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in gates and wires (except for some particular wires). Such 
asynchronous circuits offer high robustness but do not perform well to 
automatically synthesize and optimize. This paper presents a new 
methodology to model and synthesize data path QDI circuits. The model used 
to represent circuits is based on Multi-valued Decision Diagrams and allows 
obtaining QDI circuits with two-input gates. Optimization is achieved by 
applying a technology mapping algorithm with a library of asynchronous 
standard cells called TAL. This work is a part of the back-end of our synthesis 
flow from high level language. Throughout the paper, a digit-slice radix 4 
ALU is used as an example to illustrate the methodology and show the results. 

1 Introduction 

Asynchronous circuits do not have a global signal to synchronize them. 
Synchronization between blocks is locally done. Those circuits show very interesting 

reusability, etc [1]. 

This work is part of the TAST [2, 3] (Tima Asynchronous Synthesis Tool) 

independently of delays in gates and wires, apart from the assumption that some 
forks are isochronic. This kind of asynchronous circuit is particularly robust. But 
robustness has a cost; these circuits usually have more transistors than the others, 
especially when standard cells are targeted. Many efforts are directed towards circuit 

TAST are quasi-delay insensitive (or QDI [4]). QDI circuits are functionally correct 

properties such as low power consumption, noise emission, security, robustness, 
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optimization and transistor reduction; one of the main difficulties is to preserve the 
property of quasi-delay insensitivity [5-9]. 

2 Contributions 

This paper presents a complete standard cells based design flow we have developed 
as illustrated in Fig. 1. Our method uses Multi-valued Decision Diagrams as a model 
of the circuit that can be optimized while preserving the QDI property. Firstly, the 
model is generated from a CHP description. Secondly, the model is optimized. A 
two-input gates circuit is synthesized from the model. Thirdly, a technology mapping 
algorithm produces the final circuit, using gates from a library of standard 
asynchronous cells called TAL (TIMA Asynchronous Library). 

 
Fig. 1. Asynchronous Design Flow 

This design flow includes a general technology mapping algorithm dedicated to 
QDI circuits. It enables to target any standard cells library, including or not 
asynchronous cells. The main objective of this work is to reduce the area of the 
asynchronous circuits. In fact, this is one of the main challenges for the 
asynchronous circuits to be adopted. Accordingly, the last part of the paper compares 
results obtained for our asynchronous circuits to its synchronous equivalent. 

3 Asynchronous Circuits 

3.1 Communication channels and handshake protocol 

In asynchronous circuits, a local mechanism is used to perform the synchronization 
called handshake protocol. It relies on two signals: request and acknowledgment. 
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When a block needs to transmit data to another, it sends a request signal along with 
the data, and holds them until it receives the acknowledgment. The request and 
acknowledgment signals may not be reset before the next communication, making 
two possible handshake protocols, well-known as two-phase and four-phase 
protocols. Asynchronous circuits considered in TAST implement the latter. Request, 
acknowledgment and data are linked together; therefore we consider them as a single 
entity called communication channel. 

3.2 Quasi Delay Insensitivity 

 
A circuit is said QDI (Quasi Delay Insensitive) when its correct operation does not 
depend on the delays of gates or wires, except for certain wires that form isochronic 
forks [10]. If a circuit is QDI, a transition on its input must cause a transition on its 

relationship [11]. 

3.3 Delay Insensitive Code 

data are available. To achieve this, the request is encoded with the data using a 1-of-
n code: n rails are used to implement n possible values, numbered 0 to n-1. When all 

and therefore forbidden. The code is said Delay Insensitive since it guarantees that 
the request signal is always synchronized with the data. 

3.4 The Muller gate 

Asynchronous circuits need a gate that synchronizes several signals. This gate is 
called Muller gate (or C-element): when all inputs are equal, the output takes their 
value; when inputs are different, the output holds its value. Its symbol is a circle. 

3.5 An example 

Throughout this article, we illustrate our method with the example presented in Fig. 
2. This example is a digit-slice radix 4 ALU: it computes the function Op between its 
operands A and B, using the carry Cin and Cout when needed (addition and 
subtraction). Radix 4 was chosen to demonstrate that the method is not limited to 
dual rail. The ALU can compute seven different operations (add, sub, and, or, xor, 
neg, not); therefore Op is encoded with a 1-of-7 code. 
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In QDI circuits, a mechanism must guarantee that when a channel emits a request, its 

The channel is said valid. Other codes, when several rails are ‘1’, are out of the code, 
When one of the rails is ‘1’, its number is the value of the data, and the request is ‘1’. 

