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Abstract. This paper presents performance comparisons between two 
multipliers architectures. The first architecture consists of a pure array 

uses a radix-4 encoding to reduce the partial product lines. The second 

describe a design methodology to physically implement these architectures in 

with the pipelined Modified Booth. We compare the physical implementations 
in terms of area, power and delay. The results show that the new pipelined 
array multiplier can be significantly more efficient, with close to 16% power 
savings and 55% power savings when considering non-pipelined architectures. 
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1 Introduction 

Multiplier modules are common to many DSP applications. The fastest types of 
multipliers are parallel multipliers. Among these, the Wallace multiplier [18] is 
among the fastest. However, they do not have such a regular structure as the 
conventional array [11] or Booth [13] multipliers. Hence, when layout regularity, 
high-performance and low power are primary concerns, Booth multipliers tend to be 
the primary choice [2], [7], [9], [13], [16]. 

In this paper, we present layout implementations for both the Modified Booth 
multiplier and the new array multiplier in non-pipelined and pipelined versions. The 
pipelined version of the radix-4 architecture was implemented in order to reduce 
both the critical path and useless signal transitions that are propagated through the 
array. This array architecture is extended for radix 2m encoding, which leads to a 
reduction of the number of partial lines, enabling a significant improvement in 
performance and power consumption. 

We synthesize the multipliers by using an automatic synthesis tool, named 
TROPIC [15]. In order to compare the Modified Booth and the array architectures, 
both using radix-4, the ELDO – a spice simulator, part of the Mentor Graphics 
environment, was used. The results show that the new array multiplier is 
significantly more efficient, saving more than 50% in power consumption. This 
result is very close to the results reported in [4], obtained at the logic level using a 
switch-level simulator and 16% power savings considering pipelined versions. 

The power reduction presented by the new array multiplier is mainly due to the 
lower logic depth, which has a big impact in the amount of glitching in the circuit. 
We should stress further that, in contrast to the architecture presented in [4], rasing 
the radix for the Booth architecture is a difficult task, thus not being able to leverage 
from the potential savings of higher radices. 

This paper is organized as follows. In the next section we give an overview of 
relevant work related to our work. In section 3 we present a 2’s complement binary 
multiplication. After that, Section 4 briefly describes the radix-4 array multiplier. 
The Modified Booth multiplier and their pipelined forms are described in Section 5. 
Section 6 describes the design methodology and how area, power and delay results 
are obtained. Comparisons between the radix-4 array multiplier architecture and the 
Modified Booth, for both switch level and electrical level are presented in Section 7. 
Finally, in Section 9 we conclude this paper, discussing the main contributions and 
future work. 

2 Related Work 

A substantial amount of research work has been put into developing efficient 
architectures for multipliers given their widespread use and complexity. Schemes 
such a bisection, Baugh Wooley and Hwang [9] propose the implementation of a 2’s 
complement architecture, using repetitive modules with uniform interconnection 
patterns. However, an efficient VLSI realization is more difficult due to the irregular 
tree-array form used. The same non-regularity aspect is observed in [13], where a 
scheme of a multiplexer–based multiplier is presented. In [11] an improvement of 
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this technique is observed where the architecture has a more rectangular layout than 
[13]. 

The techniques described above have been applied to conventional array 
multipliers whose operation is performed bit by bit and some times the regularity of 
the multipliers is not preserved. More regular and suitable multiplier designs based 
on the Booth recoding technique have been proposed [7][2][16]. The main purpose 
of these designs is to increase the performance of the circuit by the reduction of the 
number of partial products. In the Modified Booth algorithm approximately half of 
the partial products that need added is used. 

Although the Booth algorithm provides simplicity, it is sometimes difficult to 
design higher radices due to the complexity to pre-compute an increasing number of 
multiples of the multiplicand within the multiplier unit. In [7][16] high performance 
multipliers based on higher radices are proposed. However, these circuits have little 
regularity and no power savings are reported. Research work that directly targets 
power reduction by using higher radices for the Booth algorithm is presented in 
[2][10]. Area and power improvements are reported with a highly optimized 
encoding scheme ate the circuit level. At this level of abstraction some other works 
have applied complementary pass-transistor logic in their design in order to improve 
the Booth encoder and full adder circuits [9][13][14]. 

