
installation of detection tools or other software. Trojaned system call 



Wampler & Graham 111 

addresses (modified addresses) are identified without using any a priori 
knowledge about a system. In particular, rootkits are detected by com­
paring the distribution of system call addresses from a "suspect" system 
with the distribution of system call addresses from a known "good" (un­
infected) system. Outlier analysis is used to identify infected systems. 
This method not only identifies the presence of a rootkit, but also the 
number of individual attacks on a kernel and their locations. 

In the following, we demonstrate that the distribution of system call 
table addresses fits a well-known distribution for more than one archi­
tecture. Also, we show how to detect Trojaned system call addresses 
(the result of rootkit activity) using outlier analysis on the underlying 
distribution of table addresses from an uninfected system. 

3.1 Model Stability 
A fundamental assumption of our statistical approach to rootkit de­

tection is that the distribution of system call addresses for a specific 
kernel version is similar across architectures. This is a necessary con­
dition if analysis is to occur without a priori knowledge of the system. 
We tested this hypothesis by conducting preliminary experiments on a 
32-bit Intel machine and a 64-bit SPARC machine with different kernel 
compilation options. The experimental results are presented in Tables 
1 and 2. The two tables show the Anderson-DarUng (AD) goodness of 
fit scores for various distributions. The better the goodness of fit of a 
distribution, the lower its AD score. 

The results show that, while the Largest Extreme Value distribution 
best fits the system call addresses for the 32-bit Intel machine (Table 1), 
it is not the best fit for the 64-bit SPARC machine (Table 2). However, 
the Largest Extreme Value is still a good fit (and a close second) for 
the SPARC machine. Although more observations are required to make 
claims about the goodness of fit of system call addresses for diff'erent 
computer systems, our preliminary results suggest that the claims may 
be justified, especially for architectures that use the same kernel version, 

3.2 Experimental Results 
When an LKM rootkit is installed, several entries in the system call 

table are changed to unusually large values (indicative of the system 
call table modification attack discussed previously). This changes the 
goodness of fit score for the Largest Extreme Value distribution - the 
data no longer has such a good fit. Because of the Linux memory model 
and the method of attack, the outliers are on the extreme right side 
of the distribution [1]. If these outliers are eliminated one by one, the 



112 ADVANCES IN DIGITAL FORENSICS III 

Table 1. Distribution fits for a 32-bit Intel machine (kernel 2.4.27). 

Distribution 

Largest Extreme Value 
3-Parameter Gamma 
3-Parameter Loglogistic 
Logistic 
Loglogistic 
3-Parameter Lognormal 
Lognormal 
Normal 
3-Parameter Weibull 
Weibull 
Smallest Extreme Value 
2-Parameter Exponential 
Exponential 

AD Score 

5.038 
6.617 
7.022 
7.026 
7.027 

10.275 
10.348 
10.350 
49.346 
49.465 
49.471 
81.265 

116.956 

Table 2. Distribution fits for a 64-bit SPARC machine (kernel 2.4.27). 

Distribution 

Loglogistic 
Largest Extreme Value 
Logistic 
Lognormal 
Gamma 
Normal 
3-Parameter Gamma 
3-Parameter Weibull 
3-Parameter Loglogistic 
Weibull 
3-Parameter Lognormal 
Smallest Extreme Value 
2-Parameter Exponential 
Exponential 

AD Score 

10.599 
11.699 
11.745 
19.147 
20.460 
23.344 
26.456 
32.558 
34.591 
36.178 
37.468 
41.015 
52.604 

102.787 

distribution slowly moves from an AD score near 100 to very close to 
the original AD score of approximately five for the 32-bit Intel machine 
(Table 1). 

This idea is the basis of our technique for detecting LKM root kits. 
The rootkits modify memory addresses in the system call table, which 
originally fit the Largest Extreme Value distribution very well (AD score 
of approximately five). The results appears to hold for multiple archi-



Wampler & Graham 113 

tectures. In fact, our experiments on the Intel 32-bit and SPARC 64-bit 
architectures yield similar results. 

