
An optimizing OCL Compiler for Metamodeling and 
Model Transformation Environments 

Gergely Mezei, Tihamer Levendovszky, Hassan Charaf 

Budapest University of Teciinology and Economics 
Goldmann Gyorgy ter 3., 1111 Budapest, Hungary 

Abstract. Constraint specification and validation lie at tlie heart of modeling and 
model transformation. The Object Constraint Language (OCL) is a wide-spread 
formalism to express constraints in modeling environments. There are several 
interpreters and compilers that handle OCL constraints in modeling, but these tools 
do not support constraint optimization, therefore, the model validation can be slow. 
This paper presents algorithms to optimize OCL compilers to reduce the 
number of database queries during the validation process by eliminating the 
unnecessary traversing steps and caching the database queries. Proofs are also 
given to show that the optimized and the unoptimized code are functionally 
equivalent. The optimized compiler has been integrated into the Visual Modeling 
and Transformation System tool and applied to constraints appearing in both 
metamodels and graph rewriting-based model transformation rules. 

1 Introduction 

The information conveyed by a model created by a traditionally generic modeling 
language has a tendency to be imprecise [1]. For example, if a UML Class diagram [2] 
expresses a relation of type association between vehicles and the passengers traveling in 
the vehicle, the multiplicity between the two classes is 0..*, representing that several 
passengers can travel on a single vehicle. This multiplicity expresses that there is no 
upper limit to the number of passengers in general, because the limit depends on the 
type of the vehicle. Without additional techniques it is not possible to define that 
the maximum number of passengers equals the number of seats plus the number of 
standing rooms on the vehicle. Even if the generic modeling languages are extended 
with constraint handling, they cannot always describe the special attributes of the target 
domains. Thus, customizable models, modeling techniques, and model transformation 
algorithms are required by model-based software development. Domain Specific 
Modeling Languages (DSMLs) are a means to create customized models for domains 
where generic modeling languages would fail. Metamodeling is a proven solution for 
modeling DSMLs. The metamodel acts as a set of rules for the model level: it defines 
the available model elements, its attributes, and the possible connections between 
them, Metamodel definitions can usually define simple, topology-based rules, but they 
cannot express constraints for attribute values or other sophisticated requirements. 
Thus, sometimes the metamodeling rules are also incomplete. For example, if there is a 
resource editor domain for mobile phones, it is useful to define the valid range for 
slider controls. Specifying constraints in both generic and domain-specific models is 

Please use the following formatwhen citing this chapter: 

Mezei, G., Levendovszky, T., Charaf, H., 2006, in IFIP International Federation for Infonnation Processing, Volume 227, 

Software Engineering Techniques; Design for Quality, ed. K. Sacha, (Boston: Springer), pp. 61-71. 



62 Gergely Mezei, Tihamer Levendovszky, Hassan Charaf 

crucial to create precise and verifiable models. Constraint definitions are not only useiiil 
in modeling, but in model transformations as well. To define the transformation steps, 
beyond the topology of the visual models, additional constraints must be specified, 
which ensures, for example, value checking of the attributes. Dealing with constraints 
means a solution to several unsolved model transformation issue [3]. For example 
if the model transformation executes a search algorithm for non-abstract classes in 
a class diagram, then it is useful to express this condition. Constraint-based model 
transformation is very popular, it is used for example in QVT [4]. 

One of the most wide-spread approaches to constraint handling is the Object 
Constraint Language (OCL) [1]. OCL is a flexible, user-friendly yet formal language. 
Although it was created to extend the capabilities of UML [2], it can also be used 
in metamodeling environments to validate the models, or to define constraints in 
metamodel-based model transformations. 

Visual Modeling and Transformation Systems (VMTS) [5] is an n-layer metamodeling 
and model transformation tool. VMTS uses OCL constraints in both model validation 
and in the graph rewriting-based model transformation [3]. VMTS contains an OCL 2.0 
compliant constraint compiler to generate code for constraint vahdation. The constraints 
contained by both the rewriting rules and metamodel diagrams are attached to the 
metamodel, thus they can be handled with the same algorithms. 