In our work, the improvement in power has the same principal source as the 
Booth architecture, the reduction of the partial product terms, while keeping the 
regularity of an array multiplier. We show that our architecture can be more naturally 
extended for higher radices using less logic levels and hence presenting much less 
spurious transitions. We present layout implementation of pipelined and non-
pipelined versions of our multipliers. 

3 Array Multipliers 

In this section we describe how we derive the 2’s complement binary 

multiplication. Consider two operands W-bits wide, !
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A conventional array multiplier [3] translates this expression directly to 
hardware, where we have the W partial product rows from Equation 1, each made of 
W bit level products as in Equation 2, which can be arranged in a simply, very 
regular, array structure. Each bit product is simply an AND gate. 

The conventional array multiplier is only applicable to unsigned operands. We 
are able to show that exactly the same architecture can be used on signed operands in 
2’s complement with very little changes. 
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2’s complement is the most used encoding for signed operands. The most 

significant bit, 1!Wa , is the sign bit. If the number A is positive, its representation is 

the same as for an unsigned number, simply A. If the number is negative, it is 

represented as AW
!2 . 

Conversely, the value of the operand can be computed as follows: 
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We make the following observation that enables us simplify our architecture. Let 

us define !
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iaA , an unsigned value. For positive numbers, 01 =!Wa , 

hence the value represented by A is A! . For negative numbers, 11 =!Wa , hence this 

value is WWW AA 2)2(2 1
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or simply 1
12 !

!!"=
W

WaAA . 

What Equation 4 tell us is that the multiplication of two operands in 2’s 

complement can be performed as an unsigned multiplication for ( )21!W  of the bit 

products. Let us consider the 4 possible scenarios for BA! : 
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The form of Equation 6 highlights: 
• from the first term, that the W-1 least significant bits A and B can be 

treated exactly as an unsigned array multiplier; 
• from the second term, that the last row of the multiplier is either non-

existent (B>0) or a subtracter of A!  shifted by W-1 bits (B<0); 
• from the third term, that, at each partial product line, the most 

significant bit is either 0 (A>0) or -1 (A<0). 

Consider now !
"
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#
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0
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W
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mi
iaA , where ia  is a m-bit digit. For positive 

numbers, the value represented by A is A! as before. For negative numbers, this 
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value is mWWmWW
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or simply 
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Using analogous observations as made for the binary case, from Equation 8 we 
can write: 
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4 Radix-2m Array Multiplier 

In this section, we summarize the methodology of [5] for the generation of 
regular structures for arithmetic operators using signed radix-2m representation and 
extend it into a pipelined version [6]. 

For the operation of a radix-2m multiplication, the operands are split into groups 
of m bits. Each of these groups can be seen as representing a digit in a radix-2m. 
Hence, the radix-2m multiplier architecture follows the basic multiplication operation 
of numbers represented in radix-2m. The radix-2m operation in 2’s complement 
representation is given by Equation 10. 
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where R and Y are two operands W-bits wide; 1!Wr is the most significant bit (is the 

sign bit); and iW

i irR 2
2

0!
"

=
=# . 

This operation is illustrated in Fig. 1. For the W-m least significant bits of the 
operands unsigned multiplication can be used. The partial product modules at the left 
and bottom of the array need to be different to handle the sign of the operands. 

For this architecture, three types of modules are needed, as shown in Fig. 2. Type 
I are the unsigned modules. Type II modules handle the m-bit partial product of an 
unsigned value with a 2’s complement value. Finally, Type III are modules that 
operate on two signed values. Only one Type III module is required for any type of 

multiplier, whereas 2 m
W  - 2 Type II modules and ( m

W  - 1)2 Type I modules are 

needed. Fig. 6 shows an example of an 8-bit wide 2’s pipelined complement radix-4 
array multiplier. 
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Fig. 1. Example of a 2’s complement 8-bit wide radix-4 multiplication 
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Fig. 2. General structure for a 2’s complement radix-2m multiplier 

 
We present a summarized example for W=8 bit wide operands using radix-4 

(m=2) in Fig. 3. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. 8-bit wide 2’s complement Binary array multiplier m=2 
 