input. Mutual exclusion plays a very important role to prove this causality 

the rails are ‘0’, there is no data and the request is ‘0’. The channel is said invalid. 

output. It is said that the transition on the output acknowledges the transition on the 
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The CHP code is given in Fig. 3. 

process alu_digit_slice 

port( op: in di MR[7], a: in di MR[4], 

  b: in di MR[4], cin: in di MR[2], 

  s: out di MR[4],cout: out di MR[2];) 

begin 

variable op: MR[7],a: MR[4],b: MR[4],c: MR[2]; 

*[ 

Op?op; 

@[ 

op = '0' => A?a, B?b;    --add 

 @[ a+b<3 => Cout!0, [Cin?c; S!a+b+c];  --K 

  a+b=3 => Cin?c; [Cout!c, S!(c=0?3:0)]; --P 

  a+b>3 => Cout!1, [Cin?c; S!(a+b+c-4)]; --G 

 op = '1' => A?a, B?b;    --sub 

 @[ b-a<3 => Cout!0, [Cin?c; S!b-a+c];  --K 

  b-a=3 => Cin?c; [Cout!c,S!(c=0?3:0)];  --P 

  b-a>3 => Cout!1, [Cin?c; S!(b-a+c-4)]; --G 

 op = '2' => A?a, B?b; S!a and b; --and 

 op = '3' => A?a, B?b; S!a or b; --or 

 op = '4' => A?a, B?b; S!a xor b;--xor 

 op = '5' => A?a; S!(not a+1); --neg 

 op = '6' => A?a; S!(not a);  --not 

]] 

end  

4 Circuit modeling using MDDs 

The first step of our method is to model the circuit with Multi-valued Decision 
Diagrams (MDDs). It is presented in this section. 
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Fig. 3. CHP code of the example. 
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Fig. 2. A digit-slice radix 4 ALU. 
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A MDD [12] is a generalized BDD (Binary Decision Diagram, [13]) structure. 
This structure is very interesting for QDI circuits synthesis because it exhibits the 
notion of mutual exclusion, which plays a valuable role in quasi delay insensitivity. 

4.1 Presentation of the Multi-valued Decision Diagrams 

A MDD is a rooted directed acyclic graph. Each non-terminal vertex is labeled by a 
multi-valued variable and has one out-going arc for each possible value of the 
variable. Each terminal vertex is labeled by a value. Fig. 4 presents an example of 
MDD. 

Each path of the MDD from its root to a terminal vertex maps to an input vector 
(a state of the input variables). The value of the terminal vertex specifies the value 
that the MDD has to take under this input vector. 

The above definition of MDDs does not specify what the label of a vertex can be. 
Obviously, it can be input ports of the circuit: the logical function that specifies the 
outputs depends on the inputs. 
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We also want to be able to use internal variables in the circuit. To achieve this 
goal, we consider an internal variable as a MDD. Therefore, the label of a vertex can 
also be another MDD, which specifies an internal variable. 

4.2 Direct and acknowledgment MDDs 

A communication channel holds not only data, but also request and acknowledgment 
signals. The request signal is computed with the data, thanks to the 1-of-n DI code. 

However the acknowledgment signal of the input channels needs to be computed 
separately. Moreover, not all input channels are read at each computation level; the 
circuit must not acknowledge an input channel that has not been read. 

For each output channel, our model contains a MDD that specifies the logic 
function computed and is called a direct MDD. For each input channel, it contains 
one MDD, called an acknowledgment MDD. Acknowledgment signals are 
considered as 1-of-n DI code with n=1: an acknowledgment MDD has only one 
terminal, and specifies the conditions under which the channel must be 
acknowledged. Fig. 5 illustrates the MDDs of the example 3.4. 
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Fig. 4. A simple example of MDD. 
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Fig. 5. MDDs modeling the circuit specified in 2.4. 
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Fig. 6. Result of the factorization over Fig. 5. 



5 Basic gates synthesis from the MDDs 

There are several steps to synthesize a circuit using basic two-input gates. First, a 
factorization is done between the different MDDs to share the common parts. Then, a 
reduction is applied to decrease the number of vertices in each MDD. Finally, each 
node of each MDD is synthesized using two-input gates. 

5.1 Factorization 

The factorization algorithm extracts the common part of a set of MDDs as an internal 
MDD, as illustrated in Fig. 7. 