The primary aim of this paper is to give an overview on the optimizing algorithms 
used in the OCL compiler of VMTS. Previous work [6] has presented two efficient 
algorithms to reduce the navigation steps in the constraints by relocating the constraints 
and separating clauses based on Boolean operands. These algorithms are introduced in 
short, and they are extended with a third algorithm that can accelerate the database 
queries by an efficient caching technique. The paper also gives a concise description in 
which compilation step the optimization algorithms can be used and how the three 
algorithms can cooperate. Novel, detailed proofs are also discussed that the optimized 
and the unoptimized code are functionally equivalent. 

The main advantage of the presented algorithms is that they do not rely on 
system-specific features, thus they can be easily implemented in any other modehng or 
model transformation framework. The algorithms do not require a specific implementation 
language, or database to store the models. The presented approach does not even need 
an environment based on a DBMS, it can be apphed to all model repositories, such as 
MOF 1.4 repositories. 

The paper is organized as follows: firstly. Section 2 elaborates some of the popular 
tools that support constraint checking. Section 3 introduces the previous work in short, 
while Section 4 presents the new results. Finally, Section 5 summarizes the presented 
work. 

2 Related work 

There are several modehng frameworks and extension tools for frameworks that support 
OCL constraints in a more or less efficient way. This section deals with the most 
typical compilers only. 



An optimizing OCL Compiler for Metamodeling and Model Transformation Environments 63 

Object Constraint Language Environment (OCLE) [7] is a UML CASE Tool, OCLB 
helps the users to realize both static and dynamic checking at the user model level. 
The tool also has a user-friendly graphical GUI. Although the tool supports model 
checking, it does not use compiling techniques. 

The Dresden OCL Toolkit (DOT) [8] [9] generates Java code from OCL expressions, 
and then instruments the system in five steps, (i) OCL expressions are parsed using a 
LALR(l) parser generated with SableCC [10]. The result of the step is an Abstract 
Syntax Tree (AST), (ii) A limited semantic analysis is performed on the AST to find 
errors, (iii) The AST is simplified in order to make the further processing simpler, (iv) 
The code generator traverses the simplified AST and builds Java expressions, (v) The 
generated code is inserted into the system that contains the constraint source code, 
thus, the contracts can be tested at runtime. DOT does not support metamodeling, or 
optimized constraint-checking, 

Kent Modeling Framework [11] is a set of tools that supports model driven software 
development. One of these tools is KMFStudio a tool to generate modeling tools from 
metamodels. KMFStudio supports dynamic evaluation of OCL constraints. It enables 
the language to be bridged to other modeling frameworks. The tool was integrated into 
the Echpse tool set. The Kent Modeling Framework does not use optimizing algorithms 
to improve the efficiency of the constraint validation. 

Open Source Library for OCL (OSLO) [12] is a new tool and it is a further 
development of Kent OCL Library. OSLO is based on the Eclipse framework. OSLO 
supports OCL 2.0 functions for arbitrary metamodels based on EMF, and constraint 
checking for UML2 models (Eclipse UML2). OSLO supports therefore constraint 
checking for metamodeling system, but it cannot cooperate with model transformation 
systems. Since it is a recent project, only a few publications are available, and not all 
of the supported features are introduced in depth. 

3 Backgrounds 

3.1 VMTS OCL 2.0 Compiler 

The OCL Compiler realized in VMTS consists of several parts (Fig. 1), This section 
gives a short description of the architecture of the compiler, more detailed information 
on the compiler can be found in [13] and [3], 

Constraint in OCL 
(OCL) 

Binary validation 
checker 

(executable) 

Lexical and 
Syntactic Analysis 

: > 

BuUd 

< : 

Syntax tree 

Sopurce Code 
(C#) 

