
INTERCONNECT-AWARE PIPELINE SYNTHESIS
FOR ARRAY BASED RECONFIGURABLE
ARCHITECTURES

Shanghua Gao1, Kenshu Seto2, Satoshi Komatsu2, Masahiro Fujita2

1Department of Electronics Engineering, University of Tokyo
2VLSI Design and Education Center, University of Tokyo

Abstract: In this paper, we propose a novel interconnect-aware pipeline synthesis sys-
tem for array based reconfigurable architectures. The proposed system includes
interconnect-aware pipeline scheduling, post-placement communication schedul-
ing and others. The experiments on a number of real-life examples demonstrate
usefulness of the proposed method. For scheduling, our proposed interconnect-
aware pipeline scheduling has on average only 14% overhead compared to ILP-
based exact solution in terms of latency, and can achieve the same initiation
interval with much less computation time. For synthesis of array based netlist
with a real FPGA device, our interconnect-aware pipeline synthesis system can
speed up the clock period by up to 39%, compared to a conventional high level
synthesis system for array based reconfigurable architectures which utilizes loop
pipelining technique but does not consider interconnect delays during scheduling
phase. In addition, even when compared to a regular pipeline synthesis of gen-
eral netlist, our proposed synthesis system can generate on average 18% clock
period improvement.

1. INTRODUCTION
Loop pipelining is known as a very powerful technique to accelerate the ex-

ecution of time-consuming loops. In deep-submicron (DSM) process era, in-
terconnect delays (especially global interconnect delays) are becoming a more
and more important factor that can affect performance, since the gate delays are
getting smaller and smaller but the interconnect delays remain almost the same
with continuous process scaling. Under such situation, we can not neglect this
factor in high level synthesis any longer. Thus considering interconnect delays
in pipeline synthesis can be a promising technique to improve the design per-
formance. Unfortunately, to the best of the authors’ knowledge, until now, few
previous work considers the two factors together in high level synthesis, which
may limit their improvements on the final performance.

Gao, S., Seto, K., Komatsu, S., Fujita, M, 2007, in IFIP International Federation for Information
Processing, Volume 231, Embedded System Design: Topics, Techniques and Trends, eds. A. Rettberg,
Zanella, M., Dömer, R., Gerstlauer, A., Rammig, F., (Boston: Springer), pp. 121–134.

Shanghua Gao, Kenshu Seto, Satoshi Komatsu, Masahiro Fujita

searched. Lee, et al [6] proposed an algorithm for mapping loops onto dynam-
ically reconfigurable ALU arrays. Mei, et al [9] used modulo scheduling to
exploit parallelism for coarse grained architectures. However, none of these
methods considers interconnect delays, and they assume that all computation
including interconnect delays between functional units is executed in one clock
cycle. For large designs that contain long interconnect, clock period will be-
come relatively large, which reduces their performance improvement.

Meanwhile, there are a lot of research into high level synthesis which con-
sider interconnect delays. Xu and Kurdahi [16] proposed a method to consider
layout information for FPGA based architectures by determining a set of avail-
able functional units before scheduling. They view interconnect delays as a
part of one clock cycle computation. As interconnect delays become compa-
rable or even larger than gate delays in deep submicron technology [12], Kim,
et al [4][5] proposed register distributed architectures which separate intercon-
nect delay from gate delay and allow multi-cycle interconnect delays for the
first time. Cong, et al [3] improved on them and proposed a more mature ar-
chitecture with high regularity called Regular Distributed Register (RDR) Ar-
chitecture. They also developed corresponding architectural synthesis. Later,
having the observation that for a k-cycle global interconnect, they found that
it is not necessary to hold the sender register constantly for k cycles. Instead
flip-flops can be inserted to the wire to relay the signal. Thus they extended the
RDR architecture with pipelined interconnects by placing flip-flops on global
wires. Unfortunately, none of the above work exploits loop pipelining tech-
nique, so the performance improvement for loops is limited.