 To preserve the QDI property, the factorization algorithm must ensure that it 
extracts at least one node in each path of the MDD: otherwise, the extracted MDD 
could become valid but be ignored in the calculation of the circuit’s outputs, 
remaining unacknowledged and therefore violating the QDI property. To ensure this, 
the algorithm only extracts common parts that include the root vertex. Since we try 
all possible ordering of the variables, this restriction does not limit the efficiency of 
the algorithm. Fig. 6 shows the result of this algorithm when applied to the MDDs of 
Fig. 5. 

from A, B and C. 

5.2 Reduction 

This step is similar to the reduction of BDDs: it merges the identical vertices of the 
MDD, which decreases their number and thus the size of the circuit. Note that this is 
different from factorization: the reduction acts on the structure of one MDD, whereas 
the factorization acts on the logical functions represented by a set of MDDs, 
independently of their structure. 

5.3 Synthesis using basic two-input gates 

To synthesize the circuit modeled by composed MDDs, each MDD is synthesized as 
a block of the circuit. 

The algorithm is specified by the following rules: 

• Each arc in a MDD corresponds to a rail in the circuit. 
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Fig. 7. Before and after the factorization of a set of MDDs. E is the common part extracted 

Bertrand Folco et al.



Technology Mapping for Area Optimized Quasi Delay Insensitive Circuits 
 

• Multiple arcs directed to the same vertex are grouped by an OR gate. 
• A non-terminal vertex is implemented as set of two-input Muller gates 

that synchronize each rail of its variable with the in-going arc. The 
Muller gates outputs are the out-going arcs of the vertex. 

• A terminal vertex with value i represents rail number i of the MDD. 
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Fig. 9 presents the synthesized circuit from the MDDs of Fig. 5.  

6 Technology mapping 

We first present a library of asynchronous standard cells we have developed and 
called TAL. Then, we give different results obtained by using this library in the 
design of the digit-slice radix 4 ALU, instead of the ST standard library. Finally we 
compare our asynchronous circuit to a synchronous equivalent circuit. 

6.1 TAL library 

The TAL library has been developed to design asynchronous circuits with the aim to 
reduce their area, consumption and increase their speed [14]. This library contains 
about 160 cells (representing 42 functionalities), and has been designed with the 
130nm technology of STMicroelectronics. The main functionalities of the library are 
useful asynchronous functions as Muller gate, Half-Buffers, Mutex and complex 
gates as Muller-Or, Muller-And, … 

To clarify what gains should be attributed to a dedicated asynchronous library, 
we can view in  

Table 1 the comparison, between basic cells of the TAL library and their 
standard cells equivalent, in terms of number of transistors and area. For example, 
the Muller gate presented in 3.4 is build with 9 transistors in the TAL library (for a 
Muller gate with 2 inputs). With standard cells we have to use an optimized AO222 
gate with a loop as described in Fig. 10, made of 14 transistors, to find the 
functionality of a Muller gate. 
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Fig. 8. Example of basic two-input gates synthesis of a MDD. 



Fig. 9. Basic two-input gates circuit synthesized from the MDDs of Fig. 5. 
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Table 1. Differences between TAL and Std cells implementations of basic functions. 

Function 

TAL Lib 

Nb of 
transistors/ 
Area ( m2) 

Std cells 

Nb of 
transistors/ 
Area ( m2) 

Gain (area) 

Muller 2 9 tr. / 14,12 14 tr. / 20,17 30 % 

Muller 4 13 tr. / 18,15 42 tr. / 60,51 70 % 

Half-Buffer 28 tr. / 40,34 44 tr. / 62,53 35 % 
 
The average gain in term of area for all the TAL library compared to the standard 

ST library is around 35%. 

6.2 Technology mapping algorithms 

The main difficulty before mapping a library on asynchronous circuits is to 
decompose them and ensure to keep their property of quasi delay insensitivity. 

For example, it’s difficult to decompose a Muller gate with 3 inputs in 2 Muller 
gates with 2 inputs without introducing a hazard. This decomposition is automatic 
for an OR gate. This is described in Fig. 11. 

In case a), the three inputs of the Muller gate are different and the output keeps its 
value 0. After the decomposition (b), the first Muller gate output switches while the 
output of the second one doesn’t change. Thus the output of the first Muller gate is 
not acknowledged causing a possible glitch in the circuit with the next set of inputs. 

The synthesis method presented in 0 ensures that the circuits obtained are QDI 
and formed of two-input gates. Thus the decomposition phase is done and the 
technology mapping consists in merging gates to obtain an optimized circuit 
following a selected criteria (area, speed, …). Merging gates do preserve delay 
insensitivity. 
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Fig. 10. Muller Gate in standard cells. 

