
Corporate Involvement of Libre Software:

Study of Presence in Debian Code over Time∗

Gregorio Robles, Santiago Dueñas, Jesus M. Gonzalez-Barahona

GSyC/LibreSoft, Universidad Rey Juan Carlos (Madrid, Spain)
{grex,sduenas,jgb}@gsyc.escet.urjc.es

Abstract. Although much of the research on the libre (free, open
source) phenomenon has been focused on the involvement of volunteers,
the role of companies is also important in many projects. In fact, during
the last years, the involvement of companies in the libre software world
seems to be raising. In this paper we present an study that shows, quan-
titatively, how important this involvement is in the production of the
largest collection of code available for Linux: the Debian GNU/Linux
distribution. By studying copyright attributions in source code, we have
identified those companies with more attributed code, and the trend of
corporate presence in Debian from 1998 to 2004.
Keywords: open source, libre software, involvement of companies, em-
pirical study, software business

1 Introduction

For companies producing computer programs, libre software2 is not yet another

competitor playing with the same rules. The production of libre software dif-

fers from traditional software development in many fundamental aspects, rang-

ing from ethical and psychological motivation to new economic and marketing

premises, to new practices and procedures in the development process itself.

One of the key differences is the different role of users. While in the clas-

sical software development environment the development team can be clearly

distinguished from the users, most of the libre software projects develop around

themselves a community [7]. This community is usually formed by people with

many different involvements, from pure users to core developers, including many

mixed roles, such as that of users contributing with patches (small modifica-

tions) to the code. Therefore, in most libre software projects we may observe

a continuum of commitment to the project which includes a wide range of

occasional contributors.

∗ This work has been funded in part by the European Commission, under the FLOSS-
METRICS (FP6-IST-5-033547) and FLOSSWORLD (FP6-IST-015722) projects.

2 Through this paper the term “libre software” will be used to refer to code that
conforms either to the definition of “free software” (according to the Free Software
Foundation) or of “open source software” (according to the Open Source Initiative).

Some software companies have realized this fact, sponsoring and promoting

projects with the aim of benefitting from the development of a strong commu-

nity around them. Some of the most known cases in this realm are Sun Microsys-

tems (OpenOffice.org, OpenSolaris, GNOME, among others), IBM (Apache,

Eclipse, etc.) or Apple (Darwin, the kernel of Mac OS X). Be it for this reason

or for any other, the involvement of companies in libre software development is

strong, and increasing with time.

While there has been some empirical research on self-organized software

development in libre software (among others, see [6, 19]) and especially on ac-

tivities performed by volunteers [12, 17], including their integration process [20],

the involvement of software companies in the phenomenon has been rarely at-

tended and if it has been mainly from the point of view of business models,

business case studies, and the motivations behind companies [4, 5, 2, 3]. Hence,

the focus of these papers can be understood from the perspective of companies

wanting to understand, invest or to guide them to successfully get integrated

into the libre software phenomenon.

Many of the companies that work with libre software just take already writ-

ten code and adapt it without providing feedback to the community, but some

others actively participate in libre software projects. In general, what these

companies are looking for in libre software is to obtain a surrounding user com-

munity which serves both as a basic and fast feedback mechanism, but also as a

marketing strategy, with the aim of getting software of better quality by letting

external brainware access the project’s source code, to lower the cost by letting

volunteers enhance or fix the software, among others.

The target of this paper is to measure the involvement of libre software

companies in libre software, specifically of those that deliver the code to the

community. For this, we will analyze the source code available in the Debian

GNU/Linux stable distributions, which contain in its latest version more than

10,000 source code packages (usually applications, but also libraries and other

components). As the sources of several Debian stable releases are available, we

will apply our methodology to five of them, spawning from 1998 to 2005, there-

fore tracking the evolution of the participation of companies during a period of

7 years.

The rest of this paper is structured as follows: next, the methodology for

our empirical study will be presented. In this section, we will present the data

sources and the procedures we have used to extract and analyze them. We will

discuss why the use of copyright statements is significant for our approach and

will include some refinements in our methodology to avoid double counting files.

In the following section, we will present the results of applying the methodology

to Debian, the largest libre software GNU/Linux distribution. We will provide

results over time to compare the evolution of the involvement. Finally, conclu-

sions, limitations and future research opportunities are presented.

