
A Comparison of Layout Implementations

Booth Multiplier Architectures

Leonardo L. de Oliveira1, Cristiano Santos2, Daniel Ferrão2,
Eduardo Costa3, José Monteiro4, João Baptista Martins1,

Sergio Bampi2, Ricardo Reis2

1 Federal University of Santa Maria, PPGEE – GMICRO, Av. Roraima
1000, Camobi, 97105-900 Santa Maria – RS, Brazil,

leonardo@mail.ufsm.br, batista@inf.ufsm.br
WWW home page: http://www.ufsm.br/gmicro

2 Federal University of Rio Grande do Sul, PPGC – GME, Av. Bento
Gonçalves, 9500, Agronomia, 91501-970 Porto Alegre – RS, Brazil,

{clsantos,dlferrao,bampi,reis}@inf.ufrgs.br
WWW home page: http://www.inf.ufrgs.br/gme

3 Catolic University of Pelotas, Rua Félix da Cunha 412, 96010-000
Pelotas – RS, Brazil, ecosta@atlas.ucpel.tche.br

WWW home page: http://www.ucpel.tche.br
4 INESC-ID/IST, Rua Alves Redol 9, 1000-029 Lisboa – Portugal,

jcm@inesc-id.pt

Abstract. This paper presents performance comparisons between two
multipliers architectures. The first architecture consists of a pure array

uses a radix-4 encoding to reduce the partial product lines. The second

describe a design methodology to physically implement these architectures in

with the pipelined Modified Booth. We compare the physical implementations
in terms of area, power and delay. The results show that the new pipelined
array multiplier can be significantly more efficient, with close to 16% power
savings and 55% power savings when considering non-pipelined architectures.

delay results. Up to now only results at the logic level were presented in

WWW home page: http://www.inesc-id.pt

multiplier that was modified to handle the sign bits in 2’s complement and

a pipelined and non-pipelined form, obtaining area, power consumption and

architecture implemented was the widely used Modified Booth multiplier. We

De Oliveira, L.L., Santos, C., Ferrão, D., Costa, E., Monteiro, J., Martins, J.B., Bampi, S., Reis, R., 2007, in

previous work. The performance of pipelined array architecture is compared

IFIP International Federation for Information Processing, Volume 240, VLSI-SoC: From Systems to Silicon,
eds. Reis, R., Osseiran, A., Pfleiderer, H-J., (Boston: Springer), pp. 25–39.

of Pipelined and Non-Pipelined Signed
Radix-4 Array Multiplier and Modified

1 Introduction

Multiplier modules are common to many DSP applications. The fastest types of
multipliers are parallel multipliers. Among these, the Wallace multiplier [18] is
among the fastest. However, they do not have such a regular structure as the
conventional array [11] or Booth [13] multipliers. Hence, when layout regularity,
high-performance and low power are primary concerns, Booth multipliers tend to be
the primary choice [2], [7], [9], [13], [16].

In this paper, we present layout implementations for both the Modified Booth
multiplier and the new array multiplier in non-pipelined and pipelined versions. The
pipelined version of the radix-4 architecture was implemented in order to reduce
both the critical path and useless signal transitions that are propagated through the
array. This array architecture is extended for radix 2m encoding, which leads to a
reduction of the number of partial lines, enabling a significant improvement in
performance and power consumption.

We synthesize the multipliers by using an automatic synthesis tool, named
TROPIC [15]. In order to compare the Modified Booth and the array architectures,
both using radix-4, the ELDO – a spice simulator, part of the Mentor Graphics
environment, was used. The results show that the new array multiplier is
significantly more efficient, saving more than 50% in power consumption. This
result is very close to the results reported in [4], obtained at the logic level using a
switch-level simulator and 16% power savings considering pipelined versions.

The power reduction presented by the new array multiplier is mainly due to the
lower logic depth, which has a big impact in the amount of glitching in the circuit.
We should stress further that, in contrast to the architecture presented in [4], rasing
the radix for the Booth architecture is a difficult task, thus not being able to leverage
from the potential savings of higher radices.

