
The OpenEapSmartcard platform

Pascal Urien^ Mesmin Dandjinou^

^ENST 36/38 rue Dareau 75014 Paris France,
^Universite Polytechnique de Bobo-Dioulasso, Burkina Faso

Pascal.Urien@enst.fr, Mesmin.Dandjinou@voila.fr

Abstract. This paper presents the first javacard platform dedicated to IP
(Wireless) LAN security issues. We have defined an open architecture that
processes Extensible Authentication Protocol (EAP) in smartcards, which is the
standard defined by IETF' and IEEE-802^ committees for users' authentication
in various network environments like Wi-Fi, WiMax, or IPSEC? These tamper
resistant devices are generally considered as the most trusted computing
platforms. They have been selected by the DoD"* for military ID cards, by the
Belgium government for citizen ID cards, and they will be included in US and
European passports. Although secure, javacards are cheap and manufactured by
many companies. We present and analyze results obtained with five different
smartcards, for two authentication scenari. The first works with an asymmetric
algorithm (EAP-TLS, a transparent transport of the well known SSL^ standard),
the second uses a pre-share key scheme (EAP-PSK) based on the AES
algorithm and the One-Key CBC MAC function (OMAC), which is under
consideration by NIST^ for standardization. We demonstrate that this open and
flexible approach, is working with existing components, although performances
enhancement is necessary.

KEYWORDS: Security, WLAN, smartcards, javacards

1 Introduction

Wireless IP networks, e.g. cheaper 802.11 technologies, follow an
exponential growth. Everyday more and more people use wireless IP services
at home, at office or in the city. However security issues still remain the
Achilles' heel of these emerging ubiquitous networks [10], [11]. Even when
Wi-Fi accesses are free, wireless clients need privacy, and organizations
providing wireless infrastructures must control and manage network accesses.

^ Internet Engineering Task Force.
^ Institute of Electrical and Electronics Engineers, IEEE 802 LAN/MAN Standards Committee.
ÎP Security Protocol.

^ United State Department Of Defense.
^ Secure Sockets Layer.
^ National Institute of Standards and Technology.

Please use the following format when citing this chapter:

Urien, P. and Dandjinou, M., 2007, in IFIP International Federation for Information Processing, Volume 229, Network

Control and Engineering for QoS, Security, and Mobility, IV, ed. Gai'ti, D., (Boston: Springer), pp. 75-86.

76 Pascal Urien & Mesmin Dandjinou

After five years of efforts, standardization committees have built a secure
architecture based on standards like WEP [8] (Wireless Equivalent Privacy),
IEEE 802.1X [12], IEEE 802.111 [18] and Extensible Authentication Protocol
[19]. The network user {Supplicant) is authenticated (via the EAP protocol) by
a remote (RADIUS) server. Upon success of this operation, a master key is
computed by these two entities, from which are deduced all parameters
required by radio security protocols (WEP, TKIP, 802.111), in order to
provide privacy (encryption) and data integrity services.

This paper presents the first open architecture for processing the EAP
protocol in JAVA smartcards (supplicant side). The basic idea is to define a
framework suitable for organizations that intend to independently manage
their wireless network security, according to symmetric (shared secret) or
asymmetric (RSA keys and certificates) infrastructures.

Section one discusses about smartcard benefits for wireless security
management. Section two presents basic technical constraints and the
OpenEapSmartcard platform. Section three analyses experimental results
obtained for EAP-TLS method [6] (SSL based authentication method) with
various smartcards. Section four comments results observed for EAP-PSK
method [22], based on the AES algorithm [12] that has been recently
proposed as RFC at the IETF committee.

1.1 Smartcard benefits for wireless network security management

Reliable and cheap 802.11 technologies make it possible for companies,
administrations, or cities to deploy wireless networks supporting data (WEB,
email) or multimedia (voice, images) services. There is a need to control
network accesses for confidentiality purposes (if wireless resources are
restricted to authorized staff) or for legal issues (if some behaviors are
forbidden in open networks).