Figure 4 and Figure 5 show the structure of operands 1 and 2, their inputs and 

outputs and nearest connections between them and the blocks of adders. In additional 
they show the sign extension that has been used in operands 1 and 2. 
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Fig. 4. Operand 1 and connections to first line of adders showing the sign extension 
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Fig. 5. Operand 2 and connections to third line of adders showing the sign extension 

4.1 Pipelined Array Multiplier 

Glitches are unwanted switching activities that occur before a signal settles to its 
intended value. Each clock edge changes the inputs to the combinatorial logic 
between registers and every node has a different delay from different inputs, which 
change their state several times before settling down. Glitches on a node are 
dependent on the logic depth to that node, i.e. the number of logic gates from the 
node to the primary inputs (or sequential elements). The deeper and wider the logic 
behind a node, the more it glitches. These glitches can be reduced by reducing the 
depth of logic levels 

The regularity of this array architecture makes it suitable for the application of 
other power reducing techniques. A pipelined version was constructed in order to 
reduce the critical path and useless signal transitions that are propagated through the 
array. The doted lines in Fig. 6 show the pipelined version of the radix-4 array 
multiplier for 8-bit operands. As can be observed, the advantage of the layered 
structure of the array was taken into account and two layers of registers were 
introduced. Thus, 3 clock cycles are necessary to perform the computation 
considering 8-bit architectures. 
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Fig. 6. Example of an 8-bit wide 2’s complement radix-4 array multiplier 

5 Modified Booth multiplier 

The radix-4 Booth’s algorithm (also called Modified Booth) has been presented 
in [5]. In this architecture it is possible to reduce the number of partial products by 
encoding the two’s complement multiplier. In the circuit the control signals (0, +Y, 
+2Y, -Y and -2Y) are generated from the multiplier operand Y for each 3-bit group, 
as shown in the example of Fig. 7, for an 8-bit wide operation. A multiplexer 
produces the partial product according to the encoded control signal. 

Common to both architectures is that, at each step of the algorithm, two bits are 
processed. However, the basic Booth cells are not simple adders as in the array 
multiplier, but must perform addition-subtraction-no operation and controlled left-
shift of the bits of the multiplicand. Fig. 8, shows an example of an 8-bit modified 
Booth architecture. 

5.1 Pipelined Modified Booth Multiplier 

A pipelined Modified Booth by introducing registers along the layers of the array 
was implemented in and it is presented in Fig. 8. As it can be observed in this figure, 
there are two layers of registers along the array as in the binary array multiplier with 
m=2. Again, 3 clock cycles are required to compute the final result in the 8-bit 
architecture and six cycles to the 16-bit one. Moreover, common to both 
architectures is that the registers are inserted at the output of the adders which are 
responsible for adding the partial product terms. However, in the Booth multiplier it 
is also necessary to introduce registers in the output of the encoders to perform the 
correct operation of each clock cycle as shown in Fig. 8. 
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Fig. 7. Example of an 8-bit multiplication with Modified Booth algorithm 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. 8-bit pipelined modified Booth architecture 

6 Design Methodology 

Fig. 9 shows the design flow used in the physical implementation of the 
multipliers. Two methodologies are presented: our methodology (black), and the 
methodology used in [7] and [8] with the SIS environment (gray). The multipliers 
were originally described in BLIF (Berkeley Logic Interchange Format). Thus, these 
BLIF files are used as input of the design flow, as can be observed in Fig. 9. 

MD   10110111  (-73) 
MR   01011010 (0)  (+90)  

101101110    (2*MD)  
001001001    ( -MD) 
010010010    ( -2*MD)  

010 

011 

101 

100 00000000 0    (PP) 
010010010  

00010010010     (shift)  
  001001001  

0000110110110     (shift)  
101101110  

111100010010110     (shift)  
110110111  

11110011001010110     (shift)  (-6570) 
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In [5] and [6], the performance of the multipliers was evaluated only in a logic 
level. The SIS [17] tool was used to synthesize and estimate area and delay of the 
multipliers while power consumption was estimated using the switch-level simulator 
SLS [8]. 