Semantic 
Analysis 

Code Dom 

> 
Semantic Analysed 

Syntax tree 

TVee Construction 

V 

CodcDom Tree 

Fig. 1. VMTS OCL Compiler 2.0 Architecture 



64 Gergely Mezei, Tihamer Levendovszky, Hassan Charaf 

The user defines the constraints in OCL, then the constraint definitions are tokenized 
and syntactically analyzed. The lexical analysis reads the constraint definition as a 
text, and creates a sequence of token, such as the keywords of the language. Syntactic 
analysis builds a syntax tree using the grammar rules of OCL specified in EBNF 
format [I]. To accommodate the ambiguities in the specification, the grammai" rules 
are simplified. The information missing because of the simplification is reconstructed 
in the later compilation steps, where the analysis has more infomiation (e.g. about 
available types and defined variables). Since the syntax tree does not contain all the 
necessary information, it should be extended e.g. with type information, and implicit 
self references. This amendment is performed in the semantic analysis phase, and 
it produces a semantically analyzed syntax tree. The semantic analysis also reconstructs 
the mentioned simplification made in the grammar. In the next step, the constructed 
and semantically analyzed tree is transformed to a CodeDOM tree. CodeDOM [14] 
is a .NET-based technology that describes programs using abstract trees, and it can 
use this tree representation to generate code to any languages that is supported by 
the .NET CLR (like C#, or Visual Basic). The compiler transforms the CodeDOM 
tree to C# source code. To support the base types available in OCL, a class library 
has been developed. The constraint classes inherit from the base classes implemented 
in this class library. The output of the OCL compiler is a binary assembly (a .dll 
file) that implements the validation method. 

Since the constraints are compiled only once, not each time when the constraints 
are evaluated, the vahdation process is fast and efficient. The compiled OCL validation 
assembly can be used either in model validation, or in graph transformation. There are 
no differences between the two cases in handling the constraints: the editing framework 
(VMTS Presentation Framework) collects the appropriate model items and invokes the 
validation method for them. 

The evaluation of the OCL constraint consists of two parts: (i) Selecting the object 
and its properties that we need to check against the constraint, and (ii) executing the 
validation method. Although the execution of the validation method can use several 
optimization methods, in this paper the presented algorithms focus on the first step. 
There are two reasons for this: (i) Since the efficiency of the validation depends on 
the realization of the OCL types and expressions, optimizing the validation process 
is usually more implementation-specific, (ii) In general, the first step has more serious 
computational complexity, because the model items are matched in the underlying 
model. If the model is stored in a DBMS, then each navigation step means a database 
query. 

3.2 Normalization 

If the constraint does not contain any unnecessary navigation steps, then it is in 
Canonical Constraint Form, or simply it is normalized. The normalization, namely 
reducing the navigation steps can accelerate constraint evaluation. The aim of the first 
introduced optimization algorithm, called RELOCATECONSTRAINT is to provide a 
method to normaUze the OCL constraints if it is possible. The algorithm is shown in 
Fig. 2. The algorithm processes the OCL constraints propagated to the transformation 



An optimizing OCL Compiler for Metamodeling and Model Transformation Environments 65 

Step. The main preach loop examines the navigation paths of the actual constraint and 
relocates the constraint to the node with the smallest navigation cost. 

RELOCATECONSTRAINT (Model M) 
foreach InvariatConstraint C in M 

minNwnberOfSteps = CALCULATESTEPS (CurrentNode in C) 
optimalNode = CurrentNode of the C 
foreach Node N in C 

numberOjSteps = CALCULATESTEPS(N) 
it(numberOJSteps < tninNumberOfSteps) then 

minNumberOfSteps = numberOnSteps 
optimalNode = N 

endif 
end foreach 
it{optimalNode != CurrentNode of the C) then 

UPDATENAVIGATIONS of the C 
RELOCATE C to optimalNode 

endif 
end foreach 

Fig. 2. The Relocate Constraint algorithm 

Using constraint relocation, the RELOCATECONSTRAINT algorithm eliminates 
all unnecessary navigation steps to produce non-decomposable (atomic) expressions. 
The proof of this statement, and the algorithm in more detail is discussed in [6], 

3.3 Invariant decomposition 

The goal of the constraint normalization is to achieve the pure canonical form, which 
does not contain navigation steps. Using the RELOCATECONSTRAINT algorithm, it 
is not possible in all cases, because constraints are often built from sub-terms and 
linked with operators (self.age = 18 and self.name =' Jay'), or require property 
values from different nodes (self .age = self .teacher.age). 

Although subterms are not decomposable in general, they can be partitioned to 
clauses if they are linked with Boolean operators. A clause can contain two expressions 
(OCL expression, or other clauses) and one operation (AND/OR/XOR/ IMPLIES) 
between them. Separating the clauses, we can reduce the number of the navigation steps 
contained by the OCL expressions and the complexity of the constraint evaluation during 
the constraint validation process. It is simpler to evaluate the logical operations between 
the members of a clause than to traverse the navigation paths contained by the constraints. 