122 Gregorio Robles, Santiago Dueñas, Jesus M. Gonzalez-Barahona

Title Suppressed Due to Excessive Length 123

2 Methodology

Contrary to popular belief, libre software authors rely on copyright law to en-

force their licenses, and therefore include copyright marks in their programs.

This is especially true for companies interested in maintaining ownership on

the code their (hired) developers have produced. Even when the software is

licensed under libre software licenses, the copyright owner has some privileges

(such as relicensing under other licenses) which are usually appealing to com-

panies. Companies also tend to have strict policies about copyright notices in

source code files.

But it is not only in the interest of companies to retain copyright. For

instance, non-profit organizations such as the FSF or the GNOME Foundation

actively ask developers to assign the copyright to them. The reason for this

is that these bodies may have stronger legal bodies to defend themselves from

license infringement.

Therefore, it is very likely that if a source code file is owned by a company

or one of these organizations, its copyright notice will appear in it. Usually,

individual authors also include their copyright attribution, but they may be

not that strict about that. In any case, the methodology of the study described

in this paper is based on the assumption of the existence of those notices.

As the rest of the software industry does, copyright notices are included

(among other places) at the beginning of each file with source code [18]. That

means that information about the copyright holder can be extracted from source

code files. For instance, the notice in the apps/units.c file of the GIMP project

(see figure 1) clearly states that the copyright holders are Spencer Kimball and

Peter Mattis, and that the license in use is the GNU General Public License. In

any case, it should be noted that the way of stating the copyright is not unique

and may change from project to project, even from file to file.

/* The GIMP -- an image manipulation program

* Copyright (C) 1995 Spencer Kimball and Peter Mattis

*

* This program is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License as published by

* the Free Software Foundation; either version 2 of the License, or

* (at your option) any later version.

[...]

Fig. 1. First lines of file apps/units.c, of the GIMP project

To identify those copyright notices, and extract from them information

about the copyright owner, we designed the methodology described in the fol-

lowing subsections, and implemented it by producing pyTernity3. The structure

3 The most current version of pyTernity can be found at https://forge.

morfeo-project.org/projects/libresoft-tools/

File
selection Ownergrep Cleaning Merging

Multiple
Entries

Double
Counting

Fig. 2. Block diagram with the various components of pyTernity

of the methodology, which corresponds to the architecture of pyTernity, is shown

in figure 2. The result is a list of files (avoiding similar files), with their size (in

SLOC, lines, and characters) and the copyright holders identified in them.

2.1 File selection and counting

First step in the methodology is the identification of source code files. This is

usually performed by using some ad-hoc heuristics, which may vary in their ac-

curacy as well as in the granularity of their results. We use two sets of heuristics

in our discrimination process: the extension in the file name, and the content.

Detailed information about the process can be obtained from [13]. With these

heuristics, almost all source code files are identified [15].

Every file identified as source code is then counted using SLOCCount4, a tool

authored by David Wheeler that calculates the number of SLOC (source lines

of code). SLOCCount has been used in many studies about the size of software

collections [21, 10, 1, 11, 14]. It calculates the number of physical source lines

of code (SLOC) of a software program. The Unix wc command is also used to

estimate the number of characters and lines of the file. All this information is

stored in a database, linked to the file name.

2.2 Ownergrep

The second step is to search for copyright notices in source code files. For that,

the ownergrep expression is compared with every line in the file. Since there

is no standard or widely-used way of stating copyright in files, the pattern

requires flexibility, which is achieved by the use of regular expressions that allow

matching multiple, slightly different ways of expressing the copyright notice.

The ownergrep expression is a modification of the original one by Prakash

and Ghosh (cite) and looks like this:

[1] .*copyright (?:\(c\))?[\d\,\-\s\:]+(?:by\s+)?([^\d]*)

Figure 3 presents some copyright entries that can be identified by the own-

ergrep expression. Identities found are stored in a database, linked to the files

in which they were present (and therefore, also to their size).

4 http://www.dwheeler.com/sloccount/

124 Gregorio Robles, Santiago Dueñas, Jesus M. Gonzalez-Barahona

Title Suppressed Due to Excessive Length 125

Copyright (c) 1998, 1999 by Sun Microsystems, Inc. All Rights Reserved.

Copyright (c) 2001-2, Vipul Ved Prakash. All rights reserved.

Copyright (c) 2006 IBM Corporation and others.

Fig. 3. Some copyright entries that can be matched by the ownergrep expression.

