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1 Introduction

Global heterogeneous computing, often referred to as “the Grid” [5, 6], is
a popular emerging computing model in which high performance computers
linked by high-speed networks are used to solve technical problems that cannot
be solved on any single machine. The vision for Grid computing is that these
interconnected computers form a global distributed problem-solving system,
much as the Internet has become a global information system. However, to
achieve this vision for a broad community of scientists and engineers, we will
need to build software tools that make the job of constructing Grid programs
easy. This is the principle goal of the Virtual Grid Application Development
Software (VGrADS) Project, an NSF-supported effort involving 11 princi-
pal investigators at 7 institutions: Rice, Houston, North Carolina, Tennessee,
UCSB, UCSD, and USC Information Sciences Institute.

The eventual goal, shared by most researchers working in the field, is for
Grid computing to be transparent. A user should be able to submit a job to
the Grid, with the understanding that the Grid software system would find
and schedule the appropriate resources and compile and run the job in such
a way that the time to completion would be minimized, subject to the user’s
budget. The current situation is far from that ideal. There exist some simple
and useful tools, such as Globus [4], which provides a mechanism for resource
discovery and handles distributed job submission, and Condor DAGMan [12],
which manages the execution of job workflow structured as a directed acyclic
graph (DAG) by scheduling each job step when all its predecessors have been
completed. However, the application developer must still do a lot of work by
hand. For example, he or she must manage the complexity of heterogeneous
resources, schedule computation and data movement (if something more so-
phisticated than DAGMan is desired), and manage fault tolerance and per-
formance adaptability.

To address these issues, the VGrADS Project is carrying out research on
software that separates application development from resource management
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through an abstraction called a “virtual grid.” In addition it is exploring tools
to bridge the gap between conventional and Grid computation. These include
generic scheduling algorithms, resource management tools, mechanisms for
transparent distributed launch, simple programming models, mechanisms to
incorporate fault tolerance, and strategies for managing the exchange of com-
putation time on different platforms (sometimes called “grid economies”).

2 VGrADS Overview

The current research of the VGrADS Project is focused on two major themes:
virtualization of Grid resources and generic in-advance scheduling of applica-
tion workflows. In this section we describe these two themes in more detail.

2.1 Virtualization

The key motivation behind virtualization within the VGrADS software stack
is that, eventually, the Grid will consist of hundreds of thousands, or even mil-
lions, of heterogeneous computing resources interconnected with network links
of differing speeds. In addition, these resources may be configured through
software to provide a variety of specialized services. For an end user, or even
an application scheduler, the task of sorting through such a huge resource base
to find the best match to application needs will be nearly intractable. To sim-
plify this task, the VGrADS Virtual Grid Ezecution System (vgES) provides
an abstract interface called the Virtual Grid Definition Language (vgDL), that
permits the application to specify, in simple terms, what kinds of resources
are needed. Specifications in this language are quite high level. For example,
an application might say “give me a loose bag of 1000 processors, each with
at least one gigabyte of memory, and with the fastest possible processors” or
“give me a tight bag of as many AMD Opteron processors as possible.” Here
the distinction between a “loose bag” and “tight bag” is qualitative: a loose
bag has substantively lower interconnection bandwidth than a tight bag. The
user can also specify a “cluster” of processors, which means that all processors
have to be in the same physical machine, interconnected at extremely high
bandwidths.

In response to a query of this sort, the vgES does a fast search of a database
of global resources and produces one or more configurations, or virtual grids,
that best match the specification. This search can be thought of as a first
step in a two-step resource allocation and scheduling procedure. The second
step applies a more complex scheduling algorithm, as described in the next
section, to the returned virtual grid. VGrADS experiments have shown that
this approach produces application schedules that are nearly as good those
produced by complex global algorithms, at a tiny fraction of the scheduling
cost [7, 15].



Grid-Based Problem Solving Environments 21

In addition to resource screening, the vgES provides many other services,
including job launch and support for fault tolerance, but this paper will not
further discuss these facilities.