In the first experiment, we installed the Rkit LKM rootkit version 1.01 
on a 32-bit Intel machine with Linux kernel version 2.4.27. We chose Rkit 
1.01 because it attacks only one system call table entry (sys_setuid) . If 
only one outlier can be detected using this method, rootkits that attack 
several system call table entries may be detected more easily. 

The 32-bit Intel computer running Linux kernel 2.4.27 has a 255-entry 
system call table that fits the Largest Extreme Value distribution with an 
AD goodness of fit score of 5.038 (Table 1). When Rkit 1.01 is installed, 
the AD score changes to 99.210 (Table 3). Clearly, an outlier is present 
in the form of the sys_se tu id system call table entry with a much higher 
memory address. In fact, the rootkit changes the sys_se tu id system call 
table entry address from 0xC01201F0 (good value) to 0xD0878060. The 
decimal equivalents are 3,222,405,616 (good value) and 3,498,541,152 
(approximately 8.5% higher than the good value). 

Table 3. Rkit 1.01 results. 

System AD Score 

Clean 5.038 
Trojaned 99.210 
Trojans Removed 4.968 

As shown in Table 3, when one system call table address is Trojaned, 
the AD goodness of fit score for the Largest Extreme Value distribu­
tion changes from 5.038 to 99.210, an increase of approximately 1,970%. 
When the Trojaned sys_se tu id memory address is removed, the AD 
score improves to 4.968, within 1.4% of the original score of 5.038. 

Table A. Knark 2.4.3 results. 

System AD Score 

Clean 5.038 
Trojaned 109.729 
Trojans Removed 5.070 

In the second experiment, we installed the Knark LKM rootkit version 
2.4.3 on the same test system (32-bit Intel computer running Linux 
kernel version 2.4.27). The Knark 2.4.3 rootkit attacks nine different 
memory addresses in the system call table. As shown in Table 4, the 



114 ADVANCES IN DIGITAL FORENSICS III 

Figure 1. AD score improvement as outliers are removed (Knark 2.4.3). 

results are similar to those obtained in the case of Rkit 1.01: a 2,178% 
decrease in the AD goodness of fit, followed by a return to within 0.7% of 
the original AD score when the outlying Trojaned addresses are removed. 

Also in the second experiment, as the Trojaned system addresses are 
removed one by one, the AD score improves, but the improvements are 
not dramatic until the final outlier is removed (Figure 1). This is an 
example of the concept of "complete detection." Thus, a rootkit that 
Trojans only one system call table address can be successfully detected. 
Moreover, it is possible to detect not just some or most Trojaned system 
call addresses, but all Trojaned system call addresses. 

4. Conclusions 
This research was limited in that only LKM rootkits were investigated 

and only one operating system (Linux kernel version 2.4.27) was consid­
ered for two architectures (Intel 32-bit and SPARC 64-bit machines). 
Nevertheless, our experiments demonstrate that it is possible to detect 
these rootkits with a high degree of confidence using outlier analysis. 

Our future work will evaluate the generality of the rootkit detection 
technique by testing it on other operating systems, architectures and 



Wampler & Graham 115 

LKM rootkits. Also, we will attempt to verify the principal assumption 
that system call addresses in a system call table have (or closely fit) the 
same distribution for all architectures and kernel versions. 

Other avenues for future research involve testing systems with security 
patches that could modify the kernel (and system call table entries), 
and developing techniques for detecting new kernel rootkits that modify 
system call table targets instead of addresses. 

Acknowledgemen t s 

This research was supported in part by a grant from the U.S. Depart­
ment of Homeland Security through the Kentucky Critical Infrastructure 
Protection Institute. The authors would also hke to thank Drs. Adel El-
maghraby, Mehmed Kantardzic and Gail DePuy for their suggestions. 

References 

[1 

[2 

[3 

[4] 

[5] 

[6: 

[7 

[9; 

M. Burdach, Detecting rootkits and kernel-level compromises in 
Linux (www.securityfocus.com/infocus/1811), 2004. 

A. Busleiman, Detecting and understanding rootkits (www.net-
security. org/dl/articles/Detecting_and-Understanding_rootkits.txt) 
2003. 