2.3 Cleaning

Identities stored in the database have to be cleaned. This means removing

all non-relevant information to convert identified identities to their canonical

format. This ranges from removing additional white-spaces to the deletion of

dots. Some ad-hoc heuristics are used, along with the complement of a database

of common transformations. Cleaning also includes splitting up an entry when

it corresponds to two or more authors. So, the entry “Spencer Kimball and

Peter Mattis” will result in two, one for Spencer Kimball and another one for

Peter Mattis. If this is the case, both names appear as authors of the file and

get attributed half of its length.

2.4 Multiple entries

After cleaning found identities, those corresponding to the same real entity are

identified. Developers and companies may appear in several forms while corre-

sponding to one single entity. The first idea in this line resulted in the construc-

tion of a large database where the various entries identified for a given developer

were noted (manually). This method proved to enhance results considerably.

However, the consideration of other methods, and the rising in complexity and

size of the database have finally lead to the construction of a different tool, Seal,

that returns a unique identifier for any given identity [16]. It is responsibility

of this external tool to track all developers and to manage them properly.

2.5 Merging

Once cleaning has been performed and multiple entries have been identified,

pyTernity merges the identities in the database so that authors appear only

once in a file. This procedure also includes adding the size of all the files corre-

sponding to each real identity.

2.6 Avoiding double-counting

In a large collection of software, some files may appear in several packages. That

means that the copyright owner of one such file will be attributed the same code

several times, which leads to inconsistencies. Therefore, similar files have to be

identifies and removed from the count. For this, we use Nilsimsa5, a hashing

5 The Nilsimsa code can be retrieved from http://ixazon.dynip.com/\%7ecmeclax/
nilsimsa.html

algorithm that produces similar hashes (according to a certain metric, based on

Hamming distance) for similar texts. For our methodology, 32 bits of Hamming

distance are used as the threshold for considering two files too similar to count

them twice.

Unfortunately, comparing proximity of Nilsimsa hashes is meaningfully

slower than comparing for equality. Therefore, comparing Nilsimsa hashes for

every pair of files is not practical for large quantities of software. To avoid this

situation, we propose a simplified use of Nilsimsa by (1) identifying files with

the same Nilsimsa and similar amount of code in order to avoid false positives

and (2) comparing by pairs all those files with the same filename. Table 1 shows

the number of files with the same name and a similar nilsimsa hash that have

been discovered for all versions of Debian.

Version Total files Same filename, similar Nilsimsa Percentage

Debian 2.0 243,057 45,850 18.86%
Debian 2.1 367,463 80,551 21.92%
Debian 2.2 838,834 238,601 28.44%
Debian 3.0 1,340,081 292,367 21.82%
Debian 3.1 2,497,636 420,885 16.85%

Table 1. Total number of files and files that have the same file name and a similar
Nilsimsa hash for every version under study.

2.7 Previous work

CODD, a tool designed by Rishab A. Ghosh and Vipul Prakash [8], was the

first tool to extract authorship information from source code by tracking copy-

right notices. Its main aim is to assign the length (in bytes) of each file to the

corresponding authors. It was successfully used in the Orbiten Survey [8], the

source code survey in the FLOSS study [9], and some other research projects.

CODD is a very powerful tool which implements a methodology similar

(in part) to pyTernity, but shows also some weaknesses. The most important

one is that it lacks a way of merging the various ways in which an author

may appear. So, authors may appear several times with different names or e-

mail addresses. For instance, we have found that some developers have up to

15 different identities which may appear in copyright notices. In the case of

companies and organizations, the same may happen: IBM or the MIT appear

in several ways (up to twenty!) with slightly different wordings.

CODD also includes some heuristics for cleaning the extracted data. Al-

though they have proven to be very powerful, these heuristics can not deal

with enough accuracy with the fact that developers use different conventions to

assign copyright.

126 Gregorio Robles, Santiago Dueñas, Jesus M. Gonzalez-Barahona

Title Suppressed Due to Excessive Length 127

Both limitations are important, and were the main reasons to create py-

Ternity. The ownergrep expression used in pyTernity is a modification of the

original one in CODD.

3 Results on Debian

The methodology presented in the previous section has been applied to several

releases of the Debian GNU/Linux distribution. In the next subsections an

introduction to the Debian project and the results of our study are shown.

