
An Analysis of Use Case Based Testing Approaches 
Based on a Defect Taxonomy 

Timea Illes', Barbara Paech' 

' University of Heidelberg, Institute of Computer Science 
Im Neuenheimer Feld 326 

Germany-69120 Heidelberg 
{illes, paech} @informatik.uni-heidelberg.de 

Abstract: Use cases are a well-established means for requirements elicitation 
and specification. Recently, several approaches have argued to take use cases 
also directly as the basis for testing. In this paper we analyze use case based 
testing approaches on the basis of a defect taxonomy. For this purpose, we pro­
pose a taxonomy classifying typical defects which need to be uncovered during 
system testing. Then, we survey current approaches to derive test cases from 
use cases and discuss their ability to reveal these defects. 

1 Introduction 

Since their original introduction in [15], use cases (UC) have gained an increasing 
popularity. They are a well-established means for requirements elicitation and specifi­
cation, modeling the behavior of a system from the user's point of view. 

Recently, several approaches have been proposed which take UCs as input for test 
case development. The need to employ documented requirements as a basis for testing 
has already been recognized in the year 1979 [19]. A more recent survey insists on the 
necessity of using UCs as a basis for system testing [28]. UC based testing claims to 
offer a lot of advantages. One of these advantages is that UCs are widely used as in­
herent part of most object oriented analysis and design methodologies. Furthermore, 
the use of UCs as a basis for both, for software development as well as for testing, 
provides a uniform notation and a high reusability of requirements engineering arti­
facts. Additionally, the integration of testing activities into early development stages 
is alleviated. Finally, the development of test cases in parallel to UCs enables an early 
validation of the requirements. 

But how well can these approaches support system testing? In order to answer this 
question, this paper examines which typical defects can be revealed during system 
testing and discusses the ability of current approaches to reveal the identified defect 
classes. The contribution of this paper is three-fold. First, we propose a defect classi­
fication for system level tests. Then, we evaluate current approaches for UC based 
testing with respect to their ability to reveal these defect classes. Finally, we add a 
testing perspective to requirements engineering (RE). The defect classes show how 
testers think about requirements and systems and what kind of information they need. 

Please use the foUowing format M'hen citing this chapter: 

Hies, T., Paech, B., 2006, in IFIP International Federation for Information Processing, Volume 227, Sottware Engineering 
Techniques: Design for Quahty, ed K. Sacha, (Boston: Springer), pp. 211-222. 



212 Timea Illes, Barbara Paech 

Related work. In [12] four approaches addressing the derivation of test cases from 
requirements are compared. Only two of them are based on UCs. Furthermore, the 
comparison is very superficially based on criteria such as the use of standards or the 
availability of a tool supporting the approach. In [2] an overview of the approaches to 
test case generation during RE is given. In contrast to this paper, the authors do not 
focus on UC based testing techniques and consequently they do not consider all ap­
proaches discussed in this paper. Additionally the comparison of the approaches is ad-
hoc without a systematic definition of criteria. 

Overview. The remainder of this paper is organized as follows. Section 2 starts 
with a brief introduction to the basic concepts of UC based testing. Section 3 intro­
duces the defect taxonomy. Section 4 gives an overview of current approaches for UC 
based test case derivation and discusses how well they addi'ess the defect classes pro­
posed in Section 3. Section 5 concludes the paper. 

2 UC Based Testing - The Overall Approach 

This section introduces some basic concepts. We explain the notions of UCs, of sys­
tem testing and UC based testing. Additionally, we give an overview on UC based 
testing approaches considered in this paper. 

2.1 Terminology 

In the context of this paper we defme UCs, based on the definition proposed in [22] as 
follows: A UC is a sequence of steps executed cooperatively by the system (system 
steps) and outside actors (actor steps) in order to yield an observable result to the ac-
tor(s), including alternatives and exceptions. Consequently, UC descriptions typically 
contain information on tasks or goals (Which tasks/goals of the actor(s) should be ful­
filled by the UC?j, actors (Who initiates/participates in the UC?), preconditions and 
postconditions (Which conditions have to be fulfilled before respectively after the UC 
execution?) as well as actor steps (actions to be performed by the actors, including 
input data) and system steps (actions to be performed by the system, including output 
data). Optionally, information on rules (describing complex functional or causal inter­
relations) as well as on quality requirements (e.g. usabihty or performance) can be 
added to the UC description. 