2.2 Scheduling

Most Grid problems are formulated as workflows, directed acyclic graphs
(DAGs) in which the vertices represent job steps and the edges represent data
transfers (or dependencies). As described in Section 1, Condor DAGMan and
other Grid scheduling mechanisms map a particular step onto available re-
sources only when all of its input data sets are ready. In contrast, in-advance,
or off-line, scheduling looks at the entire workflow before the job begins to
ensure that each step is assigned to a resource that is able to execute it ef-
ficiently, while keeping the data transfer times between steps to a minimum.
This approach has many advantages over demand scheduling. First, it should
do a better job of matching resources to computations by exploring the space
of possible assignments in advance, rather than just using whatever is available
when a step is ready to execute. Second, it streamlines the data movement
process and reduces delays between computations because, at the end of each
step, we already know where the data needs to be sent and no inter-step
scheduling is necessary. Finally, as we will see in Section 4.2, it makes it pos-
sible to incorporate estimated batch queue waiting times into the schedule
as extra delays between job steps. Our experiments have shown that off-line
scheduling can produce dramatically better workflow completion times, in
many cases by factors greater than 2, than dynamic approaches [2, 9].

On the other hand, there is a major impediment to the use of any off-line
scheduling algorithm: to do a good job, it must have accurate performance
models for each job step in the workflow. A performance model is needed
estimate the time for a step to complete as a function of the size of the input
data sets and the nature of the computing platform on which it is executed.
In an off-line scheduler, performance models serve as surrogates for the actual
execution times of different job steps. Dynamic scheduling schemes do not
need such models because steps are scheduled only when all predecessor steps
have completed. Thus, the actual execution time of a step is its performance
model.

The need for performance models is a real problem because accurate mod-
els are notoriously difficult to construct. Furthermore, our experiments demon-
strate that inaccurate performance models lead to bad schedules [9]. The goal
of the VGrADS Project is to make Grid programming easier rather than
more difficult, so requiring that the developer construct performance models
by hand is out of the question. To address this issue, VGrADS researchers are
exploring new methods for automatic construction of accurate performance
models. This work, which produces remarkably accurate models for unipro-
cessor performance will be discussed in Section 3.
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Since the scheduling problem for DAGs is NP-complete, VGrADS uses
heuristics to schedule workflows onto virtual grids. Each of the heuristics
employs an affinity matrix that is constructed by using performance models to
estimate how efficiently each job step will run on each resource. Data transfer
times between resources are estimated as data volumes divided by average
bandwidths from the Network Weather Service [14]. From these inputs, the
actual mapping can be computed using one of two different kinds of heuristic
scheduling algorithms. A level-based scheduler operates by moving from the
start of a workflow forward, considering at each stage all the computation
steps that are ready to execute after the previous echelon of compute steps
finishes. At a given stage, the scheduler maps each job step to the best available
resource, where “best” is determined by a heuristic measure. For example, it
might pick the resources that minimize the maximum completion time of
steps in the echelon, the so-called min-maz strategy. Currently, the standard
VGrADS strategy is level-based, but it uses three different heuristic measures
and picks the shortest of the three resulting schedules [9].

The alternative critical path scheduling strategy is similar to list schedul-
ing: it picks the next step to be scheduled by some heuristic measure based
on time from the start of the workflow or time to completion of the workflow.
This has the advantage of starting workflow steps when they are ready, in-
stead of waiting until all steps in the previous echelon have completed. Our
experiments show that critical path heuristics are usually better than level-
based approaches and we plan to switch the standard scheduler to use one of
these in the near future.

Because VGrADS scheduling algorithms are applied to the virtual grids
returned by the vgES, which are limited to sizes approximating what the
user needs rather than the space of total resources, the scheduling times are
reasonable, even for complex scheduling heuristics, such as the ones described
above, that are quadratic or worse in the number of resources.

3 Construction of Performance Models

Given that most of the applications of interest to the VGrADS project con-
sist of workflows in which each computational step is executed on a single
processor, our research on construction of performance models has focused on
accurate, and non-intrusive ways, to model performance on modern commod-
ity processors.

The base strategy of the VGrADS-supported performance model con-
struction research, due to John Mellor-Crummey and his student Gabriel
Marin [10], uses instrumentation of application binaries to determine the
memory hierarchy behavior of each data reference in a program. Based on
trial runs with a few data sets, the approach constructs, for each static mem-
ory reference in a program, a histogram of the number of different cache lines
touched since the last touch of the referenced cache line: this quantity is often
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Fig. 1. (a) Reuse distance data collected for one reference in the application
Sweep3D; (b) Final model for the data in (a); (¢) Model evaluation at problem
size 70 on a logarithmic y axis, and predictions for a 2048-block level 1 cache and
24576-block level 2 cache. (Figure reprinted with permission from a paper by Marin
and Mellor-Crummey [11].)
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called reuse distance. The reuse distance histogram, depicted in Figure 1(a),
is parameterized by the size of the input data set and the percentage of the
time that the reuse distance achieves this value. For most array references,
the reuse distance will be a small constant most of the time, but it may be
linear in the data set size in some cases and occasionally non-linear in data
set size. This is because a static reference that touches to the next element in
an array column (constant reuse distance) most of the time can also refer to
the first element in a column (linear reuse distance) or even the first element
referenced in the array (non-linear reuse distance).