The basic choice for user's authentication is using password or not. A good
password is difficult to memorize, although it can be easily duplicated or
stolen.

Smartcard is an alternative to passwords. It's a secure and cheap silicon
slice [26], whose area is about 25 mm .̂ It includes a CPU (8 to 50 MHz
clock), ROM (up to 256 KB), non volatile memory (128 KB of E^PROM or
up to one MB of FLASH) and RAM (from 4 to 8 KB). Information is
exchange via a serial link, whose throughput ranges between 9600 and
230,000 bit/s.

About one billion of SIM smartcards are manufactured each year .̂ SIM
module [4] manages subscriber' authentication in GSM networks; it stores its

^ Source, www.eurosmart.com

The OpenEapSmartcard platform 77

identity (IMSI) and computes a symmetric algorithm (A3/A8) associated to a
secret key (Ki). Almost every SIM embeds a Java Virtual Machine (JVM);
according to its price, a crypto processor supports additional cryptographic
facilities like RSA or triple DES. Because it's possible to download applets in
such components [5], which may process complex cryptographic protocols,
we beheve that they are very well adapted for wireless security issues.

Smartcards are generally considered as the most secure computing
environment [23]. They have been selected by the DoD for military ID cards
[24], by the Belgium government for citizen ID cards [25], and they will be
included in US and European passports. Hundred of millions people used cash
cards including tamper resistant chips running payment standards like BO' or
EMV. Generally smartcard is unblocked by a Personal Identification Number
(PIN) code whose size is 4 digits; the system is frozen after three wrong tries.
Furthermore it is already possible to get components working with fingerprint
recognition [13].

2 OpenEapSmartcard

Contrary to mobile phone operators that manage worldwide networks, we
believe that IP wireless infrastructures could look like a constellation of
"small" domains hold by public authorities (cities, campus...), private
companies or individuals. It's likely than each of them will control network
accesses, according to specific mechanisms and policies. As an illustration
more than fifty EAP type, e.g. different authentication methods are already
registered by the lANA^

10$ \ ,,'•

\ Credit cord format

Figure 1: illustration of smartcard form factors and prices

The first requirement for OpenEapSmartcard initiative is flexibility. In the
past many security threats were discovered for GSM (COMP 128-1 crack) or

' Internet Assigned Numbers Authority.

78 Pascal Urien & Mesmin Dandjinou

802.11 (WEP crack). Open code is a good security principle that enables code
reviewing; it facilitates study of multiple security architectures; it allows
evaluation of deployment costs induced by smartcards price or infrastructure
management (secret key management, certificates management,
communication reUability,...).

The second requirement is feasibility. In EAP context an authentication is a
suite of requests sent to supplicant (the smartcard in our proposal) that
produces responses. As specified in [12] the default return time trip (RTT)
must be less than 30s. Another constraint is the complexity of authentication
protocols; code byte is limited by non volatile memory capacities that
currently range between 32 and 128 KBytes; hopefully this size could quickly
evolve toward the MByte

The last requirement is low costs and multi form factors. Figure 1
illustrates this point, Javacard costs less than 10$ per unit, and USB readers
are available for less than 40$.

As we will show it later, complex methods like EAP-TLS [6] or EAP-PSK
[22] need about 20 KB of E^PROM, and may work with RTT less than 30s
with an authentication time comprised between 10s and 45s.

2.1 About Java card platforms

They are two kinds of Javacard platforms.
First class, that we refer as general purpose devices, implements APIs [9]

defined by the Javacard forum^ whose current version are JC2.1 and JC2.2.
All these releases support cryptographic facilities like RSA, MD5, SHAl and
random number generators (RNG). AES algorithm is only available beyond
version 2.2.

Second class is based on SIM chips, and is described by the TS 03.19
standard [5]. It supports JC2.x classes and additional APIs that access to files
embedded in these components.

From a functional point of view these two environments are quite similar.
Although the GSM platform is widely available and cheap, it doesn't usually
embed asymmetric cryptographic facilities that are not used in GSM
networks.