.blif file

BLIF2VERILOG

PrimeTime (delay )

BLIF2SIM

TROPIC ( area ) .cif file

extracted netlist file

ELDO ( power)

SIS (area )

IC STATIONBLIF2SLS

SLS TOOL ( power)

SLS VECTORS 
GENERATOR & 

SLS2SPICE

 
Fig. 9. Design tools for synthesis and performance estimation 

 
In this work, the TROPIC tool was used for the physical synthesis of the 

implemented multipliers. This tool uses a spice like format (sim) as input and 
performs a library-free automatic layout generation of the circuit regarding the 
design rules of the target technology. TROPIC gives the total area occupied by the 
layout and the number of transistors of the synthesized circuits. Before the layout 
synthesis of the circuits, it is necessary to set the size of the transistors and the 
number of rows. This last parameter is useful to set the aspect ratio width/height.  

Since the TROPIC tool generates the widely used cif format, the resulting circuit 
layout can be visualized with Mentor Graphics IC Station tool. Fig. 10 shows the 
layout for the 8-bit array multiplier, which was generated automatically by TROPIC 
tool. Once the cif file is generated, an electrical extraction can be performed using 
the TROPIC tool. 

The extracted SPICE netlists were simulated using the ELDO electrical simulator 
in order to obtain power estimation at the back-annotated electrical level. This 
simulator is part of the Mentor Graphics environment for power estimation. The 
same set of input vectors used in [4] and [5] for power estimation was converted 
from SLS to SPICE format and then used for transient analysis. 

The timing analysis tool PrimeTime [12] was used to estimate the critical delay 
of the circuits. PrimeTime is able to perform both static and functional timing 
analysis. Static timing analysis (STA) is the standard approach used for delay 
estimation in the current designs complexity. The main issue of this approach is that 
logic information about the cells of the circuit is not considered during the critical 
delay search. At the same time that this issue makes the delay estimation faster, it 
can make STA suffers from the false path syndrome. In order to avoid this false path 
syndrome, the designer must report all timing exceptions of the circuit to the STA 
tool, and it can be a very hard task. 

Another way to avoid false paths during delay estimation is using functional 
timing analysis (FTA). FTA performs the critical delay search taking into account 
information about the logic cells of the circuit. So, paths that can not propagate a 
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transition are not considered and the critical delay will be the delay of the longest 
sensitizable path. Primetime uses the Exact Floating Mode sensitization criterion 
during the critical path search. This sensitization criterion considers both logic and 
timing information of the cells during the path sensitization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10. Layout of an 8-bit array multiplier generated automatically by TROPIC 

7 Performance Comparisons 

In this section, we present area, delay and power results for the 16-bit multipliers 
after layout generation. The circuits were implemented using HCMOS 0.25µm 
technology and the same transistor size (WP=5µm and WN=3µm). Area results were 
obtained using the TROPIC layout generation tool and are presented both in terms of 
total area and in terms of number of transistors. Power consumption was estimated 
through electrical simulation using  ELDO simulator and applying a random pattern 
signal with 100 input vectors. Power results are presented in terms of average power 
consumption. PrimeTime was used to perform static and functional timing analysis 
and both delay results are presented. We have not applied yet any transistor-level 
techniques which can further improve the efficiency of booth architectures. 

7.1 Pipelined and Non-Pipelined Results 

Table 1 presents area results for 16-bit radix-4 Booth and the new array 
multiplier proposed in [6], both implemented in layout level. 
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Table 1. Area results for 16-bit parallel multipliers 

 Parameter Array Booth Diff(%) 

Number of transistors 12484 10064 -19.4 
non-pipelined 

Total area (mm2) 0.2872 0.2172 -24.4 

Number of transistors 23014 21220 -7.8 
pipelined 

Total area (mm2) 0.4829 0.4608 -4.6 

 
As it can be observed in Table 1, the array multiplier presents the highest area 

and number of transistors. This occurs due to the fact that the partial product lines 
operate on group of m bits and the basic multiplier elements, which compose the 
modules for the product terms, are slightly more complex. The introduction of 
registers along the layers of the arrays increases the area of both architectures when 
compared to the non-pipelined architectures as shown in Table 1. Although the array 
multiplier presents the highest area value, this architecture can be slightly more 
efficient in terms of delay result as presented in Table 2. This is due to the lower 
logic depth presented by our proposed architecture. 