The ANALYZECLAUSES algorithm (Fig. 3) is invoked for the outermost OCL 
expression of each invariant. The algorithm recursively searches the constraint for 
possible clause expressions and creates the clauses. 

Applying the ANALYZECLAUSES algorithm, the number of the navigation steps 
in the constraints contained by the output model is minimal (supposing that only the 
logical relations can be decomposed) [6]. 



66 Gergely Mezei, Tihamer Levendovszky, Hassan Charaf 

ANALYZECLAUSES (Expression Exp) 
if (Exp is LogicalRelationExpression) then 

Clause=CreateClause(Exp.Relatioii'iype); 
Clause.ADDEXPRESSION(ANALYZECLAUSES(Exp.Operandl)), 
Clause.ADDEXPRESSION(ANALYZECLAUSES(Exp.Operand2)); 
return Clause; 

else 
if (Exp is ExpressionlnParantheses) tlien 

return ANALYZECLAUSES (Exp.InnerExpression); 
else 

if(Exp is OnlyExpressionlnConstraint) then 
Clause=CreateClause(SpecialClause); 
Clause.ADDEXPRESSION(RELOCATECONSTRAINT(Exp)); 
return Clause; 

else 
return RELOCATECONSTRAINT(Exp); 

endif 
endif 

endif 

Fig. 3. The Analyze Constraint algorithm 

4 Contribution 

4.1 Caching algorithm 

Since the relocation and constraint decomposition algorithms can eliminate the 
unnecessary navigation steps only, the compiler cannot reach the pure canonical form 
in all cases. The clauses can also contain navigation steps, the validation still requires 
queries to obtain the model elements, and their attributes. 

In compiler optimization, an occurrence of the expression E is called a common 
subexpression if the value of E has previously been computed, and it has not changed 
since then [15]. In these cases recomputing this expression can be avoided, because the 
value of the expression is already known. 

Proposition 1. In OCL constraints navigation steps and attribute references are always 
common subexpressions if they are used more than once . 

Proof OCL specification defines the constraints as restrictions on one or more values, 
but these restrictions cannot have any side-eifects. This means that the model cannot 
change during the validation, thus the computed values can be reused. 

The presented idea is the basis of the third optimization algorithm. On one side, 
caching the model items can eliminate the redundant database queries in the constraint 
expressions. On the other side, the more attribute or navigation is cached, the more 
memory the cache requires. Thus, only those expressions are cached that are referenced 
more than once. Therefore the optimization algorithm (the REFERENCECACHING 
algorithm) has two main steps: (i) getting statistical information about the model 
references (GETCOMMONREFERENCES algorithm), and (ii) caching the evaluation 
expressions (CACHINGMANAGEMENT algorithm). 



An optimizing OCL Compiler for Metamodeling and Model Transformation Environments 67 

Collecting the statistical information set from the whole constraint expression is not 
straightforward, because sometimes only partial validation is required on a model. 
Thus, the caching algorithms are used at the context level, the statistical information of 
the different contexts are separated. 

The GETCOMMONREFERENCES algorithm is shown in Fig. 4. The algorithm 
uses a breadth-first search to traverse the syntax tree recursively. It processes the 
attributes, the navigations, and the control flow expressions. The attributes and 
navigation expressions increment the statistic of their path reference (IncReferencePath 
method). To minimize the number of queries, the algorithm increments not only 
the reference of the full path, but also the references of the path steps. For example 
the expression self.employee.wife.Name will increase the statistics with four 
entries: self, self .employee, self .employ ee.wif e and self.employee.wife.Name. 
The statistics contains even the self element, because it is not cached always, if there is 
only one reference to it. This solution is useful if two expression have a common subset 
in the navigation steps, for example, in the expression self.employee.wife.Nam,e = 
'Mrs.' + self.em,ployee.Name, the path self.employee is used twice. 