We proposed a pipeline scheduling algorithm for array based architectures
considering interconnect delays[13]. The algorithm is based on swing modulo
scheduling (SMS) technique [8], which is a well known software pipelining
technique but does not consider interconnect delays. It is a good starting point
towards the research for interconnect aware pipeline synthesis. However, the
work includes at least the following limitations: 1) The work evaluated the
effectiveness of the scheduling algorithm only by an artificial architecture, 2)
The work did not compare the proposed heuristic scheduling algorithm with
an exact approach, so its optimality is unknown, 3) The work only proposed a
scheduling algorithm, which is just a part of pipeline synthesis. It did not gen-
erate RTL descriptions, so the final performance is unknown. These limitations
are addressed in this paper.

Our contributions are as follows:

122

There have been a number of researches in high level synthesis which
exploit loop pipelining technique [1][7][8][10][11]. In recent years recon-
figurable architectures have become increasingly important and are actively re-

1) We propose a novel interconnect-aware pipeline synthesis methodology
to efficiently synthesize behavioral-level input into the target array-based re-
configurable architecture.

2) We compare the proposed interconnect-aware scheduling algorithm with
an exact approach based on integer linear programming (ILP).

3) We present detailed evaluation of the synthesis results using a real-life
FPGA device.

The rest of this paper is organized as follows. Section 2 introduces prelimi-
naries on loop pipelining technique and target architecture. Section 3 presents
our proposed interconnect-aware pipeline synthesis, including the design flow,
a motivational example, the interconnect-aware pipeline scheduling and others.
Section 4 shows experimental results, and Section 5 concludes the paper.

2. PRELIMINARIES
2.1 Loop pipelining technique

One main category of loop pipelining techniques is modulo scheduling [1].
The objective of modulo scheduling [11] is to generate a schedule for one iter-
ation of a loop such that the same schedule can be repeated at regular intervals
with respect to intra- and inter-iteration dependencies and resource constraints.
This interval is termed initiation interval (II), which reflects the performance
of the scheduled loop. The inverse of the product of II times clock period (cp)
is termed throughput. The larger the throughput, the faster the execution of a
loop. The execution time of one iteration is termed latency.

Swing modulo scheduling (SMS) [7][8] is a representative modulo schedul-
ing algorithm. It can reduce the number of registers required for the schedules.
The essence of swing modulo scheduling lies in its novel ordering technique of
the nodes, which enables the scheduler to place each node as close as possible
to both its predecessors and successors. So the lifetimes of registers are mini-
mized. When an operation is to be scheduled, it is scheduled in different ways
depending on the neighbors of this operation in the partial schedule. Here,
the partial schedule refers to the set of operations that have been scheduled
previously.

2.2 Target Architecture
Figure 1 shows our target architecture, which is a two-dimensional array

of islands. The size of each island is given that intra-island computation and
communication can be done in a single clock cycle. In other words, the data
obtained from a local register can be processed by a certain functional unit,
and then be stored to a local register within one clock cycle. Inter-island data
transfers can take multiple cycles.

123Interconnect-aware Pipeline Synthesis for Array Based Reconf. Architectures

Shanghua Gao, Kenshu Seto, Satoshi Komatsu, Masahiro Fujita

Each island contains the following components: (1) Functional units, such
as adders, multiplexers, multipliers, etc; (2) Local registers, which form the
local storage elements in each island; (3) Communication interface, which car-
ries out inter-island data transfers on a cycle-by-cycle basis; (4) Finite state
machine (FSM), which provides control signals for functional units and com-
munication interface.