According to the definition proposed in [13], system testing is concerned with the 
process of testing an integrated system in order to verify that it meets the specified re­
quirements. For this purpose a finite set of test cases has to be developed, in order to 
execute the system under test (SUT) with different inputs. A test case contains a set of 
input values, execution preconditions, expected results and execution post conditions. 

UC based testing is an approach to system testing, where test cases are defined and 
selected on the basis of the requirements specified in terms of UCs. Therein, UCs play 
different roles: 

During testing, actual behaviour is compared with the expected behaviour in order 
to decide, whether a test was passed or not. The source to determine the expected be­
haviour of the SUT is called test oracle. Consequently, the UC specification serves as 



An Analysis of Use Case Based Testing Approaches Based on a Defect Taxonomy 213 

test oracle in UC based testing, i.e. the UC specification is the source to define the 
expected output and post conditions as a result of the input and preconditions defined 
in a certain test case. If the actual behaviour corresponds to the expected behaviour, 
the SUT meets the specified UC. Since complete testing is impossible, a finite set of 
test cases has to be selected according to some coverage criteria indicating which 
parts of the SUT should be executed. Coverage criteria are determined according to a 
coverage item. In the case of UC based testing, UCs serve as coverage items. A weak 
coverage criterion is e.g. UC coverage, which requires at least one test case per UC. A 
stronger coverage criterion is e.g. path coverage which requires at least one test case 
per UC path. 

2.2 Considered Approaches 

Table 1 gives an overview on the approaches and the particular models into which 
UCs are transformed. 

Table 1. Overview of the approaches and corresponding models 

Approach (ID, Name) Model Transformation 
A Path Analysis [1] UC, no transfoiTnation 
B Testing with UCs [24] State charts, Activity Diagrams 
C Extended UCs [4] Tabular representation 
D Requirements by Contracts [21] UC transition system (nodes; system 

states, transitions: instantiated UCs) 
E TOTEM [6] Activity Diagrams, Sequence Charts, regu­

lar expressions 
F SCENT [25] Annotated state charts, dependency charts 
G Simulation and Test Model [29] Extended interaction overview charts, state 

charts 
H Purpose Driven Testing [3] Goal Graphs (different abstraction level) 
I ASM based Testing [11] Abstract state machines 

For our analysis we selected approaches according to the following criteria: 

(a) The approaches are based on UC descriptions or UC diagrams 
(b) For each of the following approach classes we selected representative approaches. 

Model exploration approaches exploit the information contained in UCs as is. 
Most approaches of this class are white papers. We selected the Path Analysis ap­
proach (A in Table 1) because it was the only approach of this class mentioning the 
GUI. 

Model extension/transformation approaches extend the information contained in 
UCs by test related information. Additionally, an infonnal or structured UC model is 
transformed into a semi-formal, mostly graphical model. When appropriate, the re­
sulting model is retransformed into a new model. On the basis of the resulting model, 
test cases are (semi-) automatically derived. For this purpose the models are traversed 
according to some coverage criteria, where a path usually corresponds to a test case. 
The approaches B-H in Table 1 belong to this class. We selected the approaches so 



214 Timea Illes, Barbara Paech 

that all target models (e.g. state charts or a proprietaiy model) are represented. Addi­
tionally we included the approach B in Table 1 as it addresses inter-software defects. 

Model formalization approaches take an informal or structured UC model as in­
put and transform this into a foniial model. On the basis of this model, test cases can 
be automatically generated according to specific coverage criteria defined for that 
model. As a representative of this class we selected the ASM Based Testing approach 
(I in Table 1). 

3 Defect Taxonomy 

We now identify typical defect classes which need to be uncovered during system 
testing. We based our defect classification on taxonomies proposed in [5, 16]. In con­
trast to these defect taxonomies, which address defect classes at different phases of 
the development life cycle, e.g. defects in the requirements specification document, 
we restricted our taxonomy to defects which can be detected during system testing. 
Additionally, we refmed the resulting taxonomy by analyzing further defect classifi­
cations like those proposed in [17, 18, 27] with respect to their applicability for sys­
tem testing. In contrast to our taxonomy, these classifications have a particular focus 
on e.g. defects in e-commerce applications [27] or taxonomies for security issues [17] 
and [18]. Finally, we validated OIK taxonomy by investigating, to what extend defects 
captured in bug reports for open source software can be classified according to our 
taxonomy. For this purpose we investigated several bug reports stored in the bug 
tracking system of the mozilla.org [7] database. The defects recorded in this database 
refer to software such as the web browser Firefox [10], the Email Client Thunderbird 
[26] and other mozilla.org projects [20]. Due to the comprehensiveness of the data­
base, we only considered "blocker", "critical" and "major" defects. Additionally we 
investigated defect lists of two open source CRM (Customer Relationship Manage­
ment) projects [9, 23]. The result is a list of defect classes for system testing. Each de­
fect class can be refined by subclasses. The defect classes are not orthogonal, i.e. a de­
fect can be categorized into more than one defect class. Additionally, a defect can also 
be associated to a combination of defect classes. In the following, we present a short 
definition and corresponding examples of typical subclasses for each defect class. 