This paper is organized as follows. In the next section we give an overview of
relevant work related to our work. In section 3 we present a 2’s complement binary
multiplication. After that, Section 4 briefly describes the radix-4 array multiplier.
The Modified Booth multiplier and their pipelined forms are described in Section 5.
Section 6 describes the design methodology and how area, power and delay results
are obtained. Comparisons between the radix-4 array multiplier architecture and the
Modified Booth, for both switch level and electrical level are presented in Section 7.
Finally, in Section 9 we conclude this paper, discussing the main contributions and
future work.

2 Related Work

A substantial amount of research work has been put into developing efficient
architectures for multipliers given their widespread use and complexity. Schemes
such a bisection, Baugh Wooley and Hwang [9] propose the implementation of a 2’s
complement architecture, using repetitive modules with uniform interconnection
patterns. However, an efficient VLSI realization is more difficult due to the irregular
tree-array form used. The same non-regularity aspect is observed in [13], where a
scheme of a multiplexer–based multiplier is presented. In [11] an improvement of

26 Leonardo L. de Oliveira et al.

this technique is observed where the architecture has a more rectangular layout than
[13].

The techniques described above have been applied to conventional array
multipliers whose operation is performed bit by bit and some times the regularity of
the multipliers is not preserved. More regular and suitable multiplier designs based
on the Booth recoding technique have been proposed [7][2][16]. The main purpose
of these designs is to increase the performance of the circuit by the reduction of the
number of partial products. In the Modified Booth algorithm approximately half of
the partial products that need added is used.

Although the Booth algorithm provides simplicity, it is sometimes difficult to
design higher radices due to the complexity to pre-compute an increasing number of
multiples of the multiplicand within the multiplier unit. In [7][16] high performance
multipliers based on higher radices are proposed. However, these circuits have little
regularity and no power savings are reported. Research work that directly targets
power reduction by using higher radices for the Booth algorithm is presented in
[2][10]. Area and power improvements are reported with a highly optimized
encoding scheme ate the circuit level. At this level of abstraction some other works
have applied complementary pass-transistor logic in their design in order to improve
the Booth encoder and full adder circuits [9][13][14].

In our work, the improvement in power has the same principal source as the
Booth architecture, the reduction of the partial product terms, while keeping the
regularity of an array multiplier. We show that our architecture can be more naturally
extended for higher radices using less logic levels and hence presenting much less
spurious transitions. We present layout implementation of pipelined and non-
pipelined versions of our multipliers.

3 Array Multipliers

In this section we describe how we derive the 2’s complement binary

multiplication. Consider two operands W-bits wide, !
"

=
=

1

0
2

W

i

i
iaA and

!
"

=
=

1

0
2

W

j

j
jbB . We have that

!
"

=

#=$
1

0

2
W

j

j
jbABA (1)

where in turn,

!
"

=

#=#
1

0

2
W

i

i
ijj abbA (2)

A conventional array multiplier [3] translates this expression directly to
hardware, where we have the W partial product rows from Equation 1, each made of
W bit level products as in Equation 2, which can be arranged in a simply, very
regular, array structure. Each bit product is simply an AND gate.

The conventional array multiplier is only applicable to unsigned operands. We
are able to show that exactly the same architecture can be used on signed operands in
2’s complement with very little changes.

27Radix-4 Array Multiplier And Modified Booth Multiplier Architectures

2’s complement is the most used encoding for signed operands. The most

significant bit, 1!Wa , is the sign bit. If the number A is positive, its representation is

the same as for an unsigned number, simply A. If the number is negative, it is

represented as AW
!2 .

Conversely, the value of the operand can be computed as follows:

!
"
#

$
=

WA

A
A

2 ,

,

1

0

1

1

=

=

!

!

W

W

a

a
 (3)

We make the following observation that enables us simplify our architecture. Let

us define !
"

=
=#

2

0
2

W

i

i
iaA , an unsigned value. For positive numbers, 01 =!Wa ,

hence the value represented by A is A! . For negative numbers, 11 =!Wa , hence this

value is WWW AA 2)2(2 1
!"+=!

! = 12 !
!"

WA . Then equation 3 becomes:

!
"
#

$%

%
=

$12WA

A
A ,

,

1

0

1

1

=

=

!

!

W

W

a

a
 (4)

or simply 1
12 !

!!"=
W

WaAA .