GET COMMON REFERENCES (CurrentNode) 
s-witch{CurrentNode.Type) 

case AttributeDefinition: 
it(CurrentMode.HasOneChM) then 

IncReferencePath(5e//ErpreM!on, null) 
else 

lncRs{ersncePath(Attribute, 
GETCOMMONREFERENCESCCwrrentiVoc/e.ChUdren)) 

endlf 
return 

case NavigationStep: 
IncReferencePath(Mo(ie//teOT, 

GETCOMMONREFERENCES(CMrre««iVo&.Children)) 
return 

case ControlFlowExpression: 
GetMinimumReferencesForEveryExecutionPathO 
UpdateCurrentGlobalReferencesO 
return 

endswitch 
if(CMrre«fiVorfe.HasChildren) then 

GETCOMMONRENCES(CMrreH/Wo£/e.Children) 
endif 

Fig. 4. The Get Common References algorithm 

The control flow expressions are complex expressions that have several execution 
paths, thus, they can affect the number of the references, for example conditional 
expression, or loops. In this case the algorithm should obtain the minimum number of 
the references for each referenced objects for each execution paths. For example in case 
of the conditional expressions this means that both branches are processed, statistical 
information is collected for both branches, and then the results are compared. For each 



68 Gergely Mezei, Tihamer Levendovszky, Hassan Charqf 

model reference path (attribute, or navigation reference), the minimum number is 
obtained and placed into the global statistical information set. 

As the result of GETCOMMONREFERENCES algorithm, the compiler has reliable 
statistical information. CACHINGMANAGEMENT algorithm uses this information to 
handle caching. CACHINGMANAGEMENT algorithm differs from the previously pre
sented algorithms, because it affects the generated source code directly instead of the 
syntax tree. Each time the compiler generates a navigation step or an attribute query, 
the statistics are checked, and a cache (a local variable) is created if required. This 
variable obtains the appropriate value from the database if it has not been read before, 
or returns the value from the cache if it is not the first reference. If the model reference 
is not cached, the code generator will create a conventional source code for it. 

Proposition 2. Using the REFERENCECACHING algorithm to evaluate the constraint 
the number of the applied queries is equal or less than that without optimization. 

Proof. The GETCOMMONREFERENCES references algorithm is applied in 
design-time, it does not raise the number of the queries during the evaluation. The 
CACHINGMANAGEMENT algorithm handles two types of model references: the 
cached, and the uncached references. The source code and thus, the number of database 
queries of uncached model references is the same as in the unoptimized code. The 
cached references execute the appropriate database query only if the required value is 
not in the cache, i.e. it has not been not read before. Therefore, neither the uncached 
nor cached references increase the number of the database queries. 

Proposition 3. Each attribute or navigation cached by the algorithm reduce the number 
of the database queries, namely no unnecessary caching is applied. 

Proof The GETCOMMONREFERENCES algorithm is executed for each referenced 
context. If the context contains an expression that has several possible execution paths, 
then every path is examined, and for every model attribute and navigation the smallest 
number of references is stored. The sequential execution paths are examined step-by step, 
and the statistics is increased if required. As result the statistics contains the minimum 
number of the references in the context for every model item (attribute, or navigation). 
The CACHINGMANAGEMENT algorithm creates caching code only for the model 
references that have greater statistical index, than one. Since the statistics contains the 
minimum number of the references of the current item, thus, no unnecessary caching is 
performed. 

4.2 An optimizing OCL compiler 

In order to create the optimizing OCL compiler, the presented algorithms (i) have to be 
placed in the compiler control flow, (ii) a proper order of execution should be set, and 
(iii) proofs should show that the results of the optimized and unoptimized compiler are 
always the same. 

The optimization algorithms require a semantically analyzed syntax tree, since, for 
example, the caching algorithms would not work without proper type-information. 



An optimizing OCL Compiler for Metamodeling and Model Transformation Environments 69 

Thus, the optimization algorithms are used after the semantic analysis. The constraint 
decomposition, relocation, and the statistical information retrieval algorithms are 
executed before the code generation phase, because they affect the syntax tree from 
which the code is generated. The CACHINGMANAGEMENT algorithm affects the 
code generation directly, it is used during the generation phase. 