2.2 Software architecture

The software architecture mainly comprises four Java components
- The EapEngine which implements the EAP core, and acts as a router that
sends and receives packets to/from authentication methods

^www.j avacardforum.org

The OpenEapSmartcard platform 79

- An Authentication interface that defines all services offered by EAP
methods
- A Credential object which stores information needed for method
initialization.
- One or more Methods that instantiate authentication scenari like EAP-TLS
or EAP-PSK.

EapEngine. class

Methods (~.
Credentials]

1 E'PROM ^

Security
Management

\ Identity
^ Management

^Personalization

Network
Interface

CredentiaL class
MethodMass

EAP-PSK

EAP-TLS

AuthMass

lAuthcnt icat ioH^
I Interface yf

, Init(Objcct
Credential)

ProcessEapO

5 ^ ^ - rr TEL

Javacard
Framework JC.2x

Cryptographic API
RNG-MD5-SHA1-RSA

Java Virtual Machine

draft-cap-smart card

l̂ ISO 7816 Interface

Figure 2. OpenEapSmartcard software architecture

2.2.1 EapEngine
Four services are offered by this module

- Network interface. Incoming EAP requests are checked and forwarded to
the appropriate method. At the end of authentication process, each method
computes a master cryptographic key (PMK) which is read by the supplicant
operating system.

- Identity management. Smartcard manages several methods and/or
multiple instances of the same one. An identities list stores credentials (EAP-
ID, X509 certificates, RSA keys, shared secrets) required by embedded
methods. This service allows to browse available identities and to select one
of them.

- Security management. Smart card is protected by two PESF codes, one for
its issuer and the other for its holder. In future versions this service could
manage fingerprint recognition.

- Personalization management. Identity items and PIN codes are controlled
and set by smartcard issuers. Some authentication methods like EAP-TLS or
EAP-PSK create a secure channel. This protected link may be used for remote

80 Pascal Urien & Mesmin Dandjinou

management, which could modify "over the air" parameters embedded in
tamper resistant chip. This model is closed to standard TS 03.48, which is
widely deployed in GSM network for SIM card update purposes.

The ISO 7816 standard [1] defines logical structures of commands
{APDUs) and responses exchanged with smartcards. APDUs understood by
the EapEngine are described and explained by an internet draft [21].

2.2.2 Authentication Interface
This component defines all services (see figure 3) that are mandatory in EAP
methods, in order to collaborate with EapEngine. The two main functions are
InitQ and Process-EapQ. The first initializes method and returns an
Authentication interface; the second processes incoming EAP packets.
Methods may provide additional facilities (fct()) dedicated to performances
evaluations.

Interface auth

byte[]

short

f c t (j a v a c a r d . f r a m e w o r k . A P D U apdu ,
s h o r t i n l e n g t h) Method functions
apdu: incoming APDU
in: buffer associated to the incoming APDU
inlength: P3 value

b y t e l l i n .

Get F c t B u f f e r () Returns a function buffer

Get F c t L e n g t h () Returns a function buffer length

Get F c t O f f s e t () Returns a fijnction buffer offset

b y t e [] {Get Out B u f f e r () Returns the response buffer

s h o r t .Get Out L e n g t h () Returns the response buffer length

s h o r t jGet Out O f f s e t () Rehims the response bufTer offset

auth

boolean

I n i t (J ava . l a n g . O b j e c t c r e d e n t i a l s) Method Initialization

I s F r a g m e n t e d (} Fragmentation in progress

I s L o n g F c t (} Indicates that the response of a function is stored in a private buffer

i s L o n g R e s p o n s e () Indicates that the response of the method is stored in a
private buffer

p r o c e s s e a p (b y t e [] i n , s h o r t i n l e n g t h) Method Processing
in: incoming APDU buffer
inlength: length of the incoming APDU
Returns
-length of the response
-negative value if an error occurred

r e s e t () Resets the method

s t a t u s {) Gets the method status

Figure 3. Authentication Interface

2.2.3 Credential object
Each method is associated to a Credential Object (see figure 3, InitQ) that
encapsulates all information required for processing a given authentication
scenario.

The OpenEapSmartcard platform 81

2.2.4 Method
Each authentication scenario is processed by a specific Method class. Once
initialized, it analyses each incoming EAP request and delivers corresponding
response. The number of embedded methods is limited by the smartcard non
volatile memory (E^PROM) size.

2.3 Integration to terminals

Some operating systems, like Win32, already support the EAP protocol for
wired and wireless networks. A given EAP authentication scenario is
processed by a particular dynamic library (DLL) named EAP-Provider [17]. A
generic library that uses PC/SC [2] services (plug and play support for
smartcard readers), forwards incoming EAP requests to EAP smartcard that
computes corresponding responses.

3 EAP-TLS smartcard

The EAP-TLS authentication scenario [6] works with the IETF version of the
well known SSL protocol. Additional cryptographic features that are not
supported in JC2.x framework are written in Java, like HMAC [3], RC4, TLS
PRE ([7] Pseudo Random Function) and X509 certificate parser.

We have implemented two modes for EAP-TLS. The first is asymmetric
and works with a mutual authentication based on RSA keys and X509
certificates. The second called session resume mode [7], is symmetric and is
based on Session-ID and Master-Secret parameters computed during a
previous (full and asymmetric) session. This last mode may be useful for SIM
javacards that don't include RSA crypto-processor.

3.1 Experimental results

Tests were performed on four smartcards, equipped with 8 bits processors (8
MHz clock), issued by different manufacturers. Devices A, C and D are
general purpose javacards, component B is a SIM module. Two of them that
have RTT times less than 30s and may be used for authentication in existing
802.11 wireless infrastructures.

3.1.1 TLS "full mode"
During the authentication scenario about 2,500 bytes are sent and received.
The time consumed by this operation ranges between 2 and 5 seconds. This
parameter is dependant on three constraints; physical throughput,

82 Pascal Urien & Mesmin Dandjinou

performances of embedded JVM, and time required for writing operations in
E¥ROM.

RSA resources, provided by crypto-processor, are used three times. Public
key operations need around 200ms, and encryption with private key is rather
fast, and consumes less than 500 ms.

According to the TLS specification, three dual digests (MD5 + SHAl) are
performed on these exchanged data, e.g. about 7500 bytes (120 blocs of 512
bits). We observe (see table 1, Dual Hash column) average computing times
(per bloc) ranging between 3,7 ms (900ms/240) and 24 ms (5700ms/240)

Five occurrences of pseudo random function (PRF), imply the calculation
of 31 HMAC-MD5 and 31 HMAC-SHAl procedures [3], which process 140
MD5 blocs and 140 SHAl blocs. Each HMAC computes 2 digests, whose
average size is about 2, 25 blocs. We notice (table 1) an important overhead,
induced by our Java implementation, excepted for the device D.

RC4 algorithm is fully written in Java, observed performances clearly
illustrate various behaviors of multip
Device

A

B

C

D

RTT
MAX

52,3s

21,0s

22,3s

5,2s

Total
Authentica
tion Time

78,1s

34,3s

33,3s

9,3s

Data
Transfer

2500 bytes
2,3s
2,9%
4,3s

12,5%
4,9s

14,7%
1,6s

17,2%

e embeddec
Dual Hash

2x120 blocs

5,7s
7,3%
4,5s

13,2%
3,5s

10,4%
0,9s
9,7%

virtual machines.
PRF

2x140
blocs

42,4s
54,2%
19,7s

57,3%
13,3s

40,0%
4,5s

48,4%

RC4
2x32
bytes

14,7s
18,9%
2,3s
6,7%
2,8s
8,4%
0,7s
7,5%

OTHER

13,0s
16,6%
3,5s

10,2%
8,8s

26,5%
1,6s

17,2%

Table 1. Measured authentication time for four smartcards, TLS fiill mode

Device

A
B
C
D

RSA 1024 bits Public
Key Initialization

0,21s

-
0,31s

-

RSA 1024 bits
Encryption

0,16s

-
0,38s

0,02s

RSA(Verify Data) 1024 bits
Private Key Encryption

0,33s
< 0,80s

0,43s

0,11s

Table 2. RSA performances for four smartcards

The OpenEapSmartcard platform 83

3.2 Resume mode

In this mode around 250 bytes are exchanged, a previously computed master-
secret is re-used, and no RSA resources are necessary. Two dual digests
(MD5 + SHAl) are performed on about 2x150 bytes (6 blocs of 512 bits)

Four occurrences of the PRF functions imply the calculation of 15 HMAC-
MD5 and 15 HMAC-SHAl procedures which process 108 MD5 blocs and
108 SHAl blocs. Each HMAC computes 2 digests, whose average size is
about 3,6 blocs.

In summary (see table 3) the resume mode is quicker than the normal one,
it may be useful for fast user's re-authentication.

Device

A

B

D

Total
Authentication

Time
49,5s

18,7s

5,5s

Data Transfer
230 bytes

0,9s
1,9%
1,0s

5,4%
0,2s
3,6%

Dual Hash
2x6 blocs

0,3s
0,6%
0,2s
1,0%
0,0s
0%

PRF
2x108

blocs
32,5s
65,6%
15,2s

81,3%
3,5s
63,7

RC4
2x32 bytes

14,7s
29,7%
2,3s

12,3%
0,7s

12,7%

OTHER

I,Is
2,2%
0,0s
0%
1,1s

20,0%

Table 3. Measured authentication time for three smartcards, TLS resume mode

3.3 Performances limits

A
B
C
D

Full Mode
Total
Time

15,6

16,5
14,0

3,7s

Data
Transfer

(2500
bytes)

2,3

4,3

4,9

U6

Dual
Hash
2x120
blocs

5,7

4,5

3,5
0,9

PRF

2x140
blocs

6,7
5,3

4,1
1,0

RSA

<0,9
<2,4

<1,5

<0,2

Session Resume Mode |
Total
Time

6,4

5,4
4,0

1,0

Data
Transfer

(250 bytes)
<1,0

<1,0
<1,0

<0,2

Dual
Hash
2x6
blocs

0,3

0,3

0,2
0,0

PRF

2x108
blocs

5,1
4,1
2,8
0,8

Table 4. TLS computing time estimation, obtained by neglecting Java overhead, for PRF and
RC4 calculation

Table 4 estimates ultimate authentication times for full and resume modes,
by neglecting the Java overhead. Scenario duration is only dependent on data
transfer, number of digest operations, and RSA calculations. It clearly appears
that performances are strongly linked to digest computing; although 10
throughput can't be neglected for full mode operation.

84 Pascal Urien & Mesmin Dandjinou

4 The EAP-PSK smartcard.

The EAP-PSK method [22] is a symmetric authentication scenario, recently
proposed at the IETF committee, and based on AES algorithm. We are going
to briefly analyze its behavior. Server and client use a (secret) pre share key
(PSK, 128 bits), from which are deduced two AES (128 bits) keys: AK
(Authentication Key) and KDK (Key-Derivation Key).

^ ^ 1 M ^ r ^ ^
1 O M A C K I

c:r>-
CTRK

1 O M A C K 1

r ^
O M A C K 1

•. r

EAX

u r~—I
' 1 Tag 1

Figure 4: OMACl (left part) and EAX (right part) principles; K represents an AES key.

These two entities exchange random values (RANDP, RAND_S) which
are associated to MAC (128 bits) values (MAC_P, MAC_S) computed
according to the OMAC [15] algorithm, which is under consideration by
NIST for standardization. This algorithm splits incoming messages in blocs
(128 bits) encrypted by AK key and mixed with EXOR operations (see figure
4).

A Modified Counter Mode [14] (MCM) algorithm computes from the
RAND_P field and the KDK key, the Transient EAP Key (TEK) and the IEEE
802. Ix Pairwise Master Key (PMK).

EAX [20] is a block-cipher mode of operation, for solving the problem of
authenticated encryption with associated header. It works with a nonce N, a
message M, and a header H. It is used by EAP-PSK to provide a secure
channel (S_CHANNEL), protected by the TEK key that transports at least, an
encrypted and tagged status byte. EAX required three OMAC instances (for
the nonce, the header and tag, see figure 4) and a counter mode encryption
(CTR mode) for message ciphering.

Device AES SET
KEY

AES
CIPHER

(T A E S)

OMAC
25 bytes
3xAES

T=nAEs(TAES+P)

OMAC
49 bytes
5xAES

T=nAEs(TAES+P)

AEX(N=16
bytes, H=5 bytes,

M=l byte)
lOxAES

0,018s 0,011s 0,114s 0,170s 1,022s

2,6s 0,39s 1,30s 2,24s 5,13s

Table 5. Basic parameters for EAP-PSK

Most of today available Javacards implement the JC2.1 standard, which
doesn't support the AES algorithm, but hopefully it is included in JC2.2
smartcards. Consequently our tests deal with two kinds of AES instances, full

The OpenEapSmartcard platform 85

Java (device C) or native implementation (device E). As illustrated by table 5
the pure software version is rather slow (0,4s per block encryption), specially
when it's necessary to initiaUze a key (1.3s). Additional cryptographic
resources (AEX, OMAC, ...) are provided by Java classes.

1 Operation

1 First Request
SET KEY(AK)

OMAC (49 bytes)
1 Second Request

OMAC (25 bytes)
SET-KEY(KDK)

MCM
SET-KEY(TEK)

AEX(N=16,H=5,M=1)
AEX(N=16,H=5,M=1)

TOTAL

Number
ofAES

Encrypted
blocs (n)

Device E
Computing

time

CT

Estimated
Java

overhead
CT-n.TAEs

Device C
Computing

time

CT

Estimated
Java

overhead
CT-n.TAES

5
0,018
0,170 0,110

2,60
2,24 0,29

3

6

10
10
34

0,114
0,018
0,070
0,018
1,022
1,022
2,45s

0,079

0,906
0,906
2,00s

1,30
2,60
2,34
2,60
5,13
5,13

23,90s

0,13

1,23
1,23

2,90s 1

Table 6. EAP-PSK computing time

We (not surprisingly) observe (see table 5) that computing time of OMAC
increases proportionally to the number of (AES) blocs. The (Java) penalty per
bloc (p, table 5) is about 20ms for device E and 50ms for device C. The EAX
procedure is more complex and induces further Java additional computing
times whose values are 0,9s for device D and 1,2s for device B. We finally
notice for device E, that total computing time (2,45 s) is mainly due to Java
overhead because the AES penalty (34 x 0,011) is not the predominant factor.

Table 6 details observed computing times, and clearly illustrates that EAP-
PSK is faster than EAP-TLS resume mode.

5 Conclusion

In this paper we have presented an open, modular and flexible approach for
controlling network accesses in WLAN environment. We have demonstrated
that this proposal is realistic, even with cheap smartcards that are not specially
designed for that purpose. We have published [27] these source codes and we
plan to develop an open library that will cover more scenari.

6 References
[1] International Organization for Standardization (ISO)

card with contact" ISO/IEC 7816.
'Identification cards - Integrated circuit(s)

86 Pascal Urien & Mesmin Dandjinou

[2] PC/SC (1996), Interoperability Specification for ICCs and Personal Computer Systems, © 1996
CP8 Transac, HP, Microsoft, Schlumberger, Siemens Nixdorf.

[3] H. Krawczyk, M. Bellare, R. Canetti, "HMAC: Keyed-Hashing for Message Authentication", RFC
2104, September 1997.

[4] ETSI - GSM 11.11 "Digital cellular telecommunications system (Phase2+); Specification of the
Subscriber Interface Identity Module - Mobile Equipment (SIM_ME) interface".

[5] ETSI GSM 11.19, "Digital cellular telecommunications system (Phase 2+); GSM API for SIM
toolkit stage 2"

[6] B. Aboba, D. Simon, "PPP EAP TLS Authentication Protocol", RFC 2716, October 1999.
[7] T. Dierks, C. Allen,, "The TLS Protocol Version 1.0", RFC 2246, January 1999
[8] Institute of Electrical and Electronics Engineers, "Standard for Telecommunications and

Information Exchange Between Systems - LAN/MAN Specific Requirements - Part 11: Wireless
LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications", IEEE Standard
802.11,1999.

[9] Zhiqun Chen, "Java Card Technology for Smart Cards: Architecture and Programmer's Guide",
SUN book, 2000

[10] N. Borisov, I.GoldBerg, D.Wagner, Intercepting Mobile Communications: The Insecurity of
802.11, Proceeding of the Eleventh Annual International Conference on Mobile Computing And
Network, pl80, July 16-21, 2001.

[11] S.Fluhrer, I.Mantin, A.Shamir, Weakness in the key scheduling algorithm of RC4, 8th Annual
Workshop on Selected Areas in Cryptography, August 2001.

[12] National Institute of Standards and Technology, "Specification for the Advanced Encryption
Standard (AES)", Federal Information Processing Standards (FIPS) 197, November 2001.
Institute of Electrical and Electronics Engineers, "Local and Metropolitan Area Networks: Port-Based
Network Access Control", IEEE Standard 802.1X, September 2001.

[13] Struif, B.; Scheuermann, D, "Smartcards with biometric user verification". Multimedia and Expo,
2002. ICME '02. Proceedings. 2002 IEEE International Conference on, Volume: 2 , 26-29 Aug. 2002
Pages:589 - 592 vol.2

[14] Gilbert, H., "The Security of One-Block-to-Many Modes of Operation", FSE 03, Springer-Verlag
LNCS 2287, 2003.

[15] Iwata, T. and K. Kurosawa, "OMAC: One-Key CBC MAC", FSE 03, Springer-Veriag LNCS
2887,2003.

[16] M.Loutrel, P.Urien, G.Pujolle, "A smartcard for authentication in WLANs", Proceedings of the
2003 IFIP/ACM Latin America conference on Towards a Latin American agenda for network
research. La Paz, Bolivia, October 2003

[17] P.Urien, M.Loutrel,"The EAP smartcard. A tamper resistant device dedicated to 802.11 wireless
networks", 3'̂ '' Worshop on applications and Services in Wireless Networks, Berne, Switzerland,
July2-4, 2003.

[18] Institute of Electrical and Electronics Engineers, "Approved Draft Supplement to Standard for
Telecommunications and Information Exchange Between Systems-LAN/MAN Specific Requirements
- Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications:
Specification for Enhanced Security", IEEE 802.1 li-2004, 2004.

[19] Aboba, B., Blunk, L., VoUbrecht, J., Carlson, J. and H.Levkowetz, "Extensible Authentication
Protocol (EAP)", RFC 3748, June 2004.

[20] Bellare, M., Rogaway, P. and D. Wagner, "The EAX mode of operation", FSE 04, Springer-
Verlag LNCS 3017, 2004

[21] Urien P, Farrugia F, Groot M, Abellan J, "EAP-Support in Smartcard", draft-urien-eap-
smartcard-08.txt, 2005

[22] Bersani.F, "The EAP-PSK Protocol: a Pre-Shared Key EAP Method", IETF draft, draft-bersani-
eap-psk-06, 2004

[23] Renaudin, M.; Bouesse, F.; Proust, Ph.; Tual, J.P.; Sourgen, L.; Germain, F.; "High security
smartcards". Design, Automation and Test in Europe Conference and Exhibition, 2004. Proceedings ,
Volume: 1 , 16-20 Feb. 2004

[24] R.Brandewie, "Smart cards:world passport to security -identity solutions for a complex world."
e-Smart 2004, Sept 22-24, 2004, Sophia Antipolis, Nice, France

[25] "Belgium electronic identity card (elD)". http://eid.belgium.be
[26] Timothy M. Jurgensen, Scott B. Guthery, "Smart Cards: The Developer's Toolkit", PRENTICE

HALL
[27] OpenEapSmartcard WEB site, http://www.infres.enst.fr/~urien/openeapsmartcard