What Equation 4 tell us is that the multiplication of two operands in 2’s

complement can be performed as an unsigned multiplication for ()21!W of the bit

products. Let us consider the 4 possible scenarios for BA! :

:0,0 >> BA BA !"!

:0,0 <> BA 12 !"!"#"
WABA

:0,0 >< BA !
"

=

+""#$#
1

0

12
W

j

jW
jbBA (5)

:0,0 << BA !
"

=

+"" "#"#$#
1

0

11 22
W

j

jW
j

W bABA

which can be reduced to

!
"

=

+"
"

"
" "#"#$#=$

1

0

1
1

1
1 22

W

j

jW
jW

W
W baAbBABA (6)

The form of Equation 6 highlights:
• from the first term, that the W-1 least significant bits A and B can be

treated exactly as an unsigned array multiplier;
• from the second term, that the last row of the multiplier is either non-

existent (B>0) or a subtracter of A! shifted by W-1 bits (B<0);
• from the third term, that, at each partial product line, the most

significant bit is either 0 (A>0) or -1 (A<0).

Consider now !
"

=

#
=$

2

0
2m

W

i

mi
iaA , where ia is a m-bit digit. For positive

numbers, the value represented by A is A! as before. For negative numbers, this

28 Leonardo L. de Oliveira et al.

value is mWWmWW

m
W

m
W aAAaA !

!

!

!
!"=!"+=! 2222

11
, since WmW

m
Wa 22

1
!

!

!

is the 2’s complement of mW

m
Wa !

!
2

1
. Then we have:

!"

!
#
$

%&

&
= %

%

mW

m
WaA

A
A

2
1

,

,

1

0

1

1

=

=

!

!

W

W

a

a
 (7)

or simply
mW

W
m
WaaAA !

!!!"= 2
11 (8)

Using analogous observations as made for the binary case, from Equation 8 we
can write:

mW
W

m
WbbABABA !

!!
"!"#"=# 2

11 !
"

=

+"

"""
1

0
11 2

m
W

m
W

j

jmW
jW baa (9)

4 Radix-2m Array Multiplier

In this section, we summarize the methodology of [5] for the generation of
regular structures for arithmetic operators using signed radix-2m representation and
extend it into a pipelined version [6].

For the operation of a radix-2m multiplication, the operands are split into groups
of m bits. Each of these groups can be seen as representing a digit in a radix-2m.
Hence, the radix-2m multiplier architecture follows the basic multiplication operation
of numbers represented in radix-2m. The radix-2m operation in 2’s complement
representation is given by Equation 10.

mW
W

m
WyyRYRYR !

!!
"!"#"=# 2

11 !
"

=

+"

"""
1

0
11 2

m
W

m
W

j

jmW
jW yrr (10)

where R and Y are two operands W-bits wide; 1!Wr is the most significant bit (is the

sign bit); and iW

i irR 2
2

0!
"

=
=# .

This operation is illustrated in Fig. 1. For the W-m least significant bits of the
operands unsigned multiplication can be used. The partial product modules at the left
and bottom of the array need to be different to handle the sign of the operands.

For this architecture, three types of modules are needed, as shown in Fig. 2. Type
I are the unsigned modules. Type II modules handle the m-bit partial product of an
unsigned value with a 2’s complement value. Finally, Type III are modules that
operate on two signed values. Only one Type III module is required for any type of

multiplier, whereas 2 m
W - 2 Type II modules and (m

W - 1)2 Type I modules are

needed. Fig. 6 shows an example of an 8-bit wide 2’s pipelined complement radix-4
array multiplier.

29Radix-4 Array Multiplier And Modified Booth Multiplier Architectures

Fig. 1. Example of a 2’s complement 8-bit wide radix-4 multiplication

TYPE
 I

TYPE
III

TYPE

TYPE

II

II

Fig. 2. General structure for a 2’s complement radix-2m multiplier

We present a summarized example for W=8 bit wide operands using radix-4

(m=2) in Fig. 3.

Fig. 3. 8-bit wide 2’s complement Binary array multiplier m=2

Figure 4 and Figure 5 show the structure of operands 1 and 2, their inputs and

outputs and nearest connections between them and the blocks of adders. In additional
they show the sign extension that has been used in operands 1 and 2.