From the data histogram for each reference, a model is constructed by
fitting curves to the different regions of the histogram (constant distance,
linear distance, quadratic distance, etc.), as depicted in Figure 1(b). From
these models, which are machine-independent, we can compute the memory
hierarchy delays for a given cache size and data set size by examining where the
plane for a given cache size intersects the model (see Figure 1(c)), determining
the number of misses above the plane, and multiplying by the miss penalty
for that level of cache. This must be done for each reference and each level
in the memory hierarchy. The result is the aggregate miss penalty for a given
memory hierarchy.

The remainder of the execution costs can be estimated by carrying out a
speculative scheduling exercise for the loops in the program with the specific
machine’s delays. Here we can assume that all data is found in cache, because
miss penalties are accounted for in the memory-hierarchy analysis.

This strategy has proved extremely accurate in practice and has been
used in VGrADS to estimate the performance of individual computations in
the EMAN application [8].

In the future, we hope to extend this methodology to more complex compu-
tations that can be carried out on tightly-coupled multiprocessors. Of course
there are a number of other approaches to performance estimation and mod-
eling available in the literature and individual applications may come with
such models already built in.

4 Value of Performance Models

In addition to being an integral part of the VGrADS scheduling methodology,
performance models have many other important roles to play in the Grid. In

this section we review several applications that are the focus of new work in
VGrADS.

4.1 Grid Economy and Global Resource Utilization

It is fair to say that we will not be able to deploy a truly global Grid until we
can establish exchange agreements and exchange rates among different types
of computing resources. Success will depend on maintaining floating exchange
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rates that permit machine cycles on one platform to be exchanged for cycles on
another. These rates could be established by estimate, then adjusted through
experience: As different applications are run on different resources, we could
collect data on relative performance and adjust the exchange rate accordingly.
I will not elaborate further on how such a process might work, because that
is the subject of substantive ongoing research. However, suffice it to say that
the exchange rates at any given moment accurately reflect the recent average
relative performance of a wide variety of applications.

Because an established exchange rate represents average relative perfor-
mance over many applications, accurate performance models can be used to
procure the most cost-effective computation for a particular application. For
example, suppose that the exchange rate indicates that, over all applications,
processor X is worth about twice as much as processor Y at the same clock
frequency. However, the performance models for application A indicates that
A will run three times as fast on X as on Y. In that case, it is always more
economical to run A on processor X. To put it another way, if A is perfectly
partitionable, it will need three times as many of processor Y to get the same
work done in the same time. Thus, if A can be done in an hour with n of
processor X, but only n — k are available, it will need 3k of processor Y if
it is still to finish in an hour. Given that the total cost is (n — k)rx + 3kry,
where rx is the cost in dollars per hour of time on processor X, ry is the cost
per hour of processor Y and rx = 2ry, the total cost for a run with n — k of
processor X and k of processor Y is:

2(n — k)ry + 3kry = 2n+ k)ry (1)

Since this increases linearly with k, it is always best to use as few of processor
Y as possible.

The important observation is this: If every application has its own perfor-
mance model, it can use this model to select the most cost effective resources
for its execution. If all applications do this and the exchange rate is set to
correctly reflect the mix of applications, this strategy will have the beneficial
effect of optimizing the utilization of global Grid resources. Of course, for
this to happen, the exchange rate will need to be continually adjusted as the
application mix evolves.