3.1 Introduction to Debian and global results

Debian is a libre operating system that, at present time, uses the Linux kernel

to carry out its distribution (although there are some efforts to make that

future Debian distributions could be based on other kernels). The distribution

has a categorization of software packages according to their license and their

distribution requirements. The main part of the Debian distribution (the section

called main, which contains a large variety of packages) is compound only of

libre software in agreement with the Debian Free Software Guidelines. It is

available for download from the Internet and many resellers supply it on CDs

or by other means.

The Debian distribution is created by over a thousand volunteers (generally

computer professionals). The work of these volunteers consists on taking the

source programs -in most of the cases from their original author(s)-, to config-

ure them, to compile them and to pack them, so that a typical user of a Debian

distribution only has to select the package to be installed/updated/removed.

Hence, being a software included in Debian depends only on a volunteer per-

forming the aforementioned tasks.

Codename Release Packages Total SLOC Companies SLOC % # Companies

2.0 Hamm Jul 1998 1,096 28,750,853 4,259,164 6.75% 249
2.1 Slink Mar 1999 1,551 44,352,088 6,477,981 6.85% 312
2.2 Potato Aug 2000 2,611 95,738,163 14,934,951 6.41% 482
3.0 Woody Jul 2002 4,579 151,023,303 23,271,027 6.49% 782
3.1 Sarge Jun 2005 8,560 239,580,490 40,421,751 5.93% 1455

Fig. 4. Some information about the Debian distributions under study: version num-
ber, Toy Story codename, release date, number of source code packages, total number
of SLOC, SLOC attributed to companies, share of code by companies and number of
different companies identified.

Table 4 gives further details about the various releases that have been stud-

ied in this paper and about the involvement of firms in them. As it is already

known from previous studies [14] the size of Debian seems to double almost ev-

ery two years. It is noteworthy that the amount of code that can be attributed

to companies stays almost constant over time with values that lie around 6%-

7%, throwing that the number of lines of code contributed by companies grows

at the same pace than the distribution. The number of companies that could be

identified has also increased significantly from over 200 in 1998 to almost 1500

in the most recent stable version. In any case, from our empirical analysis we

can conclude that the involvement of industry in the libre software phenomenon

has grown substantially in the last 8 years, although its relative importance has

remained constant. It should be noted that this may not mean that the partic-

ipation of the software industry has not been raising in the last years as other

activities different from development such as support, consultancy and deploy-

ment without providing feedback to the community are not considered with our

methodology.

3.2 Top companies by non-double-counted SLOC

Tables 5, 6 and 7 give the contribution of companies found in the various Debian

releases under study. Contributions are measured in SLOC, avoiding double

counting as explained in the methodology. These stats may give an idea of the

effort spent by the company in the development of libre software.

Company name SLOC Files

sun microsystems inc. 801,632 2644
digital equipment corp. 434,152 1119
silicon graphics corp. 277,992 1274
xerox corp. 207,623 736
aladdin enterprises 92,172 475
age logic inc. 79,458 217
nec corp. 78,538 135
e.i. du pont de nemours 76,458 45
hewlett packard corp. 71,201 283
evans & sutherland 66,840 95

Company name SLOC Files

netscape comm. corp. 1,129,302 3934
sun microsystems inc. 810,437 2716
digital equipment corp. 428,176 1100
silicon graphics corp. 277,409 1207
aladdin enterprises 141,652 656
xerox corp. 98,071 342
lucent technologies inc. 85,586 139
at&t 80,140 223
age logic inc. 79,458 217
nec corp. 78,538 135

Fig. 5. Top-contributing companies for Debian 2.0 and Debian 2.1 (non-double-
counted SLOC).

SUN Microsystems has historically been among the most contributing firms

in terms of lines of code. For the first four Debian versions considered, its con-

tribution was slightly less than one million lines of code, but with the inclusion

of OpenOffice.org in Debian 3.1 its share has increased notably with over 5

MSLOC. IBM is another software giant present in this list, although its ap-

pearance is more recent (it enters the top 10 only in Debian 2.2). Interestingly

enough, we find that the third place in Debian 3.1 is occupied by a company

which is the main driver of a competing distribution to Debian, Red Hat Corp.