1 1 1 1 1 1 0 1 1 0

1 1 1 1 1 0 0 0 1 0

 1 1 1 1 0 1 1 0

 1 0 0 1 1 1 1 0

-1 3 1 2

-2 1 3 2
X

(1 1) 1 1 1 1 1 0 1 1 0 0

1 1 1 1 1 0 0 0 1 0

(1 1)1 1 1 1 0 1 1 1 0 1 0 0

1 1 1 1 1 1 0 1 1 0

+

+

(1 1)1 1 1 1 1 0 1 1 0 1 0 1 0 0

0 0 0 0 0 0 1 1 1 1 0 1 0 1 0 0

+

20x0 22x1 24x1 26x3 28x3 210x0 212x0 214x0

0 0 0 768 192 16 4 0 + + + + + + + = (980)

sign
extension

decimal
representation

(-10)

(-98)

1 1 1 1 0 1 1 0
1 0 X

0 1 0 0
0 0 1 0

0 1 1 0
1 1 1 0

1 1 1 1 1 0 1 1 0 0

+

1 1 1 1 0 1 1 0
1 0 X

1 1 0 0
1 1 1 0

1 0 1 0
0 0 1 0

0 0 0 0 0 1 0 1 0 0

-

1 1 1 1 0 1 1 0
1 1 X

0 1 1 0
0 0 1 1

1 0 0 1
1 1 0 1 +

1 1 1 1 0 1 1 0
0 1 X

0 0 1 0
0 0 0 1

0 0 1 1
1 1 1 1 +

0 0 0 0 0 1 0 1 0 0

P1P0

 A7..A0

operand 1

8 2

A7..A0

2

8

+

operand 1

8 2

B3B2 A7..A0

10

operand 1
rand 1

8

B5B4 A7..A0

10

operand 2

8

o
p
e
r
a
n
d

2 +

2

 P3P2

2

B1B0 B7B6

2

2

 P5P4

10

 P15..P6

+

8

8

10

30 Leonardo L. de Oliveira et al.

2

2 2

2

2

*
Type I

A1A0 B1B0

2 2

2 2

*
Type I

A3A2 B1B0

2 2

2 2

*
Type I

A5A4 B1B0

2 2

2 2

*
Type II

A7A6 B1B0

1 +

2

1 +

2

1 +

2

+

2

1 +

2

1 +

2

1 +

2

1 +

2

+

1 operand 1
st

adders

to another adders
P1P0

sign extension

Fig. 4. Operand 1 and connections to first line of adders showing the sign extension

2

2 2

2

2

*
Type II

A1A0 B7B6

2 2

2 2

*
Type II

A3A2 B7B6

2 2

2 2

*
Type II

A5A4 B7B6

2 2

2 2

*
Type III

A7A6 B7B6

1 -

2

1 -

2

1 -

2

-

2

1 +

2

1 +

2

1 +

2

1 +

2

+

operand 2

adders

P7P6P9P8P11P10P13P12P15P14

from another group pf adders

sign extension

Fig. 5. Operand 2 and connections to third line of adders showing the sign extension

4.1 Pipelined Array Multiplier

Glitches are unwanted switching activities that occur before a signal settles to its
intended value. Each clock edge changes the inputs to the combinatorial logic
between registers and every node has a different delay from different inputs, which
change their state several times before settling down. Glitches on a node are
dependent on the logic depth to that node, i.e. the number of logic gates from the
node to the primary inputs (or sequential elements). The deeper and wider the logic
behind a node, the more it glitches. These glitches can be reduced by reducing the
depth of logic levels

The regularity of this array architecture makes it suitable for the application of
other power reducing techniques. A pipelined version was constructed in order to
reduce the critical path and useless signal transitions that are propagated through the
array. The doted lines in Fig. 6 show the pipelined version of the radix-4 array
multiplier for 8-bit operands. As can be observed, the advantage of the layered
structure of the array was taken into account and two layers of registers were
introduced. Thus, 3 clock cycles are necessary to perform the computation
considering 8-bit architectures.