FU

FU

FUFU

FU

(0, 0)

(2, 0)

(1, 0)

(0, 1)

(1, 1)

(2, 1)

F
S

M
F

S
M

F
S

M

F
S

M

F
S

M

North

W est

South
L ocal

E astFSM

R E GR E G

R E GR E G

R E GR E G

F
S

M

FU

FU

FU

FU

(0, 2)

(1, 2)

(2, 2)
F

S
M

F
S

M
F

S
M

R E G

R E G

R E G

Figure 1. Target architecture

cross
bar

Ni

Wi

Si

Ei

Li

N0

W0

S0 L0

E0

Ni

FSM

Wi

Si

Ei

Li

(a) (b)

Figure 2. Communication interface

The communication interface may have several ports in each direction. We
constrain that a port in one direction (eg. North) can be connected to only one

signals to the communication interface are either relayed through pipeline reg-
isters or directly switched to different directions. For each set of connectable

components for dynamic switching:
1) Bidirectional ports. To avoid conflict, we use tri-state buffers to clarify at

which cycle a port is used as input and at which cycle it is used as output.
2) Pipeline registers. A register is allocated to each port except the local

one, which forms the storage element for inter-island data transfers.
3) Control signals. We need control signals (provided by an FSM) for the

cross bar, multiplexers and tri-state buffers.
4) Cross bar. The control signals configure the cross bar on a cycle-by-cycle

basis.
The high regularity of such array based architectures simplifies the estima-

tion of interconnect delays, which can be obtained by a function of the posi-
tions of related islands. In particular, we use the following formula to roughly
estimate the delays (in terms of clock cycles):

w = �(|x1 − x2| + |y1 − y2|)/a� (1)

Here, (x1, y1), (x2, y2) are the coordinates of the islands, and a is a parame-
ter which represents how far (or how many islands) the signal can propagate in

124

port in another direction (eg. South), as illustrated by Fig. 2(a). The incoming

ports, the detailed construct is given in Fig. 2(b), which contains the following

one clock cycle. So, the interconnect delays are assumed to be proportional to
the Manhattan distance among the islands.

3. INTERCONNECT-AWARE PIPELINE SYNTHESIS
FOR ARRAY BASED ARCHITECTURES (IAPS)

In this section, we will present our proposed pipeline synthesis system,
which is built on top of the target architecture. We will first introduce the
overall design flow, then illustrate the benefit of considering interconnect de-
lays in pipeline synthesis through a motivational example. Finally we will
describe the key parts of this synthesis system, the interconnect-aware pipeline
scheduling & placement and post-placement communication scheduling.

CDFG generation

Interconnect-aware
pipeline scheduling & placement

Ta
rg

et
ar

ch
ite

ctu
re

 de
sc

rip
tio

n
Ta

rg
et

clo
ck

 pe
rio

d

Register & port binding

Data path & FSM generation

Behavioral description

Post-placement
communication scheduling

RTL Verilog files Floorplan constraints

Figure 3. Overall design flow

3.1 Overall Design Flow
Figure 3 shows the overall design flow of our IAPS synthesis. The inputs

are the following: 1) A behavioral description like C source code; 2) A target
architecture description. This architecture description includes the dimensions
of the architecture, the number and types of the FUs, the number of registers,
the number of wire resources in each segment, and their location information;
3) Design constraint such as a target clock period.

At the front-end, IAPS first detects the loops from the behavioral descrip-
tion and generates CDFG through the intermediate representations of the low
level virtual machine (LLVM) compiler infrastructure. Next, IAPS performs
simultaneous pipeline scheduling & placement. To this point, we get scheduled

125Interconnect-aware Pipeline Synthesis for Array Based Reconf. Architectures

and bound CDFG. Then, IAPS does post-placementcommunication scheduling.

Shanghua Gao, Kenshu Seto, Satoshi Komatsu, Masahiro Fujita

n1

n2

n5

n3

n6

n4

R es1 R es2 R es3

1

2

3

n1

n2

n3

n4

n5

n6

0

(a) DFG inside a loop (b) SMS result

FU2

FU3

FU1

(0, 0)

(1, 0)

(0, 1)