The next step is to set the order of execution of the optimization algorithms. Since the 
CACHINGMANAGEMENT algorithm is used in code generation compilation step it is 
executed as the last of the optimization algorithms. The constraint relocation algorithm is 
optimal only in case of non-decomposable constraints, hence the constraint decomposition 
should be processed firstly, and then the relocation, and obviously, the processing order 
cannot be changed [6]. The GETCOMMONREFERENCES algorithm uses the syntax 
tree only, thus, it can be used both for processing clauses and normal constraints. At the 
same time the caching algorithm handles the contexts separated from each other. Since 
the constraint decomposition can change the contexts, for example it can divide them 
into several clauses, the GETCOMMONREFERENCES algorithm should be used after 
the decomposition. The relocation algorithm can also affect the context definitions by 
relocating the expressions into other contexts, thus, the execution order of the optimization 
algorithms is the following: (1) ANALYZECLAUSES, (2) RELOCATECONSTRAINT, 
(3) GETCOMMONREFERENCES, (4) CACHINGMANAGEMENT 

The last step to create the optimizing compiler is to prove that the optimization 
does not change the result of the vahdation. 

Proposition 4. Applying the optimization algorithms for an optional input model does 
not modify the result of the constraint evaluation. 

Proof Let H be an optional input model, and let H' be the result model of the op
timization executed by the ANALYZECLAUSES, RELOCATECONSTRAINT and 
REFERENCECACHING (GETCOMMONREFERENCES and CACHINGMANAGE
MENT) algorithms. We prove that evaluating the constraints contained by H' produces 
always the evaluation in H. 

Suppose that a constraint processed by the algorithm conflicts with the original 
constraint definition, because the cached references created and used by the REFER
ENCECACHING algorithm are not up-to-date. This contradicts Proposition 1. 

In the RELOCATECONSTRAINT algorithm UpdateNavigation, and the Relocate 
function calls can modify the result, because other steps examine the existing constraints 
only. UpdateNavigation step replaces the existing context references with the new ones. 
The function Relocate does not modify the constraint but relocates it to a new model item. 
The functions together do not affect the result of the constraint according their definition. 

The algorithm ANALYZECLAUSES can be divided into three main cases: (i) the 
examined expression is a complex (non-atomic) expression with Boolean operators; (ii) 
the examined expression is an expression between parentheses; (iii) or the expression is 
an atomic expression. The simplest case to examine is (ii), where the inner expression 
(the expression between the parentheses) is recursively processed. The evaluation order 
of the subexpressions is the same as that of the original expression, and since no further 
modification is made, therefore case (ii) does not affect the result of the constraints. 
Case (iii) has two subcases. If the examined expression is the only expression in the 



70 Gergely Mezei, Tihamer Levendovszky, Hassan Charaf 

constraint, then a special clause is created, and the relocated constraint is placed into it. 
The special clause type is required only because of the uniformity. The inner expression 
(the normalized constraint) is processed when it is validated as if it were not contained 
in any clauses. The second subcase applies when the examined expression is a part of 
the constraint. In this case the relocated expression is returned. In both subcases the 
result of the constraint is not modified. Case (i) is used only if the constraint consists 
of two subparts linked with Boolean operators. A clause is created that preserves the 
Boolean operator, and the subexpressions are recursively processed. The subexpression 
is processed individually when vaUdating the constraint, and their results are cormected 
using the operator (the order of the subexpressions are the same as in the original 
constraint). Therefore the result of the validation is modified only if the subexpressions 
cannot be processed independently. The independency is not true only if the first 
subexpression has an effect on the second subexpression, this means that the first 
expression modifies one or more value used in the second expression. These modified 
values can be either model attributes, or variables defined in the current scope. The 
constraints used in validation cannot modify the model according to the specification of 
OCL [1]. Local variables can be defined for example in Iterate, and Let expressions, but 
using any variable definition expression would mean that the outermost expression cannot 
be an expression linked with Boolean expressions. This means that the subexpressions 
of the clauses are independent, thus the result of the vahdation cannot be modified. 

To sunmaarize, the algorithms - if they are executed separately - relocate the 
constraint without changing its meaning, thus, the only way in which H' and H can 
have different results is that the algorithms affect each other, and thus their composition 
changes the meaning of the constraint. The algorithm REI^ERENCECACHING is 
executed independently from the other algorithms, and the proven correct output of the 
ANALYZECLAUSES is the input of the RELOCATECONSTRAINT algorithm. Thus, 
the result created by the composition of the algorithms is always correct. 