31Radix-4 Array Multiplier And Modified Booth Multiplier Architectures

2 2

Y1Y0 R5R3

2 2

Y3Y2 R5R3

2 2

Y5Y4 R5R4

2 2

Y7Y6 R5R4

2 2

Y1Y0 R3R2

2 2

Y3Y2 R3R2

2 2

Y5Y4 R3R2

2 2

Y7Y6 R3R2

2

2 2

2

*
Type I

Y1Y0 R1R0

2 2

2 2

*
Type I

Y3Y2 R1R0

2 2

2 2

*
Type I

Y5Y4 R1R0

2 2

2 2

*
Type II

Y7Y6 R1R0

1 +

2

1 +

2

1 +

2

+

2

1 +

2

1 +

2

1 +

2

1 +

2

+

2

2

2

*
Type II

2 2

*
Type II

2 2

*
Type II

2 2

*
Type III

1 -

2

1 -

2

1 -

2

-

P1P0

sign extension

2

2

*
Type I

2 2

*
Type I

2 2

*
Type I

2 2

*
Type II

1 +

2

1 +

2

1 +

2

+

2

2

1 +

2

1 +

2

1 +

2

1 +

2

+

sign extension

2

2

*
Type I

2 2

*
Type I

2 2

*
Type I

2 2

*
Type II

1 +

2

1 +

2

1 +

2

+

2

2

1 +

2

1 +

2

1 +

2

1 +

2

+

sign extension

2

P3P2P5P4P7P6P9P8P11P10P13P12P15P14

2 2

Y1Y0 R7R6

2 2

Y3Y2 R7R6

2 2

Y5Y4 R7R6

2 2

Y7Y6 R7R6

Reg Reg Reg Reg Reg Reg

Reg Reg Reg Reg Reg Reg Reg

RegRegRegRegRegReg RegRegRegRegRegRegRegReg RegReg

RegRegRegRegRegReg RegReg

Fig. 6. Example of an 8-bit wide 2’s complement radix-4 array multiplier

5 Modified Booth multiplier

The radix-4 Booth’s algorithm (also called Modified Booth) has been presented
in [5]. In this architecture it is possible to reduce the number of partial products by
encoding the two’s complement multiplier. In the circuit the control signals (0, +Y,
+2Y, -Y and -2Y) are generated from the multiplier operand Y for each 3-bit group,
as shown in the example of Fig. 7, for an 8-bit wide operation. A multiplexer
produces the partial product according to the encoded control signal.

Common to both architectures is that, at each step of the algorithm, two bits are
processed. However, the basic Booth cells are not simple adders as in the array
multiplier, but must perform addition-subtraction-no operation and controlled left-
shift of the bits of the multiplicand. Fig. 8, shows an example of an 8-bit modified
Booth architecture.

5.1 Pipelined Modified Booth Multiplier

A pipelined Modified Booth by introducing registers along the layers of the array
was implemented in and it is presented in Fig. 8. As it can be observed in this figure,
there are two layers of registers along the array as in the binary array multiplier with
m=2. Again, 3 clock cycles are required to compute the final result in the 8-bit
architecture and six cycles to the 16-bit one. Moreover, common to both
architectures is that the registers are inserted at the output of the adders which are
responsible for adding the partial product terms. However, in the Booth multiplier it
is also necessary to introduce registers in the output of the encoders to perform the
correct operation of each clock cycle as shown in Fig. 8.

32 Leonardo L. de Oliveira et al.

2

7

1 8

MULTIPLEXER

0 Y7..Y0

7

9
2

R1R0

1R1

2

8

MULTIPLEXER

Y7..Y0

+
9

2

7

8

MULTIPLEXER

Y7..Y0

+
9

71

8

MULTIPLEXER

Y7..Y0

+
9

P15 P14 P13..P6 P5P4 P3P2 P1P0

ENCODER
2

ENCODER
2

ENCODER
2

8
R7..R0

3 R3R2R1

3 R5R4R3

3 R7R6R5

1 R3

1 R5

1 R7

ENCODER
2

+

MULTIPLIER

Reg RegRegRegReg

Reg

RegReg RegReg Reg

Fig. 7. Example of an 8-bit multiplication with Modified Booth algorithm

Fig. 8. 8-bit pipelined modified Booth architecture

6 Design Methodology

Fig. 9 shows the design flow used in the physical implementation of the
multipliers. Two methodologies are presented: our methodology (black), and the
methodology used in [7] and [8] with the SIS environment (gray). The multipliers
were originally described in BLIF (Berkeley Logic Interchange Format). Thus, these
BLIF files are used as input of the design flow, as can be observed in Fig. 9.