B. Carrier and E. Spafford, Automated digital evidence target def­
inition using outlier analysis and existing evidence, Proceedings of 
the Fifth Annual Digital Forensics Research Workshop (www.dfrws 
.org/2005/proceedings/index.html), 2005. 

S. Cesare, Runtime kernel patching (reactor-core.org/runtime-ker 
nel-pat ching. html). 

A. Chuvakin, An overview of Unix rootkits, iALERT White Paper, 
iDefense Labs (www.megasecurity.org/papers/Rootkits.pdf), 2003. 

D. Dittrich, Root kits and hiding files/directories/processes after 
a break-in (stafF.washington.edu/dittrich/misc/faqs/rootkits.faq), 
2002. 

Honeynet Project, Know your enemy: The motives and psychol­
ogy of the black hat community (www.linuxvoodoo.org/resources 
/security/motives), 2000. 

P. Hutto, Adding a syscall (www-static.cc.gatech.edu/classes/AY 
2001/cs3210_fall/labs/syscalls.html), 2000. 

Integrity Computing, Network security: A primer on vulnerability, 
prevention, detection and recovery (www.integritycomputing.com 
/securityl.html). 

http://www.securityfocus.com/infocus/1811
http://www.net-
http://www.dfrws
http://reactor-core.org/runtime-ker
http://www.megasecurity.org/papers/Rootkits.pdf
http://staff.washington.edu/dittrich/misc/faqs/rootkits.faq
http://www.linuxvoodoo.org/resources
http://gatech.edu/classes/AY
http://www.integritycomputing.com


116 ADVANCES IN DIGITAL FORENSICS III 

[10] Komoku Inc. (www.komoku.com/technology.shtml). 

[11] C. Kruegel, W. Robertson and G. Vigna, Detecting kernel-level 
rootkits through binary analysis (www.cs.ucsb.edu/~wkr/pubhca 
tions/acsac20041krmpresentation.pdf), 2004. 

[12] J. Levine, B. Grizzard and H. Owen, Detecting and categorizing 
kernel-level rootkits to aid future detection, IEEE Security & Pri­
vacy, pp. 24-32, January/February 2006. 

[13] M. Murilo and K. Steding-Jessen, chk roo tk i t (www.chkrootkit 
.org), 2006. 

[14] R. Naraine, Government-funded startup blasts rootkits (www.eweek 
.com/article2/0,1759,1951941,00.asp), April 24, 2006. 

[15] N. Petroni, T. Fraser, J. Molina and W. Arbaugh, Copilot - A co­
processor-based kernel runtime integrity monitor, Proceedings of the 
Thirteenth USENIX Security Symposium, pp. 179-194, 2004. 

[16] J. Rutkowski, Execution path analysis: Finding kernel based rootk­
its (doc.bughunter.net/rootkit-backdoor/execution-path.html). 

[17] Samhain Labs, kern_check.c (la-samhna.de/library/kern_check.c). 

[18] J. Scambray, S. McClure and G. Kurtz, Hacking Exposed: Net­
work Security Secrets and Solutions, McGraw-Hill/Osborne, Berke­
ley, California, 2001. 

[19] SecurityFocus, s c p r i n t . c (downloads.securityfocus.com). 

[20] E. Skoudis, Counter Hack: A Step-by-Step Guide to Computer At­
tacks and Effective Defenses, Prentice-Hall, Upper Saddle River, 
New Jersey, 2001. 

[21] W. Stallings, Network Security Essentials, Prentice-Hall, Upper 
Saddle River, New Jersey, 2003. 

[22] R. Wichmann, Linux kernel rootkits (coewww.rutgers.edu/wwwl 
/linuxclass2006//documents/kernel_rootkits/index.html), 2002. 

[23] D. Zovi, Kernel rootkits (www.sans.org/reading_room/whitepapers 
/threats/449.php), SANS Institute, 2001. 

http://www.komoku.com/technology.shtml
http://www.cs.ucsb.edu/~wkr/pubhca
http://www.chkrootkit
http://www.eweek
http://doc.bughunter.net/rootkit-backdoor/execution-path.html
http://downloads.securityfocus.com
http://coewww.rutgers.edu/wwwl
http://www.sans.org/reading_room/whitepapers



