
SecSDM: A Model for Integrating Security into the 
Software Development Life Cycle 

Lynn Futcher, Rossouw von Solms 

Centre for Information Security Studies, 
Nelson Mandela Metropolitan University, 

Port Elizabeth, South Africa 
{Lynn.Futcher, Rossouw.VonSolms} @nmmu.ac.za 

Abstract, Most traditional software development methodologies do not explic­
itly include a standardised method for incorporating information security into 
their life cycles. It is argued that security considerations should provide input 
into every phase of the Software Development Life Cycle (SDLC), from re­
quirements gathering to design, implementation, testing and deployment. 
Therefore, to build more secure software applications, an improved software 
development process is required. The Secure Software Development Model 
(SecSDM), as described in this paper, is based on many of the recommenda­
tions provided by relevant international standards and best practices, for exam­
ple, the ISO 7498-2 (1989) standard which addresses the underlying security 
services and mechanisms that form an integral part of the model. 

Keyv»^ords: Risk analysis, secure software development, security mechanisms, 
security services. 

1 Introduction 

It is within highly integrated technology environments that information security is be­
coming a focal point for designing, developing and deploying software applications. 
Ensuring a high level of trust in the security and quality of these applications is cru­
cial to their ultimate success. Therefore, information security has become a core re­
quirement for software applications, driven by the need to protect critical assets and 
the need to build and preserve widespread trust in computing. 

A Microsoft study demonstrated that 64% of software developers are not confident 
in their ability to write secure applications [1]. This is despite the fact that the .Net 
framework and Visual Studio.Net provide them with the necessary tools and informa­
tion to write secure applications. Software developers often rely on their intuition in 
developing secure software and do so without much systematic help or guidance. 
These professionals need be educated to put security at both the heart of software de­
sign and at the foundation of its development process [2]. This implies that software 
developers need to use improved processes that consistently produce secure software. 
Currently, no software development processes or practices exist that consistently pro­
duce secure software [3]. It is therefore recommended that software producers adopt 

Please use the following format when citing this chapter: 

Futcher, L., von Solms, R., 2007, in IFIP International Federation for Information Processing, Volume 237, Fifth V^orld 

Conference on Information Security Education, eds. Futcher, L., Dodge, R., (Boston: Springer), pp. 41-48. 



42 Lynn Futcher, Rossouw von Solms 

practices that can measurably reduce software specification, design and implementa­
tion defects and, therefore, minimise any potential risk. 

This paper describes a model for integrating security into the SDLC. It proposes a 
more stringent software development methodology that both detects and removes 
vulnerabilities early in the life cycle, thereby minimising the number of security vul­
nerabilities in the live system. The SecSDM aims to draw attention to the importance 
of security in the SDLC. It is designed as an extension, not a replacement, to pre­
existing software development methodologies. 

2 The Software Development Life Cycle 

The development of software has always been regarded as a difficult task. For this 
reason, many different methodologies have been proposed by various researchers to 
guide the software development process as a whole. Software development typically 
follows a life cycle which determines the phases along which the software product 
moves. The traditional SDLC is a methodology for the design and implementation of 
an information system in an organisation. There are many representations of the 
SDLC, all showing a logical flow of activity from the identification of a need to the 
final software product. Each methodology has its own strengths and weaknesses and 
is therefore well-suited for certain types of applications. Although more complex sys­
tems require more iterative development models, the five phases comprising the tradi­
tional linear SDLC model are inherent in most software development methodologies 
and therefore form the basis for the SecSDM. 

If security considerations were woven into the SDLC, many of the security vulner­
abilities that manifest themselves in live systems today would never appear [4]. 
Therefore, it is argued that a more stringent software development process that incor­
porates security is required. Such a process should minimise the number of security 
vulnerabilities present in the SDLC and detect and remove these vulnerabilities as 
early in the life cycle as possible [5]. New ways of addressing and resolving security 
issues, early within the SDLC, must be introduced in the software development arena 
[6]. 

Although many researchers advocate that security needs to be integrated into the 
SDLC, few are able to describe a process to achieve this goal. It is argued that the 
evident separation between information security and software development has re­
sulted in the production of vulnerable software applications. Therefore, it is necessary 
to develop an improved software development process to build more secure software. 
Security concerns must provide input into every phase of the SDLC. 

3 The Secure Software Development Model 

Various international standards and best practices were consulted when developing 
this model. These include ISO/IEC 17799 [7], the international code of practice for 
information security management, the guidelines of the detailed risk analysis ap­
proach as determined by ISO/IEC TR 13335-3 [8], the NIST SP 800-14 [9] which 



SecSDM: A Model for Integrating Security into the SDLC 43 

outlines generally accepted principles and practices for securing information technol­
ogy systems, and ISO 7498-2 [11] which provides the basis of information security in 
software systems through five basic security services, supported by eight security 
mechanisms. 