MD 10110111 (-73)
MR 01011010 (0) (+90)

101101110 (2*MD)
001001001 (-MD)
010010010 (-2*MD)

010

011

101

100 00000000 0 (PP)
010010010

00010010010 (shift)
 001001001

0000110110110 (shift)
101101110

111100010010110 (shift)
110110111

11110011001010110 (shift) (-6570)

33Radix-4 Array Multiplier And Modified Booth Multiplier Architectures

In [5] and [6], the performance of the multipliers was evaluated only in a logic
level. The SIS [17] tool was used to synthesize and estimate area and delay of the
multipliers while power consumption was estimated using the switch-level simulator
SLS [8].

.blif file

BLIF2VERILOG

PrimeTime (delay)

BLIF2SIM

TROPIC (area) .cif file

extracted netlist file

ELDO (power)

SIS (area)

IC STATIONBLIF2SLS

SLS TOOL (power)

SLS VECTORS
GENERATOR &

SLS2SPICE

Fig. 9. Design tools for synthesis and performance estimation

In this work, the TROPIC tool was used for the physical synthesis of the

implemented multipliers. This tool uses a spice like format (sim) as input and
performs a library-free automatic layout generation of the circuit regarding the
design rules of the target technology. TROPIC gives the total area occupied by the
layout and the number of transistors of the synthesized circuits. Before the layout
synthesis of the circuits, it is necessary to set the size of the transistors and the
number of rows. This last parameter is useful to set the aspect ratio width/height.

Since the TROPIC tool generates the widely used cif format, the resulting circuit
layout can be visualized with Mentor Graphics IC Station tool. Fig. 10 shows the
layout for the 8-bit array multiplier, which was generated automatically by TROPIC
tool. Once the cif file is generated, an electrical extraction can be performed using
the TROPIC tool.

The extracted SPICE netlists were simulated using the ELDO electrical simulator
in order to obtain power estimation at the back-annotated electrical level. This
simulator is part of the Mentor Graphics environment for power estimation. The
same set of input vectors used in [4] and [5] for power estimation was converted
from SLS to SPICE format and then used for transient analysis.

The timing analysis tool PrimeTime [12] was used to estimate the critical delay
of the circuits. PrimeTime is able to perform both static and functional timing
analysis. Static timing analysis (STA) is the standard approach used for delay
estimation in the current designs complexity. The main issue of this approach is that
logic information about the cells of the circuit is not considered during the critical
delay search. At the same time that this issue makes the delay estimation faster, it
can make STA suffers from the false path syndrome. In order to avoid this false path
syndrome, the designer must report all timing exceptions of the circuit to the STA
tool, and it can be a very hard task.

Another way to avoid false paths during delay estimation is using functional
timing analysis (FTA). FTA performs the critical delay search taking into account
information about the logic cells of the circuit. So, paths that can not propagate a

34 Leonardo L. de Oliveira et al.

transition are not considered and the critical delay will be the delay of the longest
sensitizable path. Primetime uses the Exact Floating Mode sensitization criterion
during the critical path search. This sensitization criterion considers both logic and
timing information of the cells during the path sensitization.

Fig. 10. Layout of an 8-bit array multiplier generated automatically by TROPIC

7 Performance Comparisons

In this section, we present area, delay and power results for the 16-bit multipliers
after layout generation. The circuits were implemented using HCMOS 0.25µm
technology and the same transistor size (WP=5µm and WN=3µm). Area results were
obtained using the TROPIC layout generation tool and are presented both in terms of
total area and in terms of number of transistors. Power consumption was estimated
through electrical simulation using ELDO simulator and applying a random pattern
signal with 100 input vectors. Power results are presented in terms of average power
consumption. PrimeTime was used to perform static and functional timing analysis
and both delay results are presented. We have not applied yet any transistor-level
techniques which can further improve the efficiency of booth architectures.

7.1 Pipelined and Non-Pipelined Results

Table 1 presents area results for 16-bit radix-4 Booth and the new array
multiplier proposed in [6], both implemented in layout level.