4.2 Scheduling around Batch Queues

If the Grid is to be truly universal, it will need to incorporate machines, like
those in the NSF TeraGrid, that are scheduled via batch queues. This presents
a new problem for global application schedulers: how to predict and account
for delays that are incurred waiting in batch queues. The VGrADS project
has developed a capability to predict batch queue wait times by using statis-
tical methods applied to queue histories [3]. This has been used to schedule
Grid workflows by adding wait times to data transfer times in the scheduling
algorithm [13].
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The problem with the VGrADS approach described above is that the time
spent waiting in batch queues is essentially wasted. If the batch queue systems
supported resource reservations, in which a time slot could be reserved in ad-
vance, then the scheduler might be able to predict when these slots would be
needed and reserve them at scheduling time, thus eliminating batch queue de-
lays. In the absence of explicit reservations, such a facility might be simulated
by using estimates of batch queue waiting times to put jobs in the queue far
enough in advance to reach the front of the queue by the time the data for a
given job step arrives. In its most recent research, the VGrADS project has
been experimenting with both of these approaches.

The use of resource reservations for specific time slots presents another
problem, namely how to determine the required slot reservation times. If a
slot is allocated before the input data for the associated job step arrives, costly
resources will be wasted. On the other hand, if the data arrives before the slot
is available, completion of the workflow will be delayed. In order to accurately
estimate when a slot is needed for a particular job step without knowing which
resources will be assigned to the workflow by the vgES, the scheduler must
have some way to normalize the time used every step in the workflow.

To address this problem, VGrADS is introducing vgDL queries that sup-
port equivalences between different resource types. A query with equivalence
might take the form: “Give me the equivalent of 1000 processors of type X
using a mixture of X and Y, where X = 3Y for this application step.” Such
a request allows us to normalize the time for a particular job step by asking
for enough processors of each available type so that the step can finish in
a predetermined time. Using these equivalences should dramatically reduce
the variance in the scheduled time for any given job step and hence increase
the reliability of a request for a specific time slot, independent of the type of
machine on which that time slot and others before it are allocated.

Of course, accurate performance models are what makes it possible to
generate accurate equivalences of the sort described above.

4.3 Scheduling to a Deadline

In a recent collaboration with the Linked Environmental and Atmospheric Dis-
covery (LEAD) Project, the VGrADS team has been exploring how to schedule
application workflows to a deadline. LEAD performs mesoscale weather anal-
ysis and prediction, needed to track tornados and hurricanes, using inputs
from adjustable Doppler radars. The LEAD workflow is executed repetitively
and, after each workflow iteration, which involves both data integration and
simulation, the outputs are used to adjust the orientation of the Doppler
radars prior to running another iteration. Thus the deadlines are essential to
maintaining the accuracy of storm tracking.

Deadlines present another issue for scheduling: How many resources of
what size do we need to meet the deadline with a high degree of confidence?
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Performance models can help answer this question through a process of iter-
ative scheduling. The idea is to perform a first scheduling pass by requesting
an initial set of resources and scheduling onto these resources. If the schedule
completes before the deadline, we are done. If not, we can use a strategy called
automatic differentiation [1], to compute sensitivities of the performance mod-
els for the computationally intensive steps to resource sizes. We can then use
these derivatives to predict the resource set sizes needed to reduce the work-
flow running time by enough to meet the deadline.

In some cases, it may not be possible to meet the deadline, no matter how
many resources are used. For LEAD, an alternative is to reduce the computa-
tion done in some of the steps, as a less accurate computation performed on
time may still be adequate to reorient the radars accurately enough for the
next cycle. Performance models are useful in this case as well, because they
can help determine when the deadline is effectively unreachable.

If performance models have the capability of generating estimated vari-
ance in addition to estimated running time, the scheduler can increase the
robustness of the schedule by putting more resources along the critical and
near-critical paths of high aggregate variance, thus increasing the likelihood
of meeting the deadline, though at a somewhat higher cost.

5 Summary and Conclusions

The Virtual Grid Application Development (VGrADS) Project has adopted a
strategy for generic, off-line scheduling of application workflows that mandates
the use of accurate performance models. Although performance models can
be constructed by hand, this is a labor-intensive and error-prone process.
Therefore, VGrADS is exploring methodologies for automatically constructing
such performance models from trial runs and inspection of the application
itself, typically through binary analysis.

Once good performance models are available, they can be used for a variety
of other problems, including scheduling around batch queues and scheduling
to deadlines. In addition, accurate application performance models can be
used to increase the efficiency with which collections of applications use global
Grid resources by mapping computations to the most cost-effective computing
platforms within the Grid economy.

In summary, the construction and use of application performance models
can help make the global Grid into an efficient system for general problem
solving, because they allow for the accurate accounting of costs across diverse
computing engines.
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Q&A - Ken Kennedy

Questioner: David Walker

How can you apply performance models when the grid resources are shared
with other users?

Ken Kennedy:

Much of the VGrADS research was done assuming that individual compute
nodes in the Grid would be devoted to a single process. However, for many
resource environments, this is unrealistic. In VGrADs, we hypothesized, and
verified experimentally, that if a compute node is partially loaded to a fraction
of x, the running time predicted by the performance model must be scaled by
a factor of 1/x. If the load varies dramatically, of course, this simple
correction will be inaccurate, which is one of the difficulties of optimizing in a
highly dynamic environment.

Questioner: Gabrielle Allen

How could this system change to support applications which are hard to
profile a priori, for example, applications modeling chaotic and nonlinear
phenomena, or complex application systems able to dynamically invoke new
libraries, etc?

Ken Kennedy:

It is true that, for some applications, performance will be difficult to predict a
priori. (However, irregular scientific applications do yield reasonable
predictions in our system.) Our GridSAT application has this characteristic.
For workflows in which such an application is a step, we may want to employ
a hybrid dynamic/ static scheduling strategy. This illustrates that there *are*
situations in which the advantages of dynamic scheduling win out.

Questioner: Suman Nadella

How does VGrAds' "offline scheduling to meet deadlines" compare or
contrast with priority scheduling such as the SPRUCE system in case of
applications such as LEAD?

Ken Kennedy:

Although | was not familiar with SPRUCE until this meeting, | discussed it
with the questioner after the meeting. From that discussion, | believe that the
strategies are complementary. We have been working under the assumption
that, in many cases, the applications we would be scheduling (including
LEAD) would not, except in special cases, be able to command very high
priorities. However, such a capability would be very useful in emergency
situations. It could also be used to provide more reliable resource
reservations within the VGrADS scheme.



Questioner: Xiaoge Wang

How do you model the network data transfer rate? Is it more complicated
than memory hierarchy?

Ken Kennedy:

Right now, we are using a very rough model. We use services like Network
Weather Service to estimate the instantaneous bandwidth between
resources involved in a data transfer and divide bandwidth into data volume
(adding latency) to estimate data transfer time. Of course, when loads vary
dramatically, this can lead to inaccuracy. So far these have not been very
troublesome.

Questioner: Xiaoge Wang

What if the resource provider could commit the resources and support the
resource reservations? Will the performance prediction be more realistic and
accurate?

Ken Kennedy:

Eventually, | think all providers will support resource reservations on a priority
system. It may be the case that a request for reservations will fail, in which
case our scheduling system will need to look elsewhere. With resource
reservations, the scheduling should be more reliably accurate.

Questioner: Bill Applebe

In a grid economy, a lot of incentives can be given to reward accurate
manual estimation of resources (e.g., do not schedule jobs without resource
(time) estimate, or otherwise punish bad estimates). How can manual and
automatic estimates be combined?

Ken Kennedy:

| believe that automatic estimates can replace manual estimates, but for the
purpose of Bill's question, we may want to use very conservative estimates,
as described in the next section. In other words, the estimates should be at
the 95th percentile, or above, of assurance if you could be kicked off
because of going over time.

Questioner: Bill Gropp

Should distributions or intervals be used instead of single numbers in the
performance estimates, particularly given the uncertainties in the
performance of applications and resources?

Ken Kennedy:

Absolutely. In fact you may wish to use different functions of the
performance estimation distributions in different situations. For example, to
minimize expected run time, you should use expectation. However, to



ensure meeting a deadline, you may wish to use the 80th, 90th, or 95th
percentile, based on an analysis of the criticality of meeting the deadline.

An interesting problem is that the estimates annotate nodes and edges of the
workflow DAG. This raises the interesting question about how to compute
the distribution of the makespan, given the distributions on the nodes and
edges. As it happens, in a study | was involved with in the 1970s, it may be
necessary to use empirical methods to approximate the aggregate
distributions.

Questioner: Boyanna Norris

How extensible is the HPC Toolkit, i.e., can third-party tools operate on the
architecture-independent performance models before they are mapped to a
particular architecture by the scheduler?

Ken Kennedy:

This is a research project, so it may lack the robustness of a commercial
system. However, the code is distributed with an open-source license, and
the architecture-neutral description is encapsulated in a way that would
permit it to be operated on.