An important consideration in developing this model was to define a useable proc­
ess that will lessen the burden for software developers who are not specialists in in­
formation security. This section describes the SecSDM as a simple, ten-step process 
for integrating security concerns into each phase of the SDLC as follows: 
• Investigation Phase: determines the security requirements of the software applica­

tion by executing a simple risk analysis exercise; 
• STEP 1: Information asset identification and valuation; 
• STEP 2: Threat identification and assessment; 
• STEP 3: Risk (asset/threat) identification; 
• STEP 4: Determine the level of vulnerability; 
• STEP 5: Risk assessment; 
• STEP 6: Risk prioritisation. 

• Analysis Phase: determines the security services to be used to satisfy the security 
requirements; 
• STEP 7: Identify the relevant security services and level of protection required 

to mitigate each risk. 
• Design Phase: determines how the security services will be implemented; 

• STEP 8: Map security services to security mechanisms; 
• STEP 9: Consolidate security services and mechanisms. 

• Implementation Phase: identifies and implements appropriate software security 
tools and components; 
• STEP 10: Map security mechanisms to software security components. 

• Maintenance Phase: the maintenance of software is made easier and more man­
ageable through the structured approach provided by the SecSDM. Users and op­
erations staff need to be educated in using the software application in a secure 
manner. 

3.1 The investigation phase 

Early determination of security requirements is necessary to develop software appli­
cations which can be trusted by all stakeholders. ISO/IEC TR 13335-3 [8] suggests 
that information security requirements are stated in terms of confidentiality, integrity, 
availability, accountability, authenticity and reliability of information. Therefore, it is 
necessary to perform some form of a risk analysis to determine the security require­
ments of a particular system. 

The proposed risk analysis approach carried out during the investigation phase 
takes the form of a step-by-step process. Its purpose is to identify the information as­
sets, their associated threats and vulnerabilities, and rank them according to those as­
sets that need the most protection. Different industries and different systems have 
varying information protection requirements. For example, healthcare organisations 
stress the confidentiality of patient records, whereas banking is more concerned about 



44 Lynn Futcher, Rossouw von Solms 

the integrity of monetary transactions. The software development team needs to un­
derstand and capture what the adequate protection of information is, in their specific 
context [11]. 

STEP 1: Information asset identification and valuation 
The listing of assets based on checklists and judgment, yields an adequate identifi­

cation of the important assets associated with the software application being devel­
oped [12]. These information assets can include, for example, personal information, 
employee salary information, customer contact information or financial information. 

The next step in the process is to assign values to each of the key information as­
sets identified. This is necessary to determine the impact value and sensitivity of the 
information in use, stored, processed or accessed. The SecSDM uses a 5-point Lickert 
scale and requires that an asset impact value between 0 and 4 (where 0=negligible and 
4=critical) be assigned to each of the key information assets identified. These values 
represent the business importance of the assets and will typically be obtained by in­
terviewing the information owners and its key users. The next step requires the identi­
fication of the various threats that may cause harm to these assets. 

STEP 2: Threat identification and assessment 
It is necessary to perform the identification and assessment of threats during the 

investigation phase of the SDLC. This information is required to identify risks and to 
guide subsequent design, coding and testing decisions. 

A checklist of the most common threats is provided by the SecSDM, based on 
those referred to in ISO/IEC TR 13335-3 [8]. Such a checklist of the most likely 
threats is helpful in performing a threat assessment, although software developers 
must be aware that threats are continually changing. Furthermore, it is necessary, as 
part of the threat assessment process, to determine the potential impact that each of 
the common threats may have on the assets associated with the software application. 
This may be performed, according to the SecSDM, by assigning each of the threats 
identified to one of the likelihood levels (low, medium or high). 

STEP 3: Risk (asset/threat) identification 
Risk identification requires that the most critical asset/threat relationships are iden­

tified to ascertain which risks are most likely to impact the proposed system [13], This 
is done by simply considering the key information assets, as identified in Step 1, and 
the most likely threats identified in Step 2. Those assets with high or critical asset im­
pact values (i.e., 3 or 4) and those threats recognised to have a potentially high impact 
will contribute significantly to the criticality of the risk. The following step in the 
process requires that the level of vulnerability for each critical risk be determined. 