128 Gregorio Robles, Santiago Dueñas, Jesus M. Gonzalez-Barahona

Title Suppressed Due to Excessive Length 129

Company name SLOC Files

netscape comm. corp. 2,651,592 10423
sun microsystems inc. 1,086,765 4418
digital equipment corp. 975,178 5355
silicon graphics corp. 310,640 1308
aladdin enterprises 296,933 1403
ibm corp. 226,386 479
trolltech as 147,154 587
lucent technologies inc. 146,014 208
e.i. du pont de nemours 140,351 136
xerox corp. 128,922 444

Company name SLOC Files

ibm corp. 1,258,263 4832
sun microsystems inc. 955,462 3276
digital equipment corp. 784,279 4810
trolltech as 587,784 1836
silicon graphics corp. 575,810 2818
red hat corp. 376,099 878
static free software 292,448 242
aladdin enterprises 284,422 1422
abisource inc. 232,795 1530
hewlett packard corp. 208,903 707

Fig. 6. Top-contributing companies for Debian 2.2 and Debian 3.0 (non-double-
counted SLOC).

Company name SLOC Files

sun microsystems inc. 6,025,680 22,720
ibm corp. 1,991,300 6,953
red hat corp. 1,366,298 4,807
silicon graphics corp. 1,111,431 4,422
sap ag 1,080,246 4548
mysql ab 852,394 2,425
netscape communications corp. 786,070 2,780
ximian inc. 750,761 2,924
realnetworks inc 673,167 2453
at&t 656,045 2,620

Fig. 7. Top-contributing companies for Debian 3.1 (non-double-counted SLOC).

This is due to its participation in projects such as GNOME or the GCC compiler

collection6.

4 Conclusions

In this paper we have described a methodology (and pyTernity, a tool imple-

menting it) which can be used to scan source code files and find their copy-

right owners. This methodology is used to estimate (over time) the quantity of

code owned by companies in the largest libre software collection: the Debian

GNU/Linux.

The information resulting from this estimation is a first try with the aim of

answering several questions about the presence of companies in libre software

development. For instance, the share of code owned by companies has been

calculated (being around 6%-7% for all the studied releases of Debian, with

some tendency to lower), and the list of the companies contributing with more

6 Cygnus Solutions Inc. was acquired by Red Hat in 1999.

code - which is leaded by giants like Sun Microsystems, IBM, SAP, Silicon

Graphics or AT&T, but also includes more small, focused on libre software

companies like Red Hat, Ximian (now owned by Novell) or MySQL.

The described methodology can provide this landscape of company involve-

ment, but has to be considered with some care, since several sources of potential

errors do exist. To begin with, it is completely based on the accurate identifica-

tion of copyright notices, and correct extraction of identities from them. This

is based in heuristics which, even having been validated in several ways, may

not completely identify some copyright owners, or could wrongly assign code to

others. In addition, the identification of multiple identities for a single identity,

or the presence of several copies of some source code files could lead to miscal-

culations, which are dealt with by the methodology, but again using heuristics

with a certain chance of error.

However, manual validation of a random set of results seem to lead to the

conclusion that the results are good enough for using them to better understand

how much code from companies can be found.

Several lines of research are still open in this area. First of all, further de-

velopments in heuristics to better identify companies and other institutions

from copyright notices would improve the accuracy of results. In addition, im-

provements in the merging of different identifications corresponding to the same

entity would also help.

Correlation of these data, and comparison with performance parameters

of both the products and the companies with different levels of involvement

in libre software development are also promising lines for interesting results.

Methodologies to automatically assess companies and other entities about errors

in copyright attributions, and about ownership of the code corresponding to

software they use could also be of great interest to industry.

5 Acknowledgments

We would like to thank Diego Barceló and the rest of the GSyC/LibreSoft

research group at the URJC for their invaluable help with the implementation

and testing of the software used in this study. We are also very grateful to Rishab

A. Ghosh, Rüdiger Glott and Kirsten Haaland from UNU-MERIT/University

of Maastricht.

References

1. Juan José Amor, Jesús M. González-Barahona, Gregorio Robles, and Israel Her-
raiz. Measuring libre software using Debian 3.1 (sarge) as a case study: preliminary
results. Upgrade Magazine, August 2005.

2. Andrea Bonaccorsi and Cristina Rossi. Comparing motivations of individual pro-
grammers and firms to take part in the open source movement. from community

130 Gregorio Robles, Santiago Dueñas, Jesus M. Gonzalez-Barahona

Title Suppressed Due to Excessive Length 131

to business. Technical report, University of Pisa; Sant’Anna School of Advanced
Studies, Italy, 2003.