FSM
FSM

FSM

R EG

R E GR EG

2ns

(c) A rchitecture

1

2

3

n1

n2

n3

n4

n5

n6

0

(d) FU binding

R es1 R es2 R es3

n1

n2

n3

n4

n5

n6

0

R es1 R es2 R es3

1

2

3
FU1

FU2

FU3

1

2

3

0

4

n1

n2

n3

n5

n6

n4

(f) Interconnect aware result

FU1 FU2 FU3

(e) Placement result

Figure 4. Motivational example

physical routing wires based on a fixed schedule and placement.
At the backend, all of the scheduling and binding information is back-

annotated to the CDFG. Finally, IAPS generates data path and distributed con-
trollers. The outputs of IAPS are: 1) A data path in a structural Verilog format
and distributed controllers in behavioral FSM style. These files will be fed
into logic synthesis tools. 2) Floorplan constraints. This is for the downstream
place-and-route tools.

3.2 Motivational Example
In this subsection, we will illustrate the benefit of considering interconnect

delays during scheduling phase of pipeline synthesis.
Figure 4(a) shows a data flow graph inside a loop. For simplicity, we assume

that all nodes are of the same type (eg. addition) and are with a uniform delay
(=2ns). Here we allocate 3 functional units (Res1, Res2 and Res3) with latency
of 2ns.
with a CDFG in a similar way with predicated executions [2]. According to
SMS, the order for scheduling these nodes is: < n6, n5, n2, n1, n4, n3 >, the
minimum initiation interval MII is 2, and the scheduling result is shown as

126

The communication scheduling is to map inter-island data transfers onto

Please note that although Fig. 4(a) is a data flow graph, we can deal

the clock period of 2ns if interconnect delays can be ignored.
In the conventional pipeline synthesis, interconnect delays are assumed to

be negligible compared to the functional unit delays. However, the assumption
is no longer realistic in deep sub-micron era. Assume the architecture given

Thus the interconnect delay
between FU2 and FU3 is 4ns, and for others it is 2ns. Recall that in the con-
ventional synthesis flow, interconnect delays are considered as a part of clock
cycle, and all data transfers complete within one clock cycle. Thus to keep the
effectiveness of pipeline scheduling result, the clock period has to be increased.
The naive way is to let it be the summation of the computation delay and the
largest interconnect delay. For example, in this case, the largest interconnect
delay is 4ns, and so increase the clock period from 2ns to 6ns.

Here, for fair comparison, we perform optimized placement after SMS so
as to decrease the influence of interconnect delays on latency and II. The op-
timal placement consists of two steps: binding and SA-based placement. The
first step is to bind operations to components such that data transfers among
components with the same type are minimized as much as possible. And the
second step is to map components to functional units in the given target ar-
chitecture. For this example, when n6 and n5 are bound to FU1, n1 and n2
are bound to FU2 and the remaining two nodes are bound to FU3, the latency

result respectively). Between dependent operations n1 (bound to FU2) and n3
(bound to FU3), the interconnect delay can use control step 1, thus the clock
period needs to be only 4ns. In such way, the latency becomes 4 ∗ 4 = 16ns,
and the throughput becomes 1/(2 ∗ 4) = 1/8 per nanosecond.

If we consider the effect of interconnect delays during scheduling and sep-
arate interconnect delays from gate delays, we can get better results, as shown

is 5 ∗ 2 = 10ns, and the throughput is 1/(2 ∗ 2) = 1/4 per nanosecond, twice
as that of the conventional flow.

3.3 Interconnect-aware pipeline scheduling and
placement

Although there are a number of algorithms for loop pipelining [1], we select
swing modulo scheduling as the basis to start our work, since it is able to place
an operation as close as possible to both its predecessors and successors, which
effectively reduce the routing length between operations. The interconnect-
aware pipeline scheduling and placement algorithm is the same as the one in
[13]. Please note that although the algorithm is a heuristic one, we will show
that it can produce almost as good result as an ILP-based approach later.