Fig. 11. Naïve Muller decomposition introduces hazard. 
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We decide to implement known synchronous algorithms of technology mapping 
[15-17] and adapt them to asynchronous circuits. Some algorithms of technology 
mapping exist for asynchronous circuits [18-20], but the aim of these algorithms is 
mainly to decompose circuits without hazards, and as we have seen before, the 
decomposition is solved. 

Moreover, technology mapping has been an important domain of research in the 
synchronous world and the resulting algorithms are very powerful. Thus we extend 
the method presented in [16] because the technology mapping algorithm presented in 
this paper has really great performances. Thereby we represent the input library cells 
as tree of OR, AND and MULLER gate and we keep the structural relationship 
between the library cells using lookup table. These trees are then mapped on the 
netlist representing the circuit with the same algorithms as for synchronous circuits. 

6.3 Results 

In the following section, we intend to evaluate in terms of area the gain due to the 
TAL library and the gain due to the technology mapping algorithms. 

The circuit netlist of Fig. 9 comprises 95 OR gates and 107 MULLER gates. The 
Table 2 compares the number of transistors and the area of the circuit, before place 
and route, using the TAL library or the ST standard library. 

 

 
TAL 

library 
Standard ST 

cells 

Nb of transistors 1533 2068 

Area ( m2) (before 
placement and 

routage) 
2469 3116,36 

 
We can conclude out of this figure that without any optimization of the netlist, if 

we only use TAL cells instead of the standard cells to build Muller gates, the number 
of transistors decreases by 35% and the area of the circuit decreases by 21%. 

Now we want to evaluate the gain brought by the technology mapping algorithms 
on the netlist of the digit-slice radix 4 ALU. We can view results of algorithms in the 
Table 3. During the mapping phase, only complex gates of the TAL library are used 
as Muller-Or22, Muller-Or21. OR2 gates are also merged in OR3 and OR4 gates. 

 

 
Native TAL 

netlist 
Optimized TAL 

netlist 

Nb of transistors 1533 1034 

Area ( m2) 
(before placement 

and routing) 
2469 1401,95 
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Table 2. Circuits with TAL or ST standard cells. 

Table 3. Results of technology mapping algorithms. 
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We can notice a decrease of 32% of the number of transistors, and a decrease of 
43% of the area of the circuit compared to the same circuit netlist using the TAL 
library without technology mapping algorithm applied. We thus note a decrease of 
around 50% of the number of transistors and area compared to the initial netlist using 
the ST standard cells library. 

 
Another interesting point is to compare these circuit characteristics with an 

equivalent synchronous digit-slice radix 4 ALU. The asynchronous circuits remain 
bigger than their synchronous equivalent because of the delay insensitive code and 
the local controls of the circuit. However our goal is to reduce this difference as 
much as possible by applying aggressive technology mapping algorithms on the 
circuit and by using cells library specially designed for asynchronous circuit. 

We describe the digit-slice radix 4 ALU using the VHDL language. As we want 
to compare our version to a synchronous circuit, we add a clock in the description. In 
fact, the outputs are memorized in the asynchronous circuit with the Muller gate. In 
the synchronous version, we have to add registers on each output, to achieve this 
memorization. 

To synthesize this circuit, we used Design Analyser from Synopsys and the ST 
standard cells library. Table 4 shows the results.  

 

 
Optimized TAL 

netlist 
Synchronous 

netlist 

Nb of transistors 1034 386 

Area (!m2) 
(before placement 

and routage) 
1401,95 476, 06 

We can conclude that the synchronous circuit is less than 2,9 times smaller, and 
contains 2.7 times less transistors than the asynchronous one. 

7 Conclusion 

This paper presents a general method to model and synthesize asynchronous 
optimized QDI circuits. The method allows synthesizing circuits using multi-rail 
logic and maps them on to single output standard cells. Direct and reverse 
(acknowledge) paths are automatically and jointly synthesized. A first netlist of the 
circuit, containing only two-input gates is generated. Technology mapping is then 
applied targeting a dedicated asynchronous library to optimize the circuit area. 
Others criteria of optimization could be selected as well but the paper focuses on 
area which is one of the must important challenge. 

The method based on Multi-valued Decision Diagrams, is illustrated on a digit-
slice radix 4 ALU. We present different versions of the same circuit to evaluate the 
gain introduced by the asynchronous library and by the technology mapping 
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Table 4. Comparison with the equivalent synchronous circuit. 



 

algorithm. The last results show that our circuit is still 2.9 times larger than the 
synchronous one. 

Future work will be focused on improving the methodology by working in two 
directions: logic synthesis and complex cells specification. 
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