3. Andrea Bonaccorsi and Cristina Rossi. Altruistic individuals, selfish firms? the
structure of motivation in open source software. First Monday, 1(9), January
2004.

4. Andrea Bonaccorsi and Cristina Rossi. Open source software, intrinsic motivations
and profit-oriented firms. do not firms practise what they preach? In Proceedings
of the 1st International Conference on Open Source Systems, Genoa, Italy, July
2005.

5. Andrea Bonaccorsi, Cristina Rossi, and Silvia Giannangeli. Adaptive entry strate-
gies under dominant standards: Hybrid business models in the open source soft-
ware industry. Technical report, University of Pisa; Sant’Anna School of Advanced
Studies, Italy, 2003.

6. Kevin Crowston and James Howison. The social structure of open source software
development teams. In Proceedings of the International Conference on Informa-
tion Systems, Seattle, WA, USA, 2003.

7. Kevin Crowston and James Howison. The social structure of free and open source
software development. First Monday, 10(2), February 2005.

8. Rishab A. Ghosh and Vipul Ved Prakash. The orbiten free software survey. First
Monday, 5(7), May 2000.

9. Rishab Aiyer Ghosh, Gregorio Robles, and Ruediger Glott. Software source code
survey (free/libre and open source software: Survey and study). Technical report,
International Institute of Infonomics. University of Maastricht, The Netherlands,
June 2002.

10. Jesús M. González-Barahona, Miguel A. Ortuño Pérez, Pedro de las Heras Quiros,
José Centeno González, and Vicente Matellán Olivera. Counting potatoes: the
size of Debian 2.2. Upgrade Magazine, II(6):60–66, December 2001.

11. Jesús M. González-Barahona, Gregorio Robles, Miguel Ortuño Pérez, Luis
Rodero-Merino, José Centeno González, Vicente Matellan-Olivera, Eva Castro-
Barbero, and Pedro de-las Heras-Quirós. Analyzing the anatomy of GNU/Linux
distributions: methodology and case studies (Red Hat and Debian). In Stefan
Koch, editor, Free/Open Source Software Development, pages 27–58. Idea Group
Publishing, Hershey, Pennsylvania, USA, 2004.

12. Martin Michlmayr. Managing volunteer activity in free software projects. In
Proceedings of the USENIX 2004 Annual Technical Conference, FREENIX Track,
pages 93–102, Boston, USA, 2004.

13. Gregorio Robles. Empirical Software Engineering Research on Libre Software:
Data Sources, Methodologies and Results. PhD thesis, Escuela Superior de Cien-
cias Experimentales y Tecnoloǵıa, Universidad Rey Juan Carlos, 2006.

14. Gregorio Robles, Jesus M. Gonzalez-Barahona, Martin Michlmayr, and Juan Jose
Amor. Mining large software compilations over time: Another perspective of
software evolution. In Proceedings of the Third International Workshop on Mining
Software Repositories, pages 3–9, Shanghai, China, May 2006.

15. Gregorio Robles, Jesus M. González-Barahona, and Juan-Julián Merelo. Beyond
executable source code: The importance of other source artifacts in software de-
velopment (a case study). Journal of Systems and Software, 80(9):1233–1248,
September 2006.

16. Gregorio Robles and Jesús M. González-Barahona. Developer identification meth-
ods for integrated data from various sources. In Proceedings of the International

1 2 Gregorio Robles, Santiago Dueñas, Jesus M. Gonzalez-Barahona

Workshop on Mining Software Repositories, pages 106–110, St. Louis, Missouri,
USA, May 2005.

17. Gregorio Robles, Jesús M. González-Barahona, and Martin Michlmayr. Evolution
of volunteer participation in libre software projects: evidence from Debian. In
Proceedings of the 1st International Conference on Open Source Systems, pages
100–107, Genoa, Italy, July 2005.

18. Diomidis Spinellis. Code Reading: The Open Source Perspective. Addison Wesley
Professional, 2003.

19. Ilkka Tuomi. Evolution of the Linux Credits file: Methodological challenges and
reference data for Open Source research. First Monday, 9(6), June 2004.

20. Georg von Krogh, Sebastian Spaeth, and Karim R. Lakhani. Community, joining,
and specialization in Open Source Software innovation: A case study. MIT Sloan
Working Paper No. 4413-03, 2003.

21. David A. Wheeler. More than a gigabuck: Estimating GNU/Linux’s size, June
2001.

3