127Interconnect-aware Pipeline Synthesis for Array Based Reconf. Architectures

Fig. 4(b). We can see that the 6 nodes are scheduled into 4 control steps with

as Fig. 4(c), the delay for each data link is 2ns.

is minimum (Figure 4(d) and Fig. 4(e) show the binding result and placement

in Fig. 4(f). The II is also 2 but the clock period remains 2ns. Thus the latency

Shanghua Gao, Kenshu Seto, Satoshi Komatsu, Masahiro Fujita

The algorithm consists of two steps: ordering and scheduling. At present
we take the same ordering technique as SMS [8]. To integrate interconnect de-
lay effect into scheduling step, we perform scheduling and placement together.
When an operation is to be scheduled, it is scheduled in different ways depend-
ing on the neighbors of this operation that are in the partial schedule. Here, the
partial schedule refers to the set of operations that have been scheduled previ-
ously. For details of the algorithm, please refer to [13].

3.4 Post-placement communication scheduling
After scheduling and placement, the lifetime of data transfers and their as-

sociated sources and destinations are known. Given a set of data transfers, the
number of routing resources (such as wires) and their locations, communica-
tion scheduling maps data transfers to physical wires based on a fixed schedule
and placement. During this process, we need to use a modulo reservation ta-
ble [11] for wires to keep track of their usage state, just as done for functional
units.

As described in Section 2.2, we constrain that a port of communication in-
terface in one direction can be connected to only one port in another direction.
Given this constraint, we perform the following operations for communication
scheduling:

1. Having the observation that the larger length the lifetime, the possibly
more flexibility the data transfer to be scheduled, we order the data transfers in
a non-decreasing of their lifetime lengths.

2. For each data transfer:
(a) Perform Maze Routing algorithm [14] to list all possible paths from

source island to destination island. We take the communication interface as
vertices in the grid graph [14], and assume that no vertex is blocked. The ca-
pacity of each edge is equal to the number of wires in one segment. In addition,
since the estimated interconnect delays are proportional to Manhattan distance
between two islands, we need only to search vertices toward the target in the
exploration phase.

(b) For each possible routing path, check whether there are wires or not,
to which the data transfer (from operation u to v) can be bound at consec-
utive w(fu(u),fu(v)) control steps (equal to corresponding interconnect delay).
At the same time the data transfer should start and finish within the interval
[t(u) + 1, t(v) − 1]. Here, fu(u) refers to the FU that operation u is bound to,
w(fu(u),fu(v)) refers to the interconnect delay between FUs fu(u) and fu(v),
and t(u) refers to the control step that operation u is scheduled to. If there are
existing wires available for some path, return success, and proceed with next
data transfer; Else if for every possible path, no wires available, return false,
increment the number of wires in each segment, and repeat step (b).

128

ILP Proposed
Op II L(c) rt(s) II L(c) rt(s)

fir 14 2 8 0.02 2 8 0.15
filter 17 3 10 0.06 3 12 0.14
iir 24 3 11 234 3 12 0.15
wavelet 30 4 18 39 4 18 0.24
ellip 42 6 12 894 6 15 0.25
image 74 10 22 12 10 28 0.61
jfdctfst 47 - - - 6 16 0.28
Ave ratio - 1 1 - 1 1.14 -

Table 1. Comparison of scheduling algorithm with ILP

3.5 Datapath & FSM Generation
After getting all the scheduling and binding information, our IAPS synthe-

sis flow will generate data path and distributed control signals. The data path,
including instances of functional units, registers, communication interface and
steering logics, is in a structural verilog file. This step also generates floor-
plan information, which is used to constrain placement information for every
instance in the data path.

trollers of different islands have identical state transition diagrams, but dif-
ferent output signals. The verilog files for the data path, the controllers, and
floorplan constraint, are fed into logic synthesis and physical design tools to
produce final layout.

4. EXPERIMENTAL RESULTS
In this section, we will first evaluate our proposed pipeline scheduling al-

gorithm by comparing with ILP, which can generate exact results. Then we
will assess our interconnect-aware synthesis system for array based architec-
tures by comparing with a conventional high level synthesis approach which
utilizes loop pipelining technique but doesn’t consider interconnect delays in
scheduling stage.

4.1 Proposed scheduling algorithm versus ILP
To evaluate the performance of our proposed interconnect-aware pipeline

scheduling algorithm, we compared it with exact results generated by ILP (Due
to page limitation, we omit the details of the ILP formulation). We tested with
a 2x2 architecture, and supposed that each island contains 2 functional units.

129Interconnect-aware Pipeline Synthesis for Array Based Reconf. Architectures

(including the communication interface) in the island. These distrubuted con-
In each island, an FSM controller is generated to control the instances

Shanghua Gao, Kenshu Seto, Satoshi Komatsu, Masahiro Fujita

So there are 8 functional units in total. We also assumed that the parameter a

which five are filter programs and two are transforms.
The results are shown in Table 1. The second column refers to the number

of operations for each application, II represents the realized initiation interval,
L(c) refers to the latency of one iteration in cycle, and rt(s) is the CPU time
(in second) to compute the schedule on an Intel Xeon 3.20GHz PC. The last
row is the average ratio of Proposed method over ILP. From the results we
see that: (1) our proposed interconnect-aware pipeline scheduling can realize
the same II as ILP, and has only 14% overhead compared to ILP in terms of
latency on average. (2) Our algorithm can solve the scheduling problem in less
than one second, much faster than ILP. Please note that “−” represents that
the corresponding application kernel could not be solved by ILP within three
hours.

To further show the effectiveness of our algorithm, we also tested with a
larger 4x4 architecture, where each island contains 2 functional units with pa-
rameter a equal to one. We found that except the former two small examples
(fir, filter), none of the applications can be solved by ILP within three hours, but
our algorithm can solve the problem within several seconds. That is the reason
why we use our proposed heuristic algorithm in the following experiment.

4.2 IAPS versus conventional pipeline synthesis flow
Experiment Setup. We implemented the IAPS system in C++/Linux envi-

left branch is a conventional pipeline synthesis for array based architectures
which does not consider interconnect delays during scheduling phase. The
right one is our IAPS flow discussed in this paper. In conventional synthesis
flow, communication scheduling is basically the same as that for IAPS flow,
except that we require that the data transfers should finish within one clock
cycle.

To obtain the final performance results, Xilinx’s ISE version 6.3 [15] was
used to implement the data path and controllers into a real FPGA device Spartan-
3 XC3S2000. All the multipliers were implemented into the dedicated MULT
blocks of the Spartan-3 device. We set the target clock frequency at 66.67MHz,
and used Floorplanner to constrain every instance into its corresponding is-
land. For the compilation options, we used the default set except setting “P&R
level” high.

Accounting for the regularity of the target device which contains two dedi-
cated MULT blocks, we applied a 3x4 architecture in the experiment. Within
the architecture, in column one and four each island contains 2 multipliers,
and in column two and three each island contains 6 ALUs. Thus there are 12

130

of Eq. (1) is equal to one. The test bench consists of seven programs, among

ronment. For comparison, we set up two alternative flows, as Fig. 5 shows. The

CDFG generation

Interconnect-aware
pipeline scheduling

& placement

R egister & port binding

Data path & FSM generation

B ehavioral description

Swing modulo
scheduling

X ilinx FPGA tool

R T L verilogFloorplan constraint

placement

Communication
scheduling

Communication
scheduling

Ta
rg

et
ar

ch
ite

ctu
re

 de
sc

rip
tio

n
Ta

rg
et

clo
ck

 pe
rio

d

Optimized

Figure 5. Two experimental flows

Conventional IAPS
Alu Mul Reg Alu Mul Reg

iir 18 6 28 18 6 44
wavelet 27 3 48 27 3 67
ellip 21 2 44 22 2 50
jfdctfst 20 5 46 20 5 55
image 36 5 50 35 5 63
wavelet 2 23 3 36 23 4 47

Table 2. Functional unit & register usage comparison

multipliers and 36 ALUs totally. As for the benchmarks, we used the latter
five applications of previous experiment, and wavelet 2 which is obtained by
unrolling the wavelet loop by two times.

comprehensive consideration of process technology, the architecture and base
island size, and other factors. In this experiment using the Spartan-3 FPGA
device with 3x4 architecture, we empirically found that it is proper to select the
a as five by experiment. In future, with process technology scaling, the ratio of
global interconnect delay over gate delay will become larger, and it will need
multiple cycles for signals to cross the chip, as pointed out by Cong [3]. In
addition, please note that Equation (1) is only one possible method to estimate
the interconnect delays. In fact, our algorithm is applicable to all architectures
provided that the interconnect delays can be estimated in advance.

131Interconnect-aware Pipeline Synthesis for Array Based Reconf. Architectures

The appropriate parameter a in Eq. (1) varies from case to case. It requires a

Shanghua Gao, Kenshu Seto, Satoshi Komatsu, Masahiro Fujita

Conventional IAPS
Op II cp(ns) L(c) Et(ns) slices cp(ns) L(c) Et(ns) slices

iir 24 1 18.49 (1) 9 2514 2827 16.83 (0.91) 13 2356 3482
wavelet 30 1 18.65 (1) 16 2666 3919 15.56 (0.83) 23 2334 4579
ellip 42 2 21.71 (1) 10 5731 4064 16.40 (0.76) 15 4411 3953
jfdctfst 47 2 22.27 (1) 8 5834 4455 17.52 (0.79) 12 4660 4625
image 74 2 28.16 (1) 21 7744 6243 17.14 (0.61) 29 4850 5861
wavelet 2 51 2 23.07 (1) 17 6251 3762 17.46 (0.76) 26 4888 3883
Ave ratio - - 1 - 1 1 0.775 - 0.798 1.064

Table 3. Comparison of IAPS with a conventional pipeline synthesis flow

Mapping Results. The number of functional units and registers used during
the scheduling phase is shown in Table 2. From the result, we see that the usage
of multipliers and ALUs for the two flows are almost the same, but IAPS used
more registers than conventional flow. This is because IAPS constrains that a
FU can only access local registers of same island, yet conventional flow allows
a FU to access registers located in destination island.

Results after mapping to FPGA are given in Table 3. In this table, cp refers
to clock period (in ns) reported by Xilinx tool. Et refers to the execution
time of a loop and slices denotes the number of slices used by the FPGA
implementation. And the last row refers to the average ratio of IAPS over
conventional flow. Let N represent the number of iterations of a loop. The
total execution time (Et) of one loop can be calculated as follows:

Et = (II ∗ (N − 1) + L) ∗ cp; (2)

Here, we assume that each loop has 128 iterations. The results show that
our IAPS flow can achieve up to 39% clock period reduction compared to
conventional flow, and 22.5% reduction on average. Although the latency for
one iteration may be worse than that of conventional flow, our throughput is
higher so the execution time for the whole loop is improved, on average 20.2%,
at the cost of some area overhead (on average 6.4% in terms of slices).

In addition, we did one more experiment to compare our proposed pipeline
synthesis with regular pipeline synthesis of general netlist which does not
consider interconnect delays. The results, shown in Table 4, reveal that our
pipeline synthesis can improve the clock period by 18% on average, at the
cost of 34% more slices used. Please note that in Regular synthesis flow, we
did not set any constraint on the floorplan or placement, so all its final perfor-
mances are determined by ISE tool automatically.

132

Regular IAPS
cp(ns) L(c) slices cp(ns) L(c) slices

iir 21.1 9 2711 16.8 13 3482
wavelet 17.6 16 3972 15.5 23 4579
ellip 19.3 10 2936 16.4 15 3953
jfdctfst 23.4 8 2859 17.5 12 4625
image 20.5 21 4402 17.1 29 5861
Ave ratio 1 - 1 0.82 - 1.34

Table 4. Comparison of IAPS with a regular pipeline synthesis of general netlist

5. CONCLUSION
In this paper, we presented a novel high level synthesis which not only ex-

ploits loop pipelining technique but also considers interconnect delays. Among
this synthesis system, a key step is interconnect-aware pipeline scheduling,
where we considered interconnect delays by performing pipeline schedul-
ing and placement simultaneously. Experimentation on a number of real-life
examples demonstrated the effectiveness of our interconnect-aware pipeline
scheduling algorithm and our synthesis flow. For scheduling, our proposed
pipeline scheduling algorithm had on average only 14% overhead compared
to ILP-based exact solution in terms of latency, and could achieve the same
II with significantly less CPU time. For the whole synthesis system, our
interconnect-aware pipeline synthesis system could speed up the clock period
by up to 39%, compared to a conventional high level synthesis system for array
based architectures which utilized loop pipelining technique but did not con-
sider interconnect delays during scheduling phase. Furthermore, even when
compared to a regular pipeline synthesis for general netlist, our pipeline syn-
thesis could improve clock period by 18% on average.

REFERENCES
[1] V. H. Allan, R. B. Jones, R. M. Lee, and S. J. Allan. Software pipelining. In ACM,

Computing Surveys, September 1995.

[2] J. R. Allen, K. Kennedy, and J. Warren. Conversion of control dependence to data depen-
dence. In Proc. 10th Ann. Symp. Principles of programming languages, January 1983.

[3] J. Cong, Y. Fan, G. Han, X. Yang, and Z. Zhang. Architecture and synthesis for on-
chip multicycle communication. IEEE Trans. on CAD of integrated circuits and systems,
23(4):550–564, April 2004.

[4] J. Jeon, D. Kim, D. Shin, and K. Choi. High-level synthesis under multi-cycle intercon-
nect delay. In Proc. ASPDAC, pages 662–667, January 2001.

[5] D. Kim, J. Jung, S. Lee, J. Jeon, and K. Choi. Behavior-to-placed rtl synthesis with
performance-driven placement.

133Interconnect-aware Pipeline Synthesis for Array Based Reconf. Architectures

November 2001.
In Proc . Computer Aided Design, pages 320–326,

Shanghua Gao, Kenshu Seto, Satoshi Komatsu, Masahiro Fujita

[6] J. Lee, K. Choi, and N. D. Dutt. An algorithm for mapping loops onto coarse-grained
reconfigurable architectures. In Proc. of LCTES, pages 183–188, June 2003.

[7] J. Losa, A. Gonzalez, E. Ayguade, and M. Valero. Swing modulo scheduling: a lifetime
sensitive approach. In PACT’96, pages 80–87, October 1996.

[8] J. Losa, A. Gonzalez, E. Ayguade, M. Valero, and J. Eckhardt. Lifetime-sensitive modulo
scheduling in a production environment. IEEE Trans. On Comps., 50(3):234–249, March
2001.

[9] B. Mei, S. Vernalde, D. Verkest, H. D. Man, and R. Lauwereins. Exploiting loop-level
parallelism on a coarse-grained reconfigurable architectures using modulo scheduling. In
Proc. Computers and digital techniques, pages 255–261, 2003.

[10] P. Paulin and J. Knight. Force-directed scheduling for behavioral synthesis of asics. IEEE
Trans. on CAD, 8(6):661–679, June 1989.

[11] B. R. Rau. Iterative modulo scheduling:an algorithm for software pipelining loops. In
Proc. the 27th Annual International Symposium on Microarchitecture, pages 63–74,

[12] Semiconductor Industry Association. International technology roadmap for semiconduc-
tors, 2003.

[13]
urable architectures considering interconnect delays. In Proc. of ICFPT, pages 137–144,
December 2005.

[14] Naveed Sherwani. Algorithms for VLSI physical design automation. Kluwer Academic
Publishers, 1999.

[15] Xilinx Web Site. http://www.xilinx.com.

[16] M. Xu and F. J. Kurdahi. Layout-driven high level synthesis for fpga based architectures.
In Proc. of DATE, pages 446–450, 1998.

134

November 1994.

S. Gao, K. Seto, S. Komatsu, and M. Fujita. Pipeline scheduling for array based reconfig-