STEP 4: Determine the level of vulnerability 
In practice, security is not compromised by breaking the dedicated security mecha­

nisms, but by exploiting the weaknesses or vulnerabilities in the way they are used 
[2]. Therefore, as part of the risk analysis process, it is important to be able to deter­
mine the level of vulnerability for each risk. It is necessary to consider the likelihood 
that the risk may materialise, taking the current situation and controls into account, to 



SecSDM: A Model for Integrating Security into the SDLC 45 

determine the level of weakness or vulnerability for each risk. The three main levels 
of vulnerability provided by this model are low, medium and high. The following step 
in the risk analysis process requires that a risk assessment be carried out to determine 
the extent of each risk. 

STEP 5: Risk assessment 
The extent of risk is determined, according to the SecSDM, by taking into account 

the asset impact value, level of vulnerability and potential likelihood of each threat 
identified. These are matched in a lookup table to establish the specific measure of 
risk on a scale of 1 to 8. The specific risk values established are determined according 
to those recommended by ISO/IEC TR 13335-3 [8]. 

STEP 6: Risk prioritization 
The prioritisation of risks during the investigation phase serves as a guideline for 

the analysis, design and implementation phases of the SDLC. This is achieved by 
simply listing each risk, identified in Step 3, and its corresponding risk value as estab­
lished in Step 5. 

3.2 The analysis phase 

The risk extent of a particular software application determines the scope of the secu­
rity services employed. Therefore, it is meaningful for the analysis phase to focus on 
the security risks as identified during the investigation phase. During the analysis 
phase, security services are selected according to their ability to mitigate the security 
risks identified. It is important, however, that this is carried out independently of any 
implementation details. The output of this phase is a refined set of security require­
ments. 

The ISO 7498-2 standard provides the basis for information security in software 
applications through five basic security services, namely: identification and authenti­
cation, authorisation/access control, confidentiality, integrity and non-
repudiation/non-denial. These five security services provide the basis for ensuring the 
security of any software application [10]. 

STEP 7: Identify the relevant security services and level of protection required to 
minimise each risk 

Software developers are required to map each of the most critical risks, as identi­
fied during the investigation phase, to the envisaged security services. For each risk, 
multiple security services may be identified. However, not all security services are re­
quired to address each individual risk, and neither are all security services applicable 
to all risks. This step results in the appropriate level of protection being selected to re­
duce the risks to an acceptable level. The next section describes the process of select­
ing the appropriate security mechanisms through which the security services, identi­
fied in Step 7, should be implemented. 



46 Lynn Futcher, Rossouw von Solms 

3.3 The design phase 

It is during the design phase of the SecSDM that the security services need to be 
translated into security mechanisms. The five security services referred to by ITU-T 
X.800 and the ISO 7498-2 standard are supported by eight security mechanisms, 
namely: encipherment, digital signatures, access control, data integrity, authentication 
exchange, traffic padding, routing control and notarisation [10]. These security 
mechanisms, however, cannot be "blindly" inserted into a software application in the 
hope of providing the required level of security. The overall system development 
process needs to take the various security concerns and risks into consideration to en­
sure the appropriate use of the required security mechanisms. 

STEP 8: Map security services to security mechanisms 
The SecSDM provides guidelines to assist software developers in selecting the 

most appropriate security mechanisms to support the security services identified dur­
ing the analysis phase. For example, if confidentiality is a required security service, 
then encryption can be used as the security mechanism. The mapping of security ser­
vices to the appropriate security mechanisms is required for all risks identified during 
the investigation phase. 

STEP 9: Consolidate security services and mechanisms. 
For ease of implementation, the SecSDM requires the consolidation of the results 

of Steps 7 and 8. Software developers are required to map the various security mecha­
nisms to the appropriate security services for each risk, as identified during the inves­
tigation phase. 

3,4 The implementation phase 

During the previous phases, according to the SecSDM, the risk sensitivity of the sys­
tem has been determined and the most appropriate security services and mechanisms 
to be employed have been identified. These mechanisms need to be implemented. The 
implementation of security mechanisms depends on the programming language used, 
the coding standards and best practices adhered to, and the personal programming 
style of the programmer. It is important to ensure that developers are knowledgeable 
about security risks and skilled in secure coding standards [4]. The programmer must 
ensure that all security-relevant code is understandable, auditable, maintainable and 
testable [14]. 

An important part of the implementation phase is testing. Testing is often seen as a 
way of 'testing in' security which is unacceptable. The role of security testing is to 
verify that the system design and code can withstand attack. Testing ensures that 
countermeasures are correctly implemented and that code is developed following cod­
ing standards and best practices. Security testing should follow a security test plan. 
This test plan should include unit testing, integration testing, quality assurance testing 
and penetration testing [4]. The testing of the software to validate that it meets the se-



SecSDM: A Model for Integrating Security into the SDLC 47 

curity requirements as determined during the investigation phase is essential to pro­
duce secure software. This testing should include serious attempts to attack and break 
its security and scan for common vulnerabilities [3]. 