5 Conclusions 

This paper has presented the main concepts of an optimizing OCL Compiler in an n-layer 
metamodeling and model transformation system. The primary aim of the optimization 
was to reduce the number of database queries by normahzing and caching the constraints. 
Constraint relocating, constraint decomposition and caching techniques have been 
proposed. The correctness and the efficiency of the algorithms have been proven. 

Optimizing OCL constraints is a rather new idea; none of the existing tools 
supports constraint optimization. This means that these tools can only use external 
optimization algorithms offered by the underlying applications, such as the query 
optimization in the underlying database system, or the code optimization of the 
executing environment. Although these external optimization algorithms are optimal 
in general, they (i) require system-specific (tool-specific) solutions and (ii) cannot 
use particular OCL-specific algorithms. For example, the executing environment that 
executes the validation code cannot recognize automatically that attributes are always 
common subexpressions. In contrast, the presented optimizing OCL compiler can 
use OCL-specific, but implementation- independent optimization algorithms. These 



An optimizing OCL Compiler for Metamodeling and Model Transformation Environments 71 

algorithms can be based on the characteristics of the OCL, which means a higher level 
of optimization. Furthermore optimizing compilers can also take the advantages of the 
underlying tools. We have accompUshed several simplified performance tests, and we 
have found that the optimization can speed up the validation by 10-15% according to 
the circumstances. Since only basic tests were applied, further testing is required to 
give a detailed overview about the efficiency of the algorithms against the optimization 
supported by the external tools. 

Although three efficient optimization algorithms have been presented, processing 
the OCL constraints is not optimal. The decomposition and the normalization of the 
atomic expressions have reduced the navigation steps to the minimum, and the caching 
algorithm has reduced the number of queries, but further research is required to extend 
the scope of the optimization algorithms and accelerate the process. The validation 
process can be optimized by rewriting the constraint and avoiding time consuming 
expressions, such as Alllnstances. 

6 Acknowledgements 

The found of "Mobile Innovation Centre" has supported, in part, the activities described 
in this paper. 

References 

L Jos Warmer, Anneke Kleppe, Object Constraint Language, The: Getting Your Models Ready 
for MDA, Second Edition, Addison Wesley, 2003 

2. UML 2.0 Specification homepage, http://www.omg.org/uml/ 
3. Laszlo Lengyel, Tlhamer Levendovszky, Hassan Charaf, Compiling and Validating OCL 

Constraints in Metamodeling Environments and Visual Model Compilers, lASTED 2004, 
Innsbruck 

4. MOP QVT Specification, http;//www.omg.org/docs/ptc/05-ll-01.pdf 
5. VMTS Web Site, http://avalon.aut.bme,hu/~tihamer/research/vmts 
6. G. Mezei, L. Lengyel, T. Levendovszky, H. Charaf, Minimizing the Traversing Steps in 

the Code Generated by OCL 2.0 Compilers, Issue 4, Volume 3, February 2006, ISSN 
1109-0832, pp. 818-824. 

7. Object Constraint Language Environment, http://lci.cs.ubbcluj.ro/ocle/ 
8. All Hamie, John Howse, Stuart Kent, Interpreting the Object Constraint Language, Proceedings 

5th Asia Pacific Software Engineering Conference (APSEC '98), December 2-4, 1998, 
Taipei, Taiwan, 1998 

9. Dresden OCL Toolkit, http://dresden-ocl.sourceforge.nef'index.html 
10. SableCC, http://sablecc.org/ 
11. David Akehurst, Peter Linington, and Octavian Patrascoiu, OCL 2.0: Implementing the 

Standard, Technical report. Computer Laboratory, University of Kent, November 2003. 
12. Open Source Library for OCL,http://oslo-project.berlios.de/ 
13. Gergely Mezei, Tihamer Levendovszky, Hassan Charaf, Implementing an OCL 2.0 Compiler 

for MetamodeUng Environments, 4th Slovakian-Hungarian Joint Symposium on Applied 
Machine Intelligence 

14. Thuan, T.,Hoang, L.: .NET Framework Essential", O'Reilly,2003. 
15. Alfred V. Aho, Ravi Sethi, Jeffrey D. UUman, Compilers Principles, Techniques, and Tools, 

Addison - Wesley, 1988 