Table 2. Delay results for 16-bit parallel multipliers 

 Array Booth Diff (%) 

FTA 9.80ns 10.59ns +8.06 
pipelined 

STA 9.86ns 10.61ns +7.60 

FTA 17.75ns 18.97ns +6.87 
non- pipelined 

STA 18.26ns 19.59ns +7.28 

 
Fig. 1 and Fig. 8 show that while in the pipelined array multiplier the critical path 

is given by a m=2 multiplier module and 2 full adders, in the pipelined Modified 
Booth, the critical path includes the encoder, an operand circuit composed by a 
multiplexer and a full adder. These circuits produce a large number of 
interconnections and a longer delay per row. Thus, the array multiplier presents less 
delay values than the Modified Booth even in the pipelined version as shown in 
Table 2. 

As observed in [1], the major sources of power dissipation in multipliers are 
spurious transitions and logic races that flow through the circuit. Thus, the 
significantly less amount of spurious transitions in the new array multiplier justifies 
the gain in power when compared against the Booth multiplier as shown in Table 3. 
Moreover, the new array multiplier presents less logic depth due to the more 
balanced paths to the basic blocks that compose the array architecture. This 
contributes for improvement in power reduction because of the less generation of 
useless transitions. Our architecture is more efficient in reducing glitching and hence 
reducing power, as the results in Table 3 demonstrate. It is also apparent that our 6-
stage pipelining for the 16-bit multiplier is not optimum, as the power increase 
demonstrates for the pipelined version of both multiplier architectures. It is also 
apparent that our architecture is more power efficient for a smaller number of 
pipeline stages, when compared to the Modified Booth. All power results are for the 
same pipeline frequency (50MHz). 
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This occurs because in the pipelined approach glitching is reduced significantly. 
This reduction will have a greater impact in the case where the glitching was higher. 
However, the reduced logic depth and delay presented by our architecture still makes 
it significantly more efficient, as shown in Table 3. 

Table 3. Power dissipation for 16-bit parallel multipliers at Vdd=2.5V and freq=50MHz 

 Array (mW) Booth (mW) Diff (%) 

pipelined 14.76 17.12 +16.0 

non-pipelined 10.76 16.75 +55.7 

7.2 Comparison between Electrical and Logic Results 

Table 4 shows area, delay and power percentage changes between the pipelined 
and non-pipelined array and Modified Booth multipliers. The estimates at the logic 
level and after layout correlate well for power. Area estimates at the logic level is 
just the number of literals coming from logic synthesis (SIS environment). Delay at 
the logic level was also estimated in SIS environment by using mcnc library. The 
relative power estimations are fairly close as shown in Table 4. In the logic level 
power results were obtained by using a random pattern input signal with 10,000 
input vectors. The larger number of glitches generated in the Modified Booth makes 
this architecture more power consuming in both pipelined and non-pipelined version, 
which is captured with the SLS simulator. This validates the results reported in [5] 
and [6] at gate level design. 

Table 4. Comparison between parallel multipliers in electrical and logic simulations 

 pipelined non-pipelined 

Parameter Logic Level Electrical Level Logic Level Electrical Level 

Area (n. of transistors) -14.4% -7.8% -20.2% -19.4% 

Delay (ns) +15.2% +8.06% +1.1% +6.87% 

Power (mW) +18.7% +16.0% +54.0% +55.7% 

8 Conclusions 

We have described the layout implementation of a new array multiplier and 
Modified Booth multiplier both in pipelined and non-pipelined versions operating in 
2’s complement numbers using radix-2m encoding. We have presented results that 
show significant improvement in power consumption in the new pipelined and non-
pipelined array multiplier. We have compared the new array and Modified Booth 
multipliers simulated both at the logic and electrical levels. The results showed that 
the relative values at the two levels of abstraction are similar when we compare the 
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power consumption of the multipliers. As future work we hope to be able to 
prototype these architectures in order to experimentally validate these results. 
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