STEP 10: Map security mechanisms to software security components. 
The security mechanisms identified may be implemented through appropriate soft­

ware security tools and components, for example, those inherent in the .Net frame­
work. The .Net framework provides developers with the necessary tools and informa­
tion to write secure applications [1]. The SecSDM does not currently recommend the 
use of specific software security components to implement the various security 
mechanisms. However, it does describe the process of mapping the security mecha­
nisms summarised in Step 9 to various software security components as recom­
mended by the software developer. An implementation priority list is needed which 
indicates the priority of the security mechanisms to be implemented to ensure that the 
correct security features are employed [15]. Therefore, software developers are en­
couraged to indicate the specific software security components through which the 
various security mechanisms will be implemented. 

3.5 The maintenance phase 

The maintenance phase is often viewed as another iteration of the entire life cycle 
[16]. During this phase, it is important to find ways to evaluate the security of the sys­
tem to ensure that the system is as secure as intended. The SecSDM ensures that all 
relevant security-related information is well documented. This helps improve the 
auditability of the software application in question, because security-related decisions 
are traceable to the appropriate phase as proposed by this secure software develop­
ment approach. The integration of information security into the SDLC as described in 
this section, and the tight integration between the various phases will help ensure that 
the final product meets the information security requirements, identified during the 
initial phases. 

4 Conclusion 

By applying the SecSDM, security is tightly interwoven in the software development 
process. Software developers are encouraged to consider security from the earliest 
phases of the SDLC, and to build critical security milestones and events into their de­
velopment timelines. The concepts from each phase of the SecSDM should be inte­
grated into the corresponding phases of the existing SDLC to ensure that security is 
appropriately considered and built into the software application. This type of inclu­
sion should result in a robust end product that is more secure, easier to maintain and 
less costly to own. 

The SecSDM, as described in this paper, has been implemented with an associated 
methodology at a tertiary institution. Initial experiments have shown encouraging re-



48 Lynn Futcher, Rossouw von Solms 

suits. A further positive aspect is that the associated documentation ensures that the 
entire security analysis and implementation process is auditable. 

References 

1. Taft, D. K. (2004, Dec). Microsoft aids secure coding. eWeek. 
2. Jurjens, J. (2002, May). Using UMLSec and goal trees for secure systems development. 

Communications of the ACM, 48 (5), pp. 1026-1030. 
3. Task Force Report. (2004, April). Improving security across the software development life 

cycle (Technical Report). National Cyber Security Summit. 
4. Jones, R. L.& Rastogi, A. (2004, Nov). Secure coding - building security into the software 

development life cycle. Application Program Security, pp.29-38. 
5. Lipner, S.& Howard, M. (2005). The trustworthy computing security development lifecy-

cle. 27. (cited on 15th April 2005) 
6. Tryfonas, T.& Kiountouzis, E. (2002). Information systems security and the information 

systems development project. In Proceedings of IFIP. 
7. ISO. (2005). ISO/IEC 17799 : Information Technology - Code of Practice for Information 

Security Management. 
8. ISO. (1998). ISO/IEC TR 13335-3 : Information Technology - Guidelines for the Man­

agement of IT Security. Part 3 : Techniques for the management of IT security. 
9. NIST (1996, Sept). Generally accepted principles and practices for securing information 

technology systems. NIST Special Publication 800-14. (http://csrc.nist.gov/publications) 
10. ISO. (1989). ISO 7498-2: Information Processing Systems - Open System Interconnection -

Basic Reference Model - Part 2: Security Architecture. 
11. Tipton, H. F.& Krause, M. (2006). Information security management handbook (Fifth ed.. 

Vol. 3). New York : United States of America: Auerbach Publications. 
12. Landoll, D. J. (2006). The security risk assessment handbook : A complete guide for per­

forming security risk assessments. New York : United States of America: Auerbach Publi­
cations. 

13. Whitman, M.& Mattord, M. (2003). Principles of information security. Thomson Course 
Technology. 

14. Tompkins, F. G.& Rice, R. (1985). Integrating security activities into the software devel­
opment life cycle and the quality assurance process. In Proceedings of IFIP pp.65-105. 

15. Siponen, M., Baskerville, R.& Kuivalainen, T. (2005). Integrating security into agile de­
velopment methods. In Proceedings of the 38th Hawaii international conference on system 
sciences. 

16. Gregory, P. H. (2003). Security in the software development life cycle (Technical Report). 
The Hart Gregory Group Inc. 

http://csrc.nist.gov/publications