35Radix-4 Array Multiplier And Modified Booth Multiplier Architectures

Table 1. Area results for 16-bit parallel multipliers

 Parameter Array Booth Diff(%)

Number of transistors 12484 10064 -19.4
non-pipelined

Total area (mm2) 0.2872 0.2172 -24.4

Number of transistors 23014 21220 -7.8
pipelined

Total area (mm2) 0.4829 0.4608 -4.6

As it can be observed in Table 1, the array multiplier presents the highest area

and number of transistors. This occurs due to the fact that the partial product lines
operate on group of m bits and the basic multiplier elements, which compose the
modules for the product terms, are slightly more complex. The introduction of
registers along the layers of the arrays increases the area of both architectures when
compared to the non-pipelined architectures as shown in Table 1. Although the array
multiplier presents the highest area value, this architecture can be slightly more
efficient in terms of delay result as presented in Table 2. This is due to the lower
logic depth presented by our proposed architecture.

Table 2. Delay results for 16-bit parallel multipliers

 Array Booth Diff (%)

FTA 9.80ns 10.59ns +8.06
pipelined

STA 9.86ns 10.61ns +7.60

FTA 17.75ns 18.97ns +6.87
non- pipelined

STA 18.26ns 19.59ns +7.28

Fig. 1 and Fig. 8 show that while in the pipelined array multiplier the critical path

is given by a m=2 multiplier module and 2 full adders, in the pipelined Modified
Booth, the critical path includes the encoder, an operand circuit composed by a
multiplexer and a full adder. These circuits produce a large number of
interconnections and a longer delay per row. Thus, the array multiplier presents less
delay values than the Modified Booth even in the pipelined version as shown in
Table 2.

As observed in [1], the major sources of power dissipation in multipliers are
spurious transitions and logic races that flow through the circuit. Thus, the
significantly less amount of spurious transitions in the new array multiplier justifies
the gain in power when compared against the Booth multiplier as shown in Table 3.
Moreover, the new array multiplier presents less logic depth due to the more
balanced paths to the basic blocks that compose the array architecture. This
contributes for improvement in power reduction because of the less generation of
useless transitions. Our architecture is more efficient in reducing glitching and hence
reducing power, as the results in Table 3 demonstrate. It is also apparent that our 6-
stage pipelining for the 16-bit multiplier is not optimum, as the power increase
demonstrates for the pipelined version of both multiplier architectures. It is also
apparent that our architecture is more power efficient for a smaller number of
pipeline stages, when compared to the Modified Booth. All power results are for the
same pipeline frequency (50MHz).

36 Leonardo L. de Oliveira et al.

This occurs because in the pipelined approach glitching is reduced significantly.
This reduction will have a greater impact in the case where the glitching was higher.
However, the reduced logic depth and delay presented by our architecture still makes
it significantly more efficient, as shown in Table 3.

Table 3. Power dissipation for 16-bit parallel multipliers at Vdd=2.5V and freq=50MHz

 Array (mW) Booth (mW) Diff (%)

pipelined 14.76 17.12 +16.0

non-pipelined 10.76 16.75 +55.7

7.2 Comparison between Electrical and Logic Results

Table 4 shows area, delay and power percentage changes between the pipelined
and non-pipelined array and Modified Booth multipliers. The estimates at the logic
level and after layout correlate well for power. Area estimates at the logic level is
just the number of literals coming from logic synthesis (SIS environment). Delay at
the logic level was also estimated in SIS environment by using mcnc library. The
relative power estimations are fairly close as shown in Table 4. In the logic level
power results were obtained by using a random pattern input signal with 10,000
input vectors. The larger number of glitches generated in the Modified Booth makes
this architecture more power consuming in both pipelined and non-pipelined version,
which is captured with the SLS simulator. This validates the results reported in [5]
and [6] at gate level design.

Table 4. Comparison between parallel multipliers in electrical and logic simulations

 pipelined non-pipelined

Parameter Logic Level Electrical Level Logic Level Electrical Level

Area (n. of transistors) -14.4% -7.8% -20.2% -19.4%

Delay (ns) +15.2% +8.06% +1.1% +6.87%

Power (mW) +18.7% +16.0% +54.0% +55.7%

8 Conclusions

We have described the layout implementation of a new array multiplier and
Modified Booth multiplier both in pipelined and non-pipelined versions operating in
2’s complement numbers using radix-2m encoding. We have presented results that
show significant improvement in power consumption in the new pipelined and non-
pipelined array multiplier. We have compared the new array and Modified Booth
multipliers simulated both at the logic and electrical levels. The results showed that
the relative values at the two levels of abstraction are similar when we compare the

37Radix-4 Array Multiplier And Modified Booth Multiplier Architectures

power consumption of the multipliers. As future work we hope to be able to
prototype these architectures in order to experimentally validate these results.

9 Acknowledgments

The support of CNPq, PDI-TI-CTINFO, FAPERGS and FCT is gratefully
acknowledged.

10 References

[1] Callaway, T.; Swartzlander, E. Optimizing multipliers for WSI. In Fifth Annual IEEE
International Conference on Wafer Scale Integration, pages 85-94, 1993.

[2] Cherkauer, B; Friedman, E. A Hybrid Radix-4/Radix-8 Low Power, High Speed

Circuits and Systems, volume 4, pages 53–56, 1996.
[3] Wang, Y.; Jiang, Y.; Sha, E. On Area-Efficient Low Power Array Multipliers. In the 8th

IEEE International Conference on Electronics, Circuits and Systems, pages 1429-1432,
2001

[4]
Encoded Array Multiplier. In Proceedings Symposium on Integrated Circuits and
Systems, pages 14-19, 2002.

[5] Costa, E., Monteiro, J., Bampi, S. A New Architecture for Signed Radix-2m Pure Array
Multiplier. IEEE ICCD, September 2002.

[6] Costa, E., Bampi, S., Monteiro, J. A New Pipelined Array Architecture for Signed
Multiplication. 16th SBCCI, September 2003.

[7] Gallagher, W. and Swartzlander, E. High Radix Both Multipliers Using Reduced Area
Adder Trees. In Twenty-Eighth Asilomar Conference on Signals, Systems and
Computers, volume I, pages 545-549, 1994.

[8] Genderen, A. J. SLS: An Efficient Switch-Level Timing Simulator Using Min-Max
Voltage Waveforms. Proceedings of VLSI Conference, pages 79-88, 1989.

[9] Goto, G.; et al. A 4.1-ns Compact 54 x 54-b Multiplier Utilizing Sign-Select Booth
Encoders. IEEE Journal of Solid-State Circuits, 32:1676-1682, 1997.

volume 5, pages 345-348, 2000.
[11] Hwang, K. Computer Arithmetic - Principles, Architecture and Design. John Wiley &

Sons, 1979.
[12] Synopsys PrimeTime Design Reference Manual, 2004.
[13] Khater, I.; Bellaouar, A.; Elmasry, M. Circuit Techniques for CMOS Low-Power, High-

Performance Multipliers. IEEE Journal of Solid-State Circuits, 31:1535-1546, 1996.

Transistor Logic. Journal of solid-State Circuits, 25:388-395, 1990.
[15] Moraes, F. A Virtual CMOS Library Approach for Fast Layout Synthesis. In: IFIP TC10

WG10.5 International Conference on Very Large Scale Integration, 10, pages 415-426,
1999.

[17] Sentovich, E. and et al. SIS: A System for Sequential Circuit Synthesis. Technical report,
University of California at Berkeley, UCB/ERL – Memorandum nº M92/41, 1992.

38 Leonardo L. de Oliveira et al.

Multiplier Architecture for Wide Bit Widths. In IEEE International Symposium on

Costa E. da; Monteiro J., and S. Bampi. A New Architecture for 2’s Complement Gray

Complement Multiplier. In IEEE International Symposium on Circuits and Systems,

[16] Seidel, P., Mcfearin, L. and Matula, D. Binary Multiplication Radix-32 and Radix-256. In

[14] Yano, K. and et al. A 3.8-ns CMOS 16 x 16-b Multiplier Using Complementary Pass

15th Symposium on Computer Arithmetic, pages 23–32, 2001.

[10] Goldovsky and et al. Design and Implementation of a 16 by 16 Low Power Two’s

[18] Wallace, C. A Suggestion for a Fast Multiplier. IEEE Transactions on Electronic

Computers, 13:14–17, 1964.

39Radix-4 Array Multiplier And Modified Booth Multiplier Architectures