Completeness defects subsume all defects related to an incomplete implementa­
tion of the specified functionality. Typical defects in this class are missing functional­
ity defects (the implementation of a specified or desired requirement is missing) and 
undesired functionality (additional, undesired functionality has been implemented). 
There are two typical defects which can occur in the presence of additional, undesired 
functionality: prevention defects (if additional fimctionality prevents the execution of 
the desired functionality) and overlapping defects (if additional fimctionality and de­
sired fimctionality overlap). 

Input/Output defects subsume all defects related to wrong input respectively to 
wrong output data of the SUT. Typical input/output defects include boundary defects 
(e.g. date < 21.02.2006 instead of date < 13.02.2006), defects concerning wrong size, 
shape or format of the data or combination defects (i.e. defects which occur, when 
certain input values respectively output values are combined). 



An Analysis of Use Case Based Testing Approaches Based on a Defect Taxonomy 215 

Calculation defects subsume all defects resulting from wrong formula or algo­
rithms in the SUT (e.g. defect in the search algorithm: The system looks for product 
descriptions, containing all of the key words entered by the customer, instead of find­
ing also products containing at least one of the entered keywords). 

Data handling defects subsume all defects related to the lifecycle and the order of 
operations performed on data. Typical data handling defects include duplicated data 
(e.g. system fails when creating duplicated data) or dataflow defects (defects related 
to the sequence of accessing a data object (e.g. data update before the data has been 
created). 

Control flow and sequencing defects subsume all defects related to the control 
flow or the order and extent to which processing is done, as distinct from what is done 
[5]. Typical control flow defects concern wrong sequencing of the actions perfonned 
or iteration and loop defects, which subsume all defects related to the control flow of 
iterations and loops. 

Concurrency defects subsume all defects related to the concurrent execution of 
parts or of multiple instances of the SUT. Typical defects contained in this class in­
clude priority defects and race condition defects. Priority defects are related to the as­
signment of a wrong priority (too high, too low, priority selected not allowed), e.g. a 
phone call on a mobile phone does not pre-empt the execution of an arbitrary function 
when a phone call has been received). Race condition defects are related to the com­
petition of processes for a limited resource, e.g. for time, or for shared data. 

GUI defects subsume all defects related to the user interface, which are not usabil­
ity defects. Typical defects of this class are display defects (defects related to the dis­
play and highlighting of the information on the screen, e.g. failure to clear or update 
part of the screen or failure to clear highlighting) and navigation defects (e.g. missing 
or disabled menu entries). 

NFR (non-functional requirement) defects subsume all defects related to the 
quality of the SUT. According to [14], defects concerning functionality, reliability, 
usability, efficiency, maintainability and portability belong to this category. 

Inter-Software defects subsume all defects concerning the interface of the SUT to 
other software systems. Typical defects of this class are input/output defects (if there 
is a syntactic or semantic misimderstanding between the interacting software sys­
tems), concurrency defects (e.g. if the SUT and a COTS component compete for the 
same data) or completeness defects (e.g. if functionality of the third party software is 
missing). 

Hardware defects subsume all defects concerning the interface of the SUT to the 
hardware. Typical defects of this class are input/output defects (e.g. incorrect inter­
pretation of returned status data). 

4 Evaluation of the Approaches 

UCs are intuitive, informal and thus easily readable for different stakeholders. Conse­
quently, UCs are well suited in the context of requirements elicitation and specifica­
tion. However, when UCs are used as a basis for test case derivation the perspective 
changes. In this case, the stakeholders of the UC specification are testers, who aim to 



216 Timea Illes, Barbara Paech 

find defects in the SUT. The aim of this paper is not the evaluation of the UC con­
cepts itself, but the efficiency of UC based testing techniques. 

Based on the defect taxonomy introduced in Section 3, we now discