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Pneumocystis jiroveci Pneumonia 
Abida K. Haque and Patrick A. Adegboyega 

Pneumocystis pneumonia (PCP) is one of the most 
common pulmonary infections in persons with impaired 
cell-mediated immunity, and particularly those infected 
with human immunodeficiency virus (HIV).1-7 Pneumo­
cystis was first described in the lungs of guinea pigs, during 
experiments on American trypanosomiasis by Carlos 
Chagas8 in 1909 and by Antonio Carinii9 in 1910. Both 
considered the cysts of pneumocystis as part of the try­
panosome's life cycle. Shortly afterward the Delanoeslo 

found identical forms in the lungs of rats that had not been 
infected with trypanosomes and recognized the organism 
as a separate species. The name Pneumocystis carinii, was 
given to this organism as a generic name (Greek: pneumon, 
"lung"; kystis, "cyst"), honoring CariniiY 

The organism attained medical significance, when van 
der Meer and Brugl2 in 1942, and later Vanek, Jirovec, 
and Luke suggested it to be the cause of interstitial 
plasma cell pneumonia, a disease affecting premature and 
debilitated infants in central and eastern Europe.12,13 In 
the 1960s P. carinii was recognized as an important cause 
of pneumonia in immunocompromised adults on cortico­
steroids and cancer chemotherapy, in organ transplant 
recipients, and in children with primary immunodefi­
ciency syndromes.6 The emergence of acquired immune 
deficiency syndrome (AIDS) in the 1980s thrust P. carinii 
to the forefront once again, as a leading cause of morbid­
ity and mortality in immunocompromised individuals, 14 

Pneumocystis organisms infecting human beings have 
recently been named P. jiroveci.15 

The complete identification and classification of pneu­
mocystis has taken many decades. Although initially con­
sidered to be a protozoan, it is now generally agreed that 
pneumocystis is a fungus. The ribosomal RNA is homolo­
gous to that found in fungi. 16,17 A study of the small sub­
units of ribosomal RNA (16S-like rRNA) of P. carinii 
and the fungus Saccharomyces cerevisiae shows close 
evolutionary linkage between the two.16 The pneumocys­
tis organisms also stain with methenamine silver stains, 
further supporting a closer link to fungi rather than pro-

tozoa. Recent molecular genetic studies that demonstrate 
the thymidylate synthase and dihydrofolate reductase 
genes to be similar to their counterparts in S. cerevisiae 
support the classification of pneumocystis as a fungus. 17 
Furthermore, ultrastructural studies have failed to show 
the cytoskeletal elements and complex organelle systems 
characteristic of protozoa.18,19 

Pneumocystis organisms are ubiquitous and globally 
distributed, having been identified in virtually every 
mammalian species including humans as well as rabbits, 
dogs, goats, cats, swine, chimpanzees, owl monkeys, 
and horses,z0-26 The organisms have a wide range of 
genetic characteristics that are host specific.27 The pneu­
mocystis that infects humans, P. jiroveci, is different from 
the one that infects rats, and there is no cross-species 
infection.15,27 This observation was confirmed when poly­
merase chain reaction (PCR) applied to the human pneu­
mocystis identified only P. jiroveci.28,29 

Epidemiology 

The epidemiologic features of P. jiroveci are poorly 
understood. Experimental studies have shown that the 
infection is acquired by inhalation.3O-33 There does not 
appear to be a natural transmission of P. jiroveci across 
species.27,34-36 Immunosuppressed rats and nude mice 
acquire the infection by direct and distant contact with 
infected animals. In humans, the major predisposing 
factor is impaired cellular immunity as seen in AIDS, 
protein-calorie malnutrition, primary immunodeficiency 
diseases, immunosuppressive therapy with corticosteroids 
or other agents, and prematurity.37 The organisms are 
present in practically every part of the world, including 
the temperate, tropical, and polar regions.38 The use of 
molecular technology through the dihydropteroate syn­
thase (DHPS) locus analysis has facilitated epidemiologic 
study of the prevalence of P. jiroveci in the human popu­
lation. Identical genotypes of P. jiroveci were found in 
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the two groups of immunocompetent infants and adults 
with pneumocystis infection in a study from France, sug­
gesting that the transmission cycles of infection in all 
individuals parasitized by P jiroveci are linked with a 
common human reservoir.39,40 

It is not clear whether there is an environmental reser­
voir for P jiroveci, although mammalian lung appears to 
be a natural home.35 The isolation of pneumocystis DNA 
from rural outdoor locations and a seasonal variation in 
infection in patients suggest that there may be an envi­
ronmental reservoir. 41 Primary exposure to pneumocystis 
occurs early in life, so that most children have serum 
antibody by the age of 2 to 3 years.42-45 This is presumed 
to be an asymptomatic infection. The organisms remain 
latent within the host, and propagate when the host 
immune system becomes compromised. Several studies 
using PCR have found no evidence of pneumocystis 
DNA in the lungs of immunocompetent individuals, and 
do not support the latent reactivation theory.41,46--48 There 
are also experimental data in rat models that suggest that 
pneumocystis organisms do not persist in the lungs of 
immunocompetent individuals.49 Transmission of pneu­
mocystis has been shown to occur animal to animal when 
they had a common air supply, in immunosuppressed as 
well as immunocompetent models, although the latter 
had a subclinical transient infection.41 ,5o,51 Clinical studies 
have suggested the occurrence of human to human trans­
mission of pneumocystis organisms. 52-56 

Acquired immune deficiency syndrome patients have 
been found to develop immunoglobulin M (IgM) anti­
bodies with recurrent episodes of pneumocystis pneumo­
nia.57 It has also been shown by immunoblotting that 
P jiroveci (carinii) antigen recognition patterns in 
bronchoalveolar lavage (BAL) fluid can change with 
recurrent episodes of pneumonia.58 These findings may 
represent infections with different antigenic strains or 
antigenic changes in the existing strain of P jiroveci. 
Recently, mutations in the DHPS gene of P jiroveci were 
identified and used in epidemiologic studies of P jiroveci. 
In one study of 139 HIV-infected patients with pneumo­
cystis infection, 19% of patients with prior sulfa treat­
ment had the gene mutation, compared to 4 % of those 
without treatment.59 Co-infection with multiple strains of 
P jiroveci was found in 20% to 30% of cases, suggesting 
that recurrent infections may be related to reinfection 
with a new strain rather than reactivation.60 The DHPS 
gene-type variation was related to the place of diagnosis 
and not the place of birth, suggesting the infection to be 
recently acquired. Additionally, 54 % of P jiroveci strains 
in newly diagnosed HIV-infected patients demonstrate 
DHPS gene mutations. Since these patients were not 
treated with sulfa drugs, such mutations suggest that the 
infection was acquired from patients who had received 
prophylactic sulfa. The authors therefore believed that 
these findings represent evidence for person-to-person 
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transmission of pneumocystis. Person-to-person spread 
of P jiroveci is also suggested by outbreaks of infection 
in malnourished infants in orphanages and in hospitals 
caring for immunosuppressed patients.37 

Life Cycle 

The major obstacle to study the life cycle and biology 
of pneumocystis is the inability to sustain propagation 
of the organism outside the lung.28 Our understanding of 
the life cycle of P jiroveci derives mainly from detailed 
ultrastructural studies.61-65 Four developmental forms 
are described: trophozoites, cysts, precysts, and sporozo­
ites (also known as intra cystic bodies).66,67 All investiga­
tors have consistently identified the trophic (trophozoite) 
and the cyst stage, and also an intermediate precyst stage. 
Experiments using P carinii from lungs of infected 
rats and human lung cell cultures have been partially 
successful in growing the organisms to study the life 
cycle.68 Based on the cell culture studies, it was proposed 
that several developmental pathways may exist.68 The 
environment may play a significant role in determining 
the predominant method of replication as it does in many 
yeast or other microorganisms.69}O In tissue culture, 
at least two methods of development were proposed: an 
asexual cycle and a sexual cycle. Figure 13.1 shows 
the two cycles of P jiroveci pneumonia development. 
The asexual cycle involves mitotic replication of the 
trophic forms. The sexual cycle involves the continued 
development of precyst stages to mature cyst forms, 
and the development of elongated daughter forms 
within the cyst, followed by excystation and collapse of 
the cyst. 

The vegetative forms of pneumocystis, the tropho­
zoites, are 2 to 811m in diameter, and attach to type I 
alveolar epithelial cells. Although initially haploid, the 
trophozoites are believed to attain a diploid chromo­
somal number by gametic fusion. 37 The trophozoites 
enlarge and develop into diploid precysts through a 
process of cell wall thickening.37 Sporozoites then develop 
within the precysts following meiosis and mitosis, a 
process referred to as asporogony.67,69 Mature cysts 
contain eight haploid sporozoites that become trophozo­
ites, following rupture of the cyst wall, and recapitulate 
the life cycle. 

The cyst is the largest and most easily recognized 
developmental stage of P jiroveci. As demonstrated with 
Gomori's methenamine silver (GMS) stain, the cysts are 
thick-walled spherules, 5 to 7 11m in diameter, that assume 
a cup or crescent shape when collapsed. The cyst wall is 
trilaminar, 70 to 160nm in thickness, and shows a thick 
electron-dense outer layer, an electron-lucent middle 
layer, and a thin inner cell membrane.37 The cyst wall 
stains well with methenamine silver stain, cresyl echt 
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FIGURE 13.1. Diagrammatic representation of the developmen­
tal cycles of P carinii, in vitro. The asexual cycle: AI, trophic 
form; Bl, mitotic replication of trophic form; Cl, trophic forms, 
products of binary fission. The sexual cycle: A,B, isogametic 
forms; C, karyogamy; D, early precyst, diploid zygote; E, inter­
mediate precyst, beginning of mitotic replication of nuclei; F, 
intermediate precyst, four nuclei; G, intermediate precyst, com­
pletion of nuclear replication, eight nuclei; H, late precyst, 
migration of nuclei to periphery; I, late precyst, initiation of 
compartmentalization of daughter forms; J, early cyst, com­
pleted separation of daughter forms; K, mature cyst, eight 
rounded daughter forms within a thick wall; L, cyst containing 
ellipsoidal daughter forms; M, cyst containing elongated daugh­
ter forms; N, cyst containing thin, very elongated daughter 
forms; 0, collapsed, excysted cyst with trophic form. The pro­
gressive elongation of the daughter forms within the cyst stages 
L to N may represent the process required for excystation. 
These forms have been seen repeatedly in culture and in infected 
rat lung homogenates, although the actual process of excyst­
ment was not observed. (From Cushion et al.68 Copyright 1988, 
with permission from Macmillan Publishers Ltd) 

violet, and toluidine blue. It has been shown that the 
silver particles are deposited only on the electron-lucent 
middle layer of the cell wall; this explains the lack of 
staining of the trophozoites, which lack this layer.?l Many 
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studies have examined the composition of the cell wall. 
The cyst wall is rich in carbohydrates, lectins, ~-1 ,3-g1ucan, 
and lipids, including sphingolipid fatty acids and choles­
terol.68.72-?4 Treatment of P. carinii cysts with zymolyase, 
a ~-1,3-g1ucanase, disrupts the cyst wall and liberates the 
surface antigens.?5 Ergosterol has not been detected in 
many studies, which explains the resistance of P. jiroveci 
to sterol synthesis inhibitors, such as amphotericin Band 
ketoconazole.?6 

Most cysts contain up to eight spherical daughter forms 
or intracystic bodies, also known as sporozoites that are 
1 to 2 urn in diameter and surrounded by a double unit 
membrane. The sporozoites have a single nucleus, a mito­
chondrion, abundant endoplasmic reticulum, ribosomes, 
as well as microtubules and vacuoles. They are reported 
to be attached to each other and to the cyst wall by a 
thread or stalk-like structure?? Many cysts contain single 
or paired, comma-shaped structures that are localized 
areas of thickening of the inner layer of the cyst wall. 
These distinctive argyrophilic structures help to distin­
guish the cysts of P. jiroveci from nonbudding yeast-like 
fungi and other pathogens. Although seen best with GMS, 
the thickened foci can also be stained with toluidine blue 
0, but not reliably with the Gram-Weigert stain. None 
of the cyst wall stains demonstrate the sporozoites or 
trophozoites, although the membranes of the latter may 
stain faintly in specimens heavily overstained with 
GMS . 

The sporozoites and trophozoites can be visualized 
with the appropriate special stains in smears and imprints, 
mainly because of their nuclear staining. The sporozoites 
are seen as clusters of small nuclei surrounded by an 
unstained cyst wall, whereas the trophozoites appear as 
a meshwork of honeycombed spaces, many of which 
contain a dot-like nucleus. 

The trophozoites may be difficult to distinguish from 
background fibrin or tissue elements. In lung sections 
they appear ameboid, with broad pseudopodia and polar 
aggregates of tubular cytomembranous processes, termed 
"filopodia." The filopodia increase the surface area of the 
trophozoites and may help in nutrition and transport of 
enzymes to the environment; they are not organelles of 
attachment.3? In unfixed preparations the trophozoites 
appear as oval bodies resembling a cluster of grapes?? 
The trophozoites have a cell wall with three layers similar 
to the cyst; however, the middle electron-lucent layer is 
thin and poorly developed. Each trophozoite contains a 
single nucleus, cytoplasmic organelles, and glycogen, 
although not all of these elements are seen in every tro­
phozoite. Electron micrographs of the trophozoites dem­
onstrate the filopodia and the relationship between the 
filopodia and the pneumocytes (Figs. 13.2 and 13.3). 
Occasionally, trophozoites assume shapes that suggest 
reproduction by either binary fission or endogeny. The 
trophozoites tend to cluster in large aggregates, where 
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FIGURE 13.2. Electron micrograph of alveolar exudates in AIDS 
patient with pneumocystis pneumonia. Cyst containing six 
merozoites is seen between arrows. Next to the cyst is a matur­
ing trophozoite (T) without filopodia. Two collapsed cysts (C) 
are also present. Note that the upper cyst has discrete areas of 
capsular thickening corresponding to the darkly staining bodies 
seen with Gomori's methenamine silver stain. Uranyl acetate, 
lead citrate. (Courtesy of Dr. Richard Sobonya, University of 
Arizona.) 

they mold against each other in sheet-like pieces of a 
jigsaw puzzle. Each large cluster of trophozoites contains 
only a few admixed cysts. It is the clustering of the tro­
phozoites that produces the appearance of alveolar 
"honeycomb exudate" seen on light microscopy. The 

FIGURE 13.3. A. Electron micrograph of several trophozoites 
(T) attached to type I pneumocyte epithelium of the alveolar 
wall (I). MAC, macrophage; INT, alveolar interstitium; CAp, 
alveolar capillary. Uranyl acetate, lead citrate. B. Details of 
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intermediate stage between the trophozoite and the cyst 
forms the precyst stage, which demonstrates considerable 
morphologic variability. The precysts are oval in shape 
and 4 to 6/-lm in diameter. The cell wall is up to 100 nm 
in thickness, with an electron-lucent layer that is thicker 
than that of trophozoites. The cytoplasm contains one or 
more nuclei, mitochondria, free ribosomes, microtubules, 
vacuoles, and glycogen granules. Ultrastructural studies 
have identified three subtypes of the precyst stage, char­
acterized by progressive thickening of the cell wall and 
an increasing number of nuclei from one nucleus in the 
early precyst to four or more in the late precyst.38.66.77.7S 

The developmental forms of P. jiroveci are not seen 
clearly in routine histologic sections. A variety of special 
stains may be used to make the diagnosis. These stains 
are grouped into two categories: those that stain the cyst 
wall, and those that stain the nuclei of the trophozoites 
and sporozoites.79 The latter group, which can be applied 
only to imprint smears and cytology specimens, includes 
a variety of Romanowsky stains (Giemsa, Wright, Diff­
Quik), polychrome methylene blue, and Gram's stain. 
The cyst wall stains can be applied to tissue sections 
as well, and are preferred for routine diagnostic work. 
These stains include Gomori's (Grocott) methenamine 
silver (GMS) and its rapid variants, toluidine blue 0, 
and Gram-Weigert methods; GMS is preferred by most 
pathologists.8o 

Stains for sporozoitesitrophozoites have been advo­
cated for diagnosis because of their simplicity and rapid­
ity. However, a well-prepared GMS stain is by far the 
most reliable and sensitive nonimmunologic stain for the 
diagnosis of P jiroveci. Recently described rapid GMS 
variants have shortened the time required for specimen 
staining.8o- s4 A microwave method, described originally 
by Brinn,s3 can provide high-contrast slides of optimal 

electron micrograph in A, taken from the area to left of CAP 
Filopodia (arrows) are apparent especially in conjunction with 
type I pneumocyte epithelium. Uranyl acetate, lead citrate. 
(Courtesy of Dr. Richard Sobonya.) 
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quality in about 20 minutes and can be applied to any 
standard specimen. Combined methods that demonstrate 
both cyst walls and the nuclei of sporozoites and tropho­
zoites, although aesthetically pleasing, offer no advantage 
over a good methenamine-silver stain. 

Molecular Biology 

Molecular studies of rat-derived P carinii show the 
genome to be between 7 x 106 and 1 x 107 based on sum­
mation of P. carinii chromosomes in pulse-field gel elec­
trophoresis.85.86 This genetic material is arranged as 13 to 
19 chromosomes and is between 295 and 710 kilobase 
(kb) in size. The karyotype of human-derived P. jiroveci 
appears different from that of rat-derived organisms, but 
has not been well characterized.86 Three genes have been 
cloned from rat-derived P. carinii, including 18S RNA, 
dihydrofolate reductase, and thymidylate synthase 
gene.87-89 Since then, the DHPS gene and the internal 
transcribed spacer (ITS) region of P. jiroveci have been 
studied extensively in human pneumocystis infections. 
DHPS gene mutations are reported to be associated with 
sulfa/sulfone resistance in patients who had previously 
received prophylaxis.9o,91 The prevalence of DHPS gene 
mutations was reported to be markedly increased in the 
United States since the use of prophylactic sulfa drugs.92 
However, another study from Portugal reports no asso­
ciation between DHPS types or therapy and response to 
anti-Pneumocystis therapy.93 This same study found a 
subtype of the ITS region of nuclear rRNA, type Ne, to 
be associated with treatment failure, childhood infection, 
and early death. 

Immunobiology of Pneumocystis 

Antigenic studies of pneumocystis using Western blot 
technique have revealed several major antigens.75,94-96 
The most prominent surface antigen of pneumocystis is 
seen as a band of 116 kDa on polyacrylamide gel electro­
phoresis.37 There is cross-reactivity between this antigen 
from humans and other mammals. Another major class 
of antigens in rodent-derived P. carinii migrates in the 
45- to 50-kDa range. The relationship of this antigen to 
the 116-kDa antigen is not clear. A third antigen that is 
the most prominent feature of human-derived pneumo­
cystis is a broad intensely staining band between 35 and 
45 kDa.75.94-96 This is the most common band found in the 
lungs and bronchoalveolar fluid of patients with P jir­
oveci infection, while the 116-kDa band is less prominent 
in these specimens.96 

Exposure to pneumocystis organisms evokes an 
immune response in the host.97 Serologic studies using 
indirect immunofluorescence (IF) and enzyme-linked 
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immunoabsorbent assay (ELISA) have demonstrated 
serum antibodies to P. jiroveci in childhood under condi­
tions of natural exposure.43,98 These antibodies are pri­
marily directed against the 35- to 45-kDa band antigen, 
although antibodies to other bands were also recog­
nized.57 This study also found that >90% of AIDS patients 
developed IgM or IgG antibodies to the 35- to 45-kDa 
band and other antigens with recurrent episodes of pneu­
mocystis infection. The role of these antibodies is unclear; 
however, there is some evidence that they may function 
as opsonins.99 

The development of PCP is related to impairment of 
cell-mediated immunity. The most prominent disease in 
this category is AIDS, although there has been an increase 
in non-AIDS patients also. In AIDS and HIV infection, 
there is a decline in the number and function of circulat­
ing CD4+ T-helper cells, the increased incidence of PCP 
being directly proportional to the fall in CD4+ T 
lymphocytes. 100 

Pneumocystis organisms are host-specific, but the 
reason for this stringent specificity is not clear.27 P. jir­
oveci, the only pneumocystis identified in humans, has a 
unique tropism for the lung, where it exists primarily as 
an alveolar pathogen. A few cases of invasive infection 
with dissemination are reported with severe immunosup­
pression or overwhelming infection of the hOSt. 101 The 
availability of molecular techniques has identified key 
molecules in the cell cycle, signal transduction, and meta­
bolic pathways of pneumocystis. The first specific mole­
cule identified was glycoprotein A, a major surface 
glycoprotein with an integral role in the attachment of 
pneumocystis to host cells.45 .102-104 This surface glycopro­
tein is immunogenic and antigenically distinct in each 
form of pneumocystis infecting various mammalian 
hosts. 102,104 The major component of the cyst wall is ~-1,3-
glucan, and the pneumocystis ~-1,3-g1ucan synthetase 
gene, GSCl, which mediates the polymerization of uridine 
5' -diphosphoglucose into ~-1 ,3-g1ucan. I05 Inhibitors of 
~-1,3-g1ucan synthetase are effective in clearing the 
cyst forms of pneumocystis from lungs of infected 
mammals. 106,107 The cyst wall also contains chitins and 
other complex polymers, including melanins that provide 
stability to the cell wall and invoke an inflammatory 
response in the lungs. 108,109 

Several signal-transduction molecules have been 
recently identified in pneumocystis. These include cdc2 
cyclin-dependent kinase, cdc13 B-type cyclin, cdc25 mitotic 
phosphatase, and pneumocystis mitogen (PCM)-activated 
protein kinaseYO-l15 Furthermore, the finding of enhanced 
activity of PCM in the trophozoites as compared with the 
cyst forms suggests that the trophozoites may use this 
pathway for transitions in the life cycle. I I} 

During infection, the trophozoites adhere tightly to the 
alveolar epithelium, activating specific signaling pathways 
in the organism, including the gene encoding PCSTE20 
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kinase, which signals responses for mating and prolifera­
tion in fungal organisms.114 Other signaling molecules 
identified in pneumocystis include the pheromone recep­
tors, heterotrimeric G-protein subunits, and transcription 
factors. 115·116 Currently, some of these specific molecules 
are under intense research studies as potential drug 
targets. These include dihydrofolate reductase (target of 
trimethoprim), thymidylate synthase, inosine monophos­
phate dehydrogenase (target of mycophenolic acid), 
S-adenosyl-L-methionine:sterol C-24 methyl transferase 
(involved in biosynthesis of sterol), and lanosterol 
14(a)-demethylase (the target enzyme of azole anti­
fungal drugs ).59,117,118 

Pathogenesis of Infection 

Pneumocystis infection is acquired by inhalation. When 
the organism is deposited in the alveoli, the first critical 
step in the establishment of infection is attachment to the 
type I pneumocyte, through interdigitation of their cell 
membrane to the alveolar cell membrane. l19 This binding 
is facilitated by the interaction of host proteins, fibro­
nectin and vitronectin, which bind to the surface of the 
trophozoites and mediate the attachment to integrin 
receptors of the alveolar cells. 120 The subsequent events 
depend on the immune status of the host; the organism 
can remain quiescent for a long period of time, and then 
proliferate when the host becomes immunocompro­
mised.l19 Other investigators suggest that the organisms 
remain in the lungs for only a short time, In an immuno­
compromised host, the organisms start to proliferate, and 
the alveoli become progressively filled with masses of the 
pneumocystis organisms. In animal models, P carinii 
organisms increase from <105 to 109 or 1010 in 8 to 10 
weeks. It is presumed that P jiroveci replicates in a similar 
manner in humans. The proliferation of P jiroveci results 
in the accumulation of the typical foamy, honeycomb-like 
alveolar exudates. Although the type I alveolar cells 
appear vacuolated and eroded in infected tissues, there is 
no evident disruption of structure or barrier function in 
lung epithelial cell cultures. I21 ,122 Ultrastructural studies 
have shown the alveolar exudate to contain abundant 
fibronectin, vitronectin, and increased surfactant proteins 
A and D.123 Surfactant protein B, in contrast, is reduced 
during pneumocystis infection. 124 The reasons for the 
increased surfactant protein A (SP-A) levels are poorly 
understood; however, both surfactant proteins A and D 
interact with the surface glycoprotein A component of 
pneumocystis, and modulate its interaction with macro­
phages,125-127 Changes in the type I pneumocytes are fol­
lowed by type II pneumocyte hyperplasia, suggesting a 
reparative response. Long-term survival of patients with 
pneumocystis infection is often associated with alveolar 
damage and interstitial alveolar fibrosis,128 
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Host Immune Responses 

Pneumocystis infection elicits both humoral and cellular 
immune responses in the host. Epidemiologic studies 
have shown that antibodies to the organism are acquired 
in early childhood.43 There is increasing evidence to 
support the role of humoral immunity in host defense 
against pneumocystis. Passive immunization with specific 
monoclonal antibody is shown to confer partial protec­
tion against P carinii in animal models.129 

Pneumocystis infection invokes a cellular response 
with production of inflammatory cytokines and chemo­
kines, These inflammatory responses are required to 
control the infection, but an exuberant inflammatory 
response may result in pulmonary injury. Complex inter­
actions between the inflammatory cells and the soluble 
mediators produced by these cells facilitate the clearing 
of infection, but may result also in lung injury. The key 
inflammatory cells include CD4+ T lymphocytes, alveolar 
macrophages, and neutrophils. The complex interaction 
among the inflammatory cells, the soluble mediators, and 
the immune responses is presented in Figure 13.4. 

Lymphocytes 

The activity of CD4+ T lymphocytes is pivotal in host 
defense against pneumocystis, in both humans and 
animals. A reduction in CD4+ T-lymphocyte count to less 
than 200/mm3 increases the risk of pneumocystis infec­
tion.101,130 CD4+ T cells proliferate in response to the 
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FiGURE 13.4. The host immune response to infection with Pneu­
mocystis jeroveci is complex and includes both humoral and 
cellular reactions, CD4+ lymphocytes and macrophages interact 
to produce cytokines and chemokines that are protective, but 
also induce lung injury. IFN-y, (interferon-y); IL-8, (interleukin-
8); TNF-a, (tumor necrosis factor-a), Ell, cell recruitment and/or 
activation; *, produced by alveolar macrophages. 
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pneumocystis antigens and generate cytokine mediators, 
including lymphotactin and interferon-y.l3l Lymphotactin 
is a chemokine that serves as a potent chemoattractant 
for lymphocyte recruitment.132 Interferon-y activates 
macrophages to produce tumor necrosis factor-a 
(TNF-a), superoxides, and reactive nitrogen radicals. 133.134 
Aerosolized interferon-yhas been shown to reduce pneu­
mocystis infection in rats, regardless of CD4+ cell deple­
tion.133 Macrophage-derived TNF-a and interleukin-1 
(IL-1) are necessary for initiating pulmonary responses 
that are mediated by CD4+ T cells. An undesirable effect 
of T-Iymphocyte activation, however, is pulmonary injury 
and functional impairment. 132 Pneumocystis infection 
also results in a marked accumulation of CD8+ T lympho­
cytes in the lung.133 

Macrophages 

Alveolar macrophages are the principal cells mediating 
the uptake and degradation of pneumocystis in the lung, 
mediated either through the opsonins in the epithelial­
lining fluid, or through the macrophage mannose re­
ceptors that interact with the surface mannoprotein, 
glycoprotein A, of the pneumocystis.135 Once phagocy­
tosed, the organisms are incorporated into phagolyso­
somes and degraded.136 In response to the phagocytosed 
pneumocystis organisms, a variety of inflammatory 
cytokines, chemokines, and eicosanoid metabolites are 
produced.136 These mediators, however, in addition to 
eradicating pneumocystis, also produce lung injury. The 
macrophage function is impaired in patients with AIDS 
and malignancies, resulting in impaired clearance of 
pneumocystis. 137 

Cytokines and Chemokines 

The production of TNF-a by alveolar macrophages is 
mediated by recognition of the ~-glucan component of 
the pneumocystis cell wall. 138 Macrophages possess 
several potential receptors for glucans, including CDllbl 
CD18 integrin (CR3), dectin-1, and toll-like receptor 2.139 
The activation of macrophages is facilitated by host vit­
ronectin and fibronectin that bind glucan components on 
pneumocystis cell wall. 138 Tumor necrosis factor-a plays a 
significant role in the clearance of pneumocystis. It pro­
motes the recruitment of neutrophils, lymphocytes, and 
monocytes, and induces the production of other cytokines 
and chemokines, including IL-8 and interferon-y, which 
stimulate further recruitment and activation of inflamma­
tory cells.140,141 

Chemokines such as IL-8, macrophage-inflammatory 
protein-2, and the interferon-inducible protein of lOkDa 
are chemoattractants for neutrophils and important 
inflammatory mediators during pneumocystis infection. 
Interleukin-8 production is correlated with neutrophil 
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infiltration with release of reactive oxygen radicals, pro­
teases, and cationic proteins, resulting in capillary endo­
thelial and alveolar epithelial cell injury, in turn resulting 
in impaired gas exchange. Increased levels of IL-8 in BAL 
fluid are correlated with poor prognosis.142 

Clinical Features of Pneumocystis 
Pneumonia 

There are two major clinical forms of P.jiroveci pneumo­
nia, each with a different epidemiologic pattern: (1) the 
infantile form, designated plasma cell interstitial pneu­
monia; and (2) the adult form, or pneumonia in immuno­
compromised host. 

Plasma cell interstitial pneumonia, also called the 
"epidemic form," historically occurred in institutional 
settings in underdeveloped countries, mainly affecting 
premature, malnourished children.11•143,144 The infection is 
characterized clinically by progressive respiratory dis­
tress in infants, and histologically by a prominent pulmo­
nary interstitial plasma cell infiltrate.143,I44 This disease has 
practically disappeared from the Western world, but is 
still found in developing countries. Clinically, the infants 
gradually develop respiratory difficulty characterized by 
tachypnea, cyanosis, cough, and progressive respiratory 
failure. The chest roentgenogram shows diffuse pulmo­
nary infiltrates and focal or diffuse consolidation. 

The adult infection, also called the "sporadic form," is 
one of the leading causes of fatal opportunistic infection 
in AIDS patients and other immunocompromised hosts. 
This infection is more frequent in the United States and 
other developed countries, and indicates an underlying 
cellular immune deficiency with impairment of CD4+ 
(T-helper) lymphocyte function. 145 Diseases that predis­
pose to pneumocystis pneumonia include congenital 
immunodeficiency diseases, immunodeficiency induced by 
cytotoxic agents and corticosteroids, and other acquired 
immunodeficiency.6,146,147 Before the AIDS epidemic, 
most adult patients with pneumocystis either had acute 
leukemia or were leukopenic from chemotherapy.6,147 
Now these patients are vastly outnumbered by AIDS­
associated pneumocystis. The incidence of PCP has under­
gone a significant reduction with the institution of 
chemoprophylaxis.148 At the beginning of the AIDS epi­
demic, PCP represented the most common AIDS index 
diagnosis, and the most life-threatening opportunistic 
infection, with an incidence of 44% to 74%.149 Approxi­
mately 80% of AIDS patients developed PCP during the 
course of their disease.15o The incidence of PCP in HIV­
seropositive patients started to decrease in 1987, with only 
16% of new index AIDS cases reported in 1993, almost 
exclusively due to the institution of chemoprophylaxis 
and antiretroviral therapy.149,151-157 In those individuals 
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not receiving chemoprophylaxis, it still represents a serious 
pulmonary infection. 151 Rarely, PCP may develop in 
patients without a recognized predisposing illness. '58 

The clinical and radiographic findings in sporadic P. 
jiroveci infection are not specific, and mimic those of 
other opportunistic infections. In AIDS patients, the onset 
of symptoms is more insidious. The fall in the circulating 
CD4+ T cell count usually correlates with the develop­
ment of the pneumonia, with the vast majority of infec­
tions occurring when the CD4+ lymphocyte count is <200 
cells. 100,15) The typical clinical presentation in HIV­
seropositive patients is an insidious onset, including fever, 
dyspnea, tachypnea, and nonproductive cough.6,7,l59 Less 
frequently, weight loss, chest pain, night sweats, chills, 
fatigue, and malaise have been reported.'6O-'65 This is in 
contrast to the more acute presentation of HIV-seroneg­
ative immunocompromised patients. '66 Physical findings 
are often mild compared to the degree of symptomatic 
respiratory impairment. There is, however, a subset of 
HIV-seropositive patients that presents with an acute, 
fulminant onset, progressing to respiratory failure within 
1 to 2 weeks.'60.l62,'67 The disease in non-AIDS patients 
may vary from an acute illness with an abrupt onset to a 
more indolent disease. Symptoms often start after corti­
costeroids are tapered or discontinued, and are present 
for a short time, 1 to 2 weeks before a diagnosis of pneu­
mocystis pneumonia is established. 

In general, patients with AIDS-associated PCP have 
significantly more pneumocystis organisms in their lungs, 
with fewer neutrophils, than those patients without 
AIDS. '66 The smaller number of inflammatory cells in 
AIDS-related pneumocystosis correlates with better oxy­
genation and survival compared with non-AIDS-related 
infection. The mortality rate in patients with AIDS is 10% 
to 20% during the initial infection, but the rate increases 
substantially with the need for mechanical ventilation.168 
Patients with non-AIDS-related pneumocystosis present 
with an abrupt onset of respiratory insufficiency that may 
correlate with a tapering or increased dose of immuno­
suppressive therapy. These patients have more neutro­
phils and fewer pneumocystis organisms in the lungs 
than do patients with AIDS-associated pneumocystis 
pneumonia.166 The mortality rate in patients with non­
AIDS-related pneumocystis pneumonia is 30% to 60%, 
with a greater risk of death among patients with cancer 
than among patients with transplants or other diseases 
such as connective tissue disorders.4,'69 

Extrapulmonary Infection 

Extrapulmonary infection is being recognized with 
increasing frequency, and appears to correlate with the 
use of inhaled prophylactic pentamidine therapy.17o,171 A 
review of autopsy cases with AIDS shows an incidence 
of extrapulmonary pneumocystosis of 2.5 % to 2.8 % 
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between 1980 and 1994.172-175 Concomitant pneumocystis 
pneumonia was present in 45% of patients. The most 
frequent spread of infection is to the hilar lymph node, 
followed by bone marrow, liver, spleen, and adrenal 
glands, followed by gastrointestinal tract, thyroid, genito­
urinary tract, heart, pancreas, eyes, and ears.174 Less fre­
quently, skin, cerebral cortex, pituitary gland, and 
parathyroid glands are involved.I72,l75 Most patients who 
have disseminated extrapulmonary pneumocystosis have 
no specific symptoms. Some patients, however, may expe­
rience local pain or a mass; rarely, there is clinical and 
laboratory evidence of organ (e.g., renal, otic, or bone 
marrow) failure.172,l75 A case of digital vasospasm and 
necrosis secondary to microemboli containing pneumo­
cystis organisms has been reported. 176 P.jiroveci probably 
spreads from the lungs by hematogenous or lymphatic 
routes to these sites. 

Clinical manifestations of extra pulmonary pneumocys­
tosis are variable, and may range from asymptomatic 
infection to end-organ failure.172,174 Computed tomograms 
may show low-attenuation lesions that progressively 
calcify in a rim-like or punctuate manner. 177.l 78 Although 
chemoprophylaxis is considered a risk factor in extrapul­
monary infection, only 50% of the patients had received 
the therapy in one series. 174 The detection, using PCR 
amplification, of P.jiroveci (carinii) DNA in the blood of 
patients with PCP provides supporting information in 
cases with extrapulmonary infection. 179,180 Pathologic 
findings in the extrapulmonary sites consist of the typical 
eosinophilic foamy material with a variable inflammatory 
infiltrate. The organisms can be demonstrated with the 
usual silver stains or immunoperoxidase stain.37 

Radiographic Features 

Typical radiographic findings in PCP include bilateral 
diffuse interstitial and alveolar infiltrates, initially pre­
dominating in parahilar regions and lower lung fields, 
which may progress to extensive areas of air-space con­
solidation involving much of both lungs. The radiographic 
picture presents a combination of air-space consolidation 
with variable interstitial infiltrate. Atypical manifesta­
tions include unilateral and upper lobe infiltrates, nodular 
lesions, lobar consolidation, cavitation within a mass, 
localized nodule or consolidation, pneumatocele, pneu­
mothorax, pneumomediastinum, subsegmental atelecta­
sis, bronchiectasis,hilar and mediastinal lymphadenopathy, 
and pleural effusion. 18l,l82 Classically, ground-glass perihi­
lar interstitial infiltrates are seen in the early stages, which 
progress to involve all lung fields in untreated patients. 
The infiltrates may develop a coarse pattern with homo­
geneous consolidation and air bronchograms.183.l84 The 
lung apices are relatively spared, but the use of prophy­
lactic inhaled pentamidine has resulted in involvement of 
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the apices, presumably due to the relatively poor distribu­
tion of aerosol pentamidine to these regions. The radio­
graphic features of PCP in those with and without HIV 
infection and with and without chemoprophylaxis are 
summarized elsewhere.185.186 As many as 10% to 20% of 
AIDS patients with PCP present initially with no detect­
able radiographic abnormalities. 186 In these cases, high­
resolution computed tomography may reveal extensive 
ground-glass attenuation or cystic lesions. 

Immune Reconstitution Syndrome 

Recently, the phenomenon of immune reconstitution syn­
drome was described in a small group of patients who 
developed a pneumonic illness after treatment for pneu­
mocystis pneumonia and subsequent highly active anti­
retroviral therapy (HAART) initiation.187 During the 
second illness, none of these patients had an identifiable 
pathogen on bronchoscopy. The mean BAL CD4/CD8 
ratio was 0.54, which was much higher than the ratio of 
0.07 seen in a cohort of HIV-infected patients undergoing 
bronchoscopy for a variety of respiratory complaints. The 
authors suggested that this influx of CD4 cells might rep­
resent immune reconstitution. Another similar case was 
reported in which the BAL and tissue samples taken at 
the time of recurrent respiratory illness were negative on 
routine stains, but PCR confirmed the presence of pneu­
mocystis. 1RR These reports suggest that subclinical infec­
tion with P. jiroveci can be present after clinical response 
to therapy and may trigger an inflammatory response 
upon reconstitution of the immune system. 

Pathology of Pneumocystis 
jiroveci Pneumonia 

The pathologic features of PCP have been described in 
patients with the epidemic or infantile infection, and 
more recently in the sporadic or adult infection.189-193 

Epidemic Pneumocystis Pneumonia 
(Infantile PCP) 

Interstitial plasma cell pneumonia, also known as the 
epidemic or infantile form of non-AIDS-related PCp, is 
rarely encountered in the United States. It has an intense 
plasmacytic and lymphocytic interstitial inflamma­
tion.143.l44 This morphologically nonspecific interstitial 
pneumonia resembles pneumonia associated with other 
opportunistic (especially viral) infections that are also 
prone to occur in premature, debilitated, or malnourished 
infants. Often, the correct diagnosis is suggested by the 
"honeycomb exudate" in alveolar spaces, but definitive 
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diagnosis requires demonstration of the pathogen with 
an appropriate special stain or immunohistochemical 
reagent (see Fig. 7.42 in Chapter 7).143 

Sporadic Pneumocystis Pneumonia 
(Adult PCP) 

Pathologic features of the sporadic P. jiroveci pneumo­
nia, almost exclusively seen in immunocompromised 
adults, can be categorized in two major histopathologic 
groups: typical and atypical (Table 13.1). 

Typical Pathologic Features 

The typical or classical features are seen in the lungs of 
patients who are not on prophylactic treatment (HAART). 
Grossly, the lungs are heavy with a pale gray or tan, 
granular, firm, consolidated cut surface as seen in Figure 
13.5. Nodules and cavities are occasionally encountered. 
Microscopically, a variety of patterns have been described 
in patients with and without AIDS. 

The typical histopathologic pattern in AIDS-associated 
PCP is characterized by a mild interstitial chronic inflam­
mation and type II pneumocyte hyperplasia, associated 
with eosinophilic, foamy intra alveolar exudates that 
expand the alveolar spaces (Fig. 13.6). At higher magni­
fication, the exudate is punctuated with round basophilic 
dots that correspond to the nuclei of the sporozoites and 
trophozoites, and are best seen in tissue preserved with a 
good nuclear fixative, such as BS solution.189 Recognition 
of the basophilic nuclear "dots" is helpful in the differen­
tial diagnosis of pneumocystis from alveolar edema and 
alveolar proteinosis, both with eosinophilic alveolar 
exudates, without any demonstrable nuclei. The alveolar 
exudate is composed predominantly of abundant P. jir­
oveci trophozoites admixed with cysts, membranotubular 

TABLE 13.1. Histologic patterns of Pneumocystis infection 

Classical (typical) pattern 
Plasma cell interstitial pneumonia (epidemic PCP) 
Mild interstitial chronic inflammation, type II pneumocyte 

hyperplasia (sporadic PCP) 
Atypical patterns 

Diffuse alveolar damage 
Diffuse interstitial fibrosis 
Necrotizing PCP 

Vasculitis 
Calcification 
Thin-walled cavities 

Granulomatous PCP 
Nonnecrotizing, poorly formed 
Necrotizing 

Fibrocaseous nodules (solitary or mUltiple) 
Miliary granulomas 

PCP, Pneumocystis pneumonia. 
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FIGURE 13.5. Gross photograph of lung from a patient who died 
within 5 days of onset of respiratory failure. The lung weighed 
1750 g and showed a tan solid cut surface, consistent with diffuse 
alveolar damage (DAD). 

extensions, surfactant, and cellular debris enmeshed in 
fibrin. The alveolar exudate may be focal or diffuse, 
depending on the severity of infection. In formalin-fixed 
tissue, the exudate is often separated from the adjacent 
alveolar septa by an artifactual clear space due to retrac­
tion. The histologic appearance is so characteristic that a 
presumptive diagnosis of pneumocystis pneumonia can 
be made on hematoxylin and eosin (H&E)-stained slides, 
in the appropriate clinical setting.190-193 The eosinophilic 
alveolar exudate stains with periodic acid-Schiff (PAS) 
stain.194 Cysts are round to oval and focally curved 
disk-shaped or boat-shaped, and stain well with GMS or 
toluidine blue 0 (Fig. 13.7).194.195 Trophozoites are not 
seen on H&E stain, but easily can be seen in smears 
with Giemsa, Wright-Giemsa, or Diff-Quick stains 
(Table 13.2).196 

In a progressive and chronic infection, interstitial and 
intraluminal fibrosis may be seen. One study reported 
interstitial and intraluminal fibrosis in 63% and 36% of 
lung biopsies, respectively.194.195 In acute progressive infec­
tion with respiratory failure, diffuse alveolar damage, 
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hyaline membranes, and reactive epithelial cell prolifera­
tion may be seen.189,196 Because P jiroveci cannot be cul­
tivated on cell-free media in the clinical laboratory, the 
diagnosis of PCP depends on demonstration of the organ­
isms in biopsy or cytology specimens, 

Atypical Pathologic Features 

Several studies have suggested that the histologic spec­
trum of pneumocystis pneumonia is much broader than 
the typical pattern described above. The first study that 
documented a broad spectrum of patterns was conducted 
before the onset of the AIDS epidemic; only about one 
third of the lung biopsy specimens showed the typical 
pattern of PCp'197 Notably, the foamy alveolar material 
was not found in approximately 50% of the specimens. 
Atypical findings included dense interstitial lymphocytic 
infiltrates, interstitial fibrosis, epithelioid granulomas, 
multinucleated giant cells, and focal calcifications 
(Table 13.1). This spectrum of changes in PCP has been 
confirmed in subsequent studies.192.197 

In a study from the National Institutes of Health (NIH), 
the atypical manifestations reported were interstitial 
chronic inflammation (57%), fibrosis (50%), numerous 
alveolar macrophages with desquamative interstitial 
pneumonia-like pattern (9%) , granulomatous inflam­
mation (5%), hyaline membranes (4%), interstitial 
pneumonitis (3%), cystic or cavitary lesions (2%), micro­
calcifications (2 %), and vascular infiltration and vasculitis 
(1 %). In 19% of the patients, alveolar exudates were 
absent, and in 2% there was a minimal histologic 
reaction.194.195 

Interstitial Chronic Inflammation 

The presence of interstitial inflammation is the most 
common finding in PCP. The lymphocytic and plasma 
cell infiltrates within the alveolar septa are associated 
with mild expansion of the septa with type II pneumocyte 
hyperplasia. In one large series of biopsies of HIV­
positive patients, an interstitial infiltrate was graded only 
as mild or moderate in nearly 90% of the patients.195 

Figure 13.8 shows the classical features of interstitial 
chronic inflammation. If severe, the chronic infiltrate 
may be misinterpreted as lymphocytic interstitial pneu­
monia (LIP) or nonspecific interstitial pneumonia (NSIP), 
particularly if the typical foamy exudate is minimal. 
Intraalveolar cellular infiltrates are not a usual feature 
of active PCP, and when present, consist of macrophages 
that may contain intracytoplasmic pneumocystis cysts 
by silver stains.189 The presence of numerous intraalveolar 
macrophages may simulate desquamative interstitial 
pneumonia (DIP).197 Cysts have been described in 
the alveolar pneumocyte cytoplasm in the early phase 
of PCP. 
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FIGURE 13.6. A. Low-magnification photomicrograph shows 
thickened alveolar septa with mild interstitial inflammation and 
fibrosis, lined by hyperplastic type II pneumocytes. The alveoli 
are filled with the typical foamy, eosinophilic exudate of Pneu­
mocystis. B. Higher magnification shows an alveolus with the 
foamy/bubbly eosinophilic exudates and a few mononuclear 
cells. Basophilic dots are visible within the exudate. The alveolar 
septa have a few inflammatory cells and collagen, and are lined 
by hyperplastic type II pneumocytes. C. Immunostain demon­
strates the cyst forms of Pneumocystis organisms, surrounded 
by inflammatory cells. The trophozoites also stain with the 
immunostain; however, these are not as clearly visualized as the 
cyst forms. 

FIGURE 13.7. Oomori's methenamine silver (OMS) stain shows 
the typical round and collapsed crescent or boat-shaped cyst 
forms of Pneumocystis. 

TABLE 13.2. Staining features of Pneumocystis 

Structure 
Stain identified Tissue section 

Histochemical 
Gomori's methenamine Cyst + 

silver (GMS) 
Rapid GMS Cyst Frozen section 
Romanowsky stains 

Wright Trophozoites 
Giemsa Sporozoites 
Diff-Quik 
Gram 
Methylene blue 

Chemofluorescence 
Papanicolaou stain Cyst 
Calcofiuor white Cyst + 

Immunofluorescence Cyst Frozen section 
Trophozoites 
Sporozoites 

Immunohistochemistry Cyst + 
Trophozoites 
Sporozoites 
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Fluid 
smears/ 
imprints 

+ 

+ 

+ 

+ 
+ 

+ 

+ 
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FIGURE 13.8. A. The widened alveolar septa and alveolar spaces 
contain chronic inflammatory cells. The foamy exudates can be 
seen in the alveolar spaces. B. Double immunostain using red 

Interstitial Fibrosis 

This pattern of P. jiroveci pneumonia may complicate 
long-standing, treated, or recurrent PCp'190,192 Interstitial 
fibrosis may be seen in >50% of patients with chronic 
PCp'195 This usually presents as a mild thickening and 
fibrosis of the alveolar septa, with deposition of loose, 
edematous fibrous tissue, and without architectural dis­
tortion of the lung parenchyma (Fig. 13.9A). In some 
cases, alveolar intraluminal fibrosis consistent with orga­
nizing pneumonia may be seen (Fig. 13.10). Many, if not 
most, of these cases are consistent with the organizing or 
proliferative phase of diffuse alveolar damage (DAD), 
which may also be the result of oxygen toxicity, concur­
rent viral infection, shock, or other recognized causes 
of DAD in HIV-positive patients, rather than injury by 
P. jiroveci (Fig. 13.9). 

Diffuse Alveolar Damage 

Diffuse alveolar damage may be seen both in AIDS 
patients and in other immunodeficient patients.198-200 
Respiratory failure as a terminal event is one of the 
leading causes of death in AIDS patients. In a study of 
196 autopsied AIDS patients, 34% died of acute respira­
tory distress syndrome (ARDS), expressed histologically 
as DAD. P. jiroveci was the most common organism, iden­
tified in 55% of these patients.201 Often, there is very little 
foamy material in the alveolar spaces, and the changes, 
therefore, may be misinterpreted as due to viral infection, 
oxygen toxicity, or a drug reaction unless an appropriate 
stain is used to demonstrate the cysts. The cysts may be 
quite sparse, and are usually found within the hyaline 
membranes lining the walls of alveolar ducts and alveoli 
(Fig. 13.llA-C). Figure 13.5 shows gross findings in the 
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counterstain for pneumocytes and brown stain for Pneumocys­
tis highlights the chronic interstitial inflammation. One of the 
alveolar walls is focally devoid of pneumocytes. 

lung from a patient with DAD. Figure 13.11 demonstrates 
the features of DAD in the lung shown in Figure 13.5. 
The pneumocystis organisms are plastered along the 
alveolar walls within the hyaline membranes, and also 
present in the alveolar exudate (Fig. 13.llB). Dual immu­
nostain for pneumocystis and alveolar pneumocytes 
(cytokeratin AEl/3) shows invasion of the alveolar inter­
stitium and destruction of type II pneumocytes by the 
pneumocystis organisms (Fig. 13.SB). This finding may 
not be appreciated by the routine H&E or the usual 
single immunostain for pneumocystis. 

Necrotizing PCP 

Necrotizing PCP, seen mainly in patients with AIDS, is 
characterized by confluent parenchymal necrosis with 
lysis of alveolar septa. Grossly, parenchymal nodules and 
cavities ranging from 1 to 6 cm in diameter may be seen 
(Fig. 13.12).189,198 Histologically parenchyma is replaced 
by confluent eosinophilic foamy material in which there 
are abundant cysts of P. jiroveci (Fig. 13.13). Pneumocys­
tis exudate infiltrates alveolar septa, a pattern referred to 
as "septal lysis," resulting in lung necrosis and cavity for­
mation (Fig. 13.13).189 Rarely, parenchymal necrosis is 
associated with pneumocystis vasculitis, characterized by 
massive infiltration of blood vessel walls by characteristic 
foamy material accompanied by mononuclear inflamma­
tory cells and mural necrosis (Fig. 13.14).202 The histogen­
esis of the cavitary lesions is not clear; however, pulmonary 
infarction due to vascular invasion by pneumocystis 
trophozoites is considered a possible mechanism.202 
Interestingly, about half of the patients with necrotizing 
pneumocystis pneumonia also have extra pulmonary 
pneumocystosis; vascular invasion is a possible mecha­
nism of spread of infection. 
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FIGURE 13.9. A. Lung section from a patient with pulmonary 
fibrosis shows mildly fibrotic alveolar septa to the right of the 
thickened interlobular septum. There is diffuse fibrosis to the 
left of the septum. (Movat.) B. Another area of lung from the 
same patient shows alveoli filled with Pneumocystis exudate 

FIGURE 13.10. Organizing pneumonia pattern. Lung section 
taken from a patient with an early stage of Pneumocystis infec­
tion shows mildly fibrotic alveolar septa. Two small alveolar 
ducts in the center of the field contain fibrous plugs. 

499 

surrounded by fibrosis. Note dilated alveolar ducts with periph­
eral, ring-like fibrosis, consistent with fibrotic phase of DAD. 
(Movat.) C. Higher magnification of B shows the Pneumocystis 
exudate surrounded by hyperplastic type II pneumocytes. 
(Movat.) 



FIGURE 13.11. A. Photomicrograph of lung seen in Figure 13.5 
shows the typical histologic pattern of exudative stage of DAD. 
Alveolar ducts are dilated and lined by hyaline membranes, and 
surrounded by collapsed alveoli. Intraalveolar foamy exudates 
of pneumocystis are also visible. B. Higher magnification of the 
hyaline membranes show embedded pneumocystis cysts. (GMS.) 

C. Immunostain for pneumocystis may also be used to demon­
strate the cysts and trophozoites in the hyaline membranes. 
D. Photomicrograph of lung from a patient with long-standing 
pneumocystis infection shows enlarged and atypical type II 
pneumocytes with high nuclear cytoplasmic ratio, as seen in 
atypical alveolar hyperplasia. 

FIGURE 13.12. Necrotizing Pneumocystis jiroveci pneumonia. Apical subpleural cavity 
due to necrotizing PCP in a patient with AIDS. 
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FrGURE 13.13. Necrotizing PCP. A. Dense infiltration of alveolar septa and alveolar spaces by pneumocystis exudate. There is 
early septal necrosis and dissolution. B. Pneumocystis cysts within a necrotic alveolar wall. (GMS.) 

Other lesions associated with necrotizing PCP include 
poorly formed granulomas (Fig. 13.15) and microcalcifi­
cations (Fig. 13.16), described in more detail below. 

Cysts 

Thin-walled, pneumatocele-like cysts may be seen in PCP, 
either in the parenchyma or in the subpleural areas 
(Fig. 13.17). Initially the walls of the cysts may be formed 
by alveoli filled with pneumocystis exudates in necrotiz­
ing PCP. Chronic or healed cavities have a thin fibrous 
wall with focal chronic inflammation (Fig. 13.17B,C). 
Focal micro calcifications may be present in the cyst wall. 
The large subpleural cysts presumably develop from 
either rupture or confluence of smaller parenchymal 
cavities.195 The cysts are usually empty, or contain a few 
macrophages and lymphocytes. Occasionally cysts may be 

FIGURE 13.14. Vascular infiltration of pneumocystis exudate 
associated with chronic inflammation in patient with AIDS. 
(Movat.) 

colonized by organisms other than pneumocystis such as 
aspergillus or mycobacteria. Rupture of cavities leads to 
spontaneous pneumothorax.203 

Microcalcifications 

Microcalcifications are an important atypical feature of 
PCP, and may be seen with or without the foamy exu­
dates.204 Several patterns of calcification may be seen, 
including a "bubbly" pattern with vacuolations, a plate­
like pattern, an elongated pattern, and a conchoidal 
pattern; these patterns were described in a study of 
13 patients with microcalcifications.204 The authors postu­
late that the initial lesion is manifested by a form of long, 
thin calcifications that are always associated with active 
PCP. The "bubbly" plate-like calcifications are usually 

FIGURE 13.15. Granulomatous features. Poorly formed granu­
loma fills alveolus in patient with AIDS and PCP. 
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FIGURE 13.16. Necrotizing PCP with dystrophic calcifications. 

FIGURE 13.17. Cystic lesions. A. Subpleural thin-walled cysts, 
the residual of healed cavitary PCP in a patient with AIDS. 
B. Intermediate stage of cyst development showing fibrous wall 
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associated with focal interstitial fibrosis and are a later 
phase of calcification. All calcifications contained P. jir­
oveci cysts on GMS stain, and thus represent dystrophic 
calcification of degenerated P. jiroveci organisms.204 The 
margins of cavitary lesions, as well as subpleural areas, 
may also develop microcalcifications. Figure 13.16 shows 
plate-like and conchoidal calcifications in the lung of a 
patient with AIDS. 

Vascular Permeation and Vasculitis 

Vascular permeation is not a common feature of PCP; 
however, when present, it may be a marker of extrapulmo­
nary dissemination of P. jiroveci. The vascular wall shows 
an eccentric expansion of the intima by the characteristic 
eosinophilic foamy exudate, which may also infiltrate the 
muscular layer of the vessel wall. Chronic inflammation 
may be associated with the mural exudate (Fig. 13.14). 

and necrotic exudate. C. Photomicrograph of cystic lesion shows 
no discernible lining. The cyst wall is composed of collapsed and 
fibrotic lung parenchyma. 
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FIGURE 13.18. Necrotizing granulomas. A. Confluent necrotiz­
ing granulomas, resembling a mycobacterial or fungal infection, 
surround a pulmonary artery. B. Granuloma with central necro-

Granulomatous Pattern 

Granulomatous inflammation in response to pneumocys­
tis infection has been described both in AIDS patients 
and in immunodeficient patients without AIDS. In some 
patients, it has been associated with a nodular or cavitary 
pattern on chest radiograph. 190.196.205.206 Frequently seen in 
necrotizing PCP, the granulomas are predominantly in 
alveolar spaces, and are usually loose and poorly formed, 
with or without necrosis (Fig. 13.15); see also Fig. 23.26 in 
Chapter 23),z07-209The granulomatous reaction surrounds, 
or is adjacent to, eosinophilic, foamy material composed 
of trophozoites and cysts of P. jiroveci. 

Rarely, well-formed granulomas with central necrosis 
may dominate the histologic picture in a manner re­
miniscent of miliary mycobacterial or fungal infection 
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sis. C. Pneumocystis organisms stained with GMS in the central 
necrotic area. D. Immunostain for pneumocystis distinguishes 
the lesion from histoplasmosis. 

(Fig. 13.18).205.206.207 An even less frequent pattern of granu­
lomatous PCP is that of a solitary nodule or a few discrete 
fibrocaseous lesions, similar radiographically and histologi­
cally, to tuberculomas or histoplasmomas.210.211 Cyst forms 
may be sparse in the center of these well-formed necrotizing 
granulomas. An immunohistochemical stain for pneumo­
cystis is helpful in locating sparse cyst forms and distinguish­
ing them from histoplasma organisms (Fig. 13.18D). 

Granulomatous PCP has been particularly associated 
with dissemination of pneumocystis to extra thoracic 
viscera.21o•211 It is speculated that granulomatous PCP 
occurs in patients who are marginally, rather than severely, 
immunosuppressed.192.l98 Because granulomatous reac­
tions are infrequent in pneumocystis infection, every 
effort should be made to exclude other pathogens such 
as fungi and mycobacteria using special stains. 
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FIGURE 13.19. Photomicrograph shows Pneumocystis in the 
alveolar spaces and cytomegalovirus inclusions in the surround­
ing type II pneumocytes. 

Hilar Lymphadenopathy 

This is an infrequent manifestation of PCP. In some 
patients, lymphadenopathy is caused by underlying 
disease (e.g., lymphoma or leukemia) or reactive hyper­
plasia. In one patient, an intravenous drug abuser, 
enlarged lymph nodes contained typical foamy masses of 
P jiroveci similar to those found in the alveolar spaces.212 

This patient also had disseminated pneumocystosis. 

Other Findings 

A PCP infection in patients with AIDS is often associated 
with other infections, cytomegalovirus infection being 
one of the commonest. Figure 13.19 shows both infections 
in the same alveolus in a patient who died with AIDS. 

Pathology of Treated Pneumocystosis 

The effects of therapy on pathologic features of pneumo­
cystis pneumonia were studied in patients who died of 
fulminant infection following therapy.213 Patients who 
died within the first week of therapy showed compact 
alveolar exudates that lacked the foamy appearance of 
typical infection, with fewer stainable organisms as com­
pared to pretreatment biopsy. A second group of patients 
who died from 8 days to 8 weeks following therapy, had 
features of organizing DAD; however, all patients were 
treated with high concentration of oxygen. A third group 
of patients who responded to therapy and were consid­
ered to be cured of infection showed no residual pneu­
mocystis organisms when autopsied 6 months to 2 years 
later. This study suggests that chronic interstitial lung 
disease does not develop as a result of pneumocystis 
infection in long-term survivors. 

'" 
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P jiroveci can persist in the lungs of AIDS patients 
following therapy, even when there is a good clinical 
response. Pneumocystis cysts can persist in the lungs for 
up to 5 weeks or more following treatment with sulfa 
drugs. The viability of the trophozoites is not known, but 
if viable they may cause recurrent infection. Since cyst 
forms of P jiroveci are known to persist for several weeks, 
the interpretation of repeat biopsy or cytology during this 
period should be cautious. There is also a case report that 
indicates preferential elimination of the cysts and persis­
tence of trophozoites on treatment. In such cases, silver 
stain can be falsely negative, and immunohistochemical 
stains or electron microscopy should be used for diagno­
sis, if clinical suspicion of recurrence is high.214 

Pathology of Extrapulmonary Pneumocystosis 

Extrapulmonary disease is seen primarily in patients with 
overwhelming pulmonary infection, those with severe 
underlying immunodeficiency, and those (particularly 
HIV-infected patients) who received aerosolized pent­
amidine for prophylaxis against PCp'lR9.215 Since 1982 
there have been increasing reports of extra pulmonary 
dissemination of pneumocystis in AIDS patients receiv­
ing aerosol pentamidine.176,215 Sites of extrapulmonary 
dissemination include lymph nodes, skin, ears, eyes, bone 
marrow, spleen, liver, kidneys, thyroid gland, gastrointes­
tinal tract, and a variety of other organs and tissues. 189 The 
lesions of extrapulmonary pneumocystosis are gray-white 
or yellow nodules 0.5 to 4.9 mm or larger, and they resem­
ble micro abscesses. Histologically, the lesions are often 
angiocentric with eosinophilic foamy exudates similar to 
the ones seen in the lungs, and show abundant cyst forms 
on GMS stain. An inflammatory response is minimal or 
none, and when present it consists of histiocytes, lympho­
cytes, plasma cells, neutrophils, giant cells, and fibroblasts. 
In most cases the lesions gradually enlarge and contain 
all the developmental forms of pneumocystis, suggesting 
replication in anaerobic extrapulmonary sites. The char­
acteristic morphology of the cysts on GMS stain and 
immunohistochemical stain is sufficient for making a 
diagnosis. Microscopically, the lesions consist of sheets of 
eosinophilic, foamy material identical to that described 
previously, composed of cysts and trophozoites, with little 
or no inflammatory response. l96 Smaller lesions and satel­
lite nodules may have an angiocentric distribution. 

The ultrastructural pathology of PCP is mainly of 
pathogenetic interest.65 .189 Ultrastructural studies have 
shown that the single or paired argyrophilic "intracystic 
bodies" are plaquelike thickenings of the cyst wall rather 
than sporozoites or other organelles. 189 Such studies 
also have confirmed that P. jiroveci is strictly an extra­
cellular pathogen. Trophozoites attach to the surface of 
type 1 pneumocytes by specialized interdigitations, 
without membrane fusion or communication between 
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cytoplasmic compartments.216.217 Trophozoite attachment 
may eventually cause epithelial and endothelial damage, 
resulting in acute diffuse alveolar damage.218 

Cytopathology of 
Pneumocystis Infection 

The cytologic features of PCP are well described and 
illustrated in the literature.219,22o Cytologic examination of 
induced sputum and BAL specimens has become the 
primary diagnostic modality for PCP, particularly in an 
HIV-infected patient population in whom the sensitivity 
of cytodiagnosis has been shown to be reasonably high.220 
In Papanicolaou-stained smears, P. jiroveci is seen as 
aggregates of cysts and trophozoites with a granular, 
foamy, or honeycomb appearance (Fig. 13.20). These 

A 

B 

FIGURE 13.20. A. Bronchoalveolar lavage cytology specimen. 
Alveolar "cast" of pneumocystis exudate. Note central dot-like 
structures. (Papanicolaou stain). B. GMS stain showing PCP 
organisms in cytology smear. 
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aggregates are usually spherical, with considerable depth 
of focus, and approximately the size of a normal alveolar 
sac.219 Sometimes referred to as "alveolar casts," these 
aggregates can be recognized at screening magnification 
if present in sufficient quantity. However, the diagnosis 
should be confirmed with GMS stain. The honeycomb 
aggregates in Papanicolaou-stained smears are fluores­
cent when viewed with ultraviolet light and a fluores­
cence microscope221 ; however, this method is no more 
sensitive or specific than GMS stain.221 ,222 Also, the fluo­
rescent method is not readily available in all laboratories, 
especially in those in the developing world. 

Histologic Diagnosis of 
Pneumocystis jiroveci 

Pneumocystis jiroveci can be demonstrated by special his­
tochemical, fluorescent, and immunohistochemical stains. 
The staining features of P. jiroveci are presented in Table 
13.2. The easiest and most reliable stain is GMS, which 
stains the cysts in tissue sections, smears, and cytologic 
preparations. The cysts are round to oval, 4 to 7!lm in 
maximum dimension, and often have collapsed crescent 
and helmet forms, as seen in Figures 13.6 and 13.7. An 
intracystic density "central dot" or "paired comma struc­
tures" due to a plaque-like thickening of the cyst wall is 
an important diagnostic feature of pneumocystis.223 The 
alveolar foamy exudate is composed of trophozoites and 
sporozoites, which appear as basophilic dots on H&E­
stained tissue sections, and can be seen in smears (but not 
tissue sections) by Romanowsky stains (Giemsa, Wright, 
Diff-Quick), and Gram and methylene blue stains. 

Chemofluorescent techniques such as Calcofluor white 
highlight the cysts, but offer no advantage over GMS 
stain.221 ,224 Pneumocystis jiroveci pneumonia is not auto­
fluorescent, unlike other fungi.221 Fluorescent antibody 
techniques, although specific, are time-consuming, require 
a fluorescent microscope, and do not allow visualization 
of morphologic details.225 A variety of monoclonal anti­
bodies are available commercially to detect and confirm 
the identity of P. jiroveci in routinely processed biopsy 
and cytology specimens.226 These antibodies, which are 
specific and sensitive, identify both the cyst and tropho­
zoite forms of P. jiroveci. For this reason, immunohisto­
chemistry is considered to be more sensitive than GMS 
for the detection of P. jiroveci in clinical specimens.227,22s 

The immunostain is particularly useful for the examina­
tion of induced sputum and BAL specimens, which may 
contain abundant argyrophilic mucus and debris that can 
obscure the organisms, and for specimens from treated 
patients.226,229 An immunohistochemical stain provides a 
definitive diagnosis, and is more sensitive than GMS, 
especially in treated and extra pulmonary pneumocystis 
infection.23o.231 
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TABLE 13.3. Comparative features of Pneumocystis and other fungi 

Size 
Morphology 

Pneumocystis 

4-7~m cysts 
Round, crescents, helmets 

Histoplasma 

2-4~m yeast 
Ovoid 

+, single 

Cryptococcus 

4-1O~m yeast 
Pleomorphic with mucoid 

capsule (occasionally 
capsule-deficient forms) 

+, single 
- (very rare) 

Candida glabrata 

2-5~m yeast 
Spherical, oval 

+, single Budding 
Pseudohyphae 
H&E Frothy exudate dot-like 

trophozoites 
- Extracellular organisms 

+ Weakly intracellular 
organisms 

+ Faint, refractile with halo 
- (+ in other Candida species) 
+, amphophilic 

Mucicarmine 
Fontana-Masson 

Gram - Cyst 
+ Trophozoite 

Differential Diagnosis 

Although a large number of pathogenic microbes 
are stained with GMS, it is the yeast-like fungi, particu­
larly Histoplasma capsulatum, Candida glabrata, and 
Cryptococcus neoformans, that are most difficult to dis­
tinguish from the cysts of P. jiroveci. 189 The comparative 
features of these organisms are presented in Table 13.3. 
The recognition of the single or paired, comma-shaped 
argyrophilic foci in the walls of P. jiroveci cysts is most 
important, since structures with this configuration are 
never seen in the walls of yeast. Production of blastoco­
nidia by the process of external budding is a characteristic 
feature of yeast, but the cysts of P. jiroveci do not repro­
duce by budding. Cryptococcus neoformans has a muco­
polysaccharide capsule that is mucicarmine positive and 
Fontana-Masson (melanin) stain positive (even in the 
capsule deficient organisms), which distinguishes it from 
cysts of P. jiroveci. The yeast forms of Candida spp. 
are usually accompanied by mycelial elements (pseudo­
hyphae and true hyphae), which are not a feature of 
pneumocystis. 

The intracytoplasmic inclusions of cytomegalovirus 
(CMV) are argyrophilic in GMS-stained sections.232 
However, they can be distinguished easily from pneumo­
cystis cysts, because the viral inclusions are always located 
inside cells, and they "keep company" with typical Cowdry 
type A intranuclear inclusions, seen best in replicate sec­
tions stained with H&E. The cyst wall of Toxoplasma 
gondii, like that of P. jiroveci, is argyrophilic with GMS. 
The cysts of 1: gondii, however, are many times larger 
than those of P. jiroveci and are clearly visible in H&E­
stained sections, unlike the cysts of P. jiroveci. Finally, 
tissue elements such as leukocytes, erythrocytes, and 
mucous vacuoles are weakly argyrophilic and may com­
plicate both screening and diagnosis in slides that are 
overstained with GMS.189 For this reason, a positive 

+ 
+, including capsule deficient 

forms 
+, usually (gram positive) 

control slide known to contain cyst forms of P. jiroveci 
must be stained in parallel with unknown histologic sec­
tions and cytology smears, to gauge the intensity of silver 
staining. 

Molecular Diagnosis of 
Pneumocystis jiroveci 

Amplification of P. jiroveci DNA by PCR recently has 
been used for the diagnosis of P. jiroveci in induced sputum 
and BAL specimens, and reported to have greater sen­
sitivity over standard methods (special stains and immuno­
histochemistry) for the detection of P. jiroveci.m -235 In a 
study of 29 patients with suspected PCp, PCR of P. 
jiroveci DNA in induced sputum was evaluated, and it was 
significantly more sensitive than cytology (54.5% positive 
versus 4.5% positive).236 A quantitative real-time PCR 
assay for detection and quantitation of P. jiroveci in 53 
BAL specimens based on the probe targeting the gene 
encoding ~-tubulin compared to immunofluorescence 
microscopic examination and Giemsa stain showed that 
all PCR-negative samples were negative by microscopy. 
Among the PCR-positive BAL specimens, only 35% were 
positive by microscopy.237 Polymerase chain reaction for 
detection of P. jiroveci appears to be a useful and nonin­
vasive method that has high sensitivity and specificity for 
early diagnosis of PCp'238 

Confirmation Testing and Diagnosis 

Pneumocystis jiroveci can be sustained in cell culture on 
a limited number of celllines.239,24o To date, no artificial 
media support the growth of P. jiroveci. Serologic 
methods to detect antibodies to P. jiroveci are regarded 
as insensitive, mainly because many patients with PCP 
are unable to mount a detectable humoral response. 241 ,242 
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Therefore, demonstration of cysts or trophozoites with an 
appropriate special stain or by immunohistochemistry 
remains the only dependable way to establish the diag­
nosis of pneumocystosis. 

Treatment 

The prevention and treatment of pneumocystosis are 
rapidly evolving controversial subjects that are currently 
the focus of considerable investigational interest. Two 
standard drugs used to treat most patients with PCP are 
trimethoprim-sulfamethoxazole (TMP-SMX) and pent­
amidine isothionate.243 They appear to be equally effec­
tive and are associated with approximately the same 
incidence of adverse reactions, which may affect as many 
as 60% of patients with AIDS.243 Early adjunctive therapy 
with corticosteroids can reduce the morbidity and 
mortality associated with moderate or severe PCp'243-246 
Patients at high risk for PCp, specifically HIV-infected 
patients with CD4+ T-Iymphocyte counts of less than 200 
cells/mm\ and all AIDS patients who have already had 
one or more episodes of PCP received prophylaxis with 
TMP-SMX and aerosolized pentamidine.247•248 The latter 
regimen, however, may predispose to extrapulmonary 
pneumocystosis.248 

The recent introduction of combination antiretroviral 
therapy, including HAART, have contributed to the 
reduced incidence of PCP. An investigational drug, 
566CBO, used in mild to moderately severe episodes of 
PCP in AIDS patients has shown promising results.249 
Other drugs under development include echinocandins 
and pneumocandins, which inhibit ~-glucan synthesis, or 
sordarins, which inhibit fungal protein synthesis. 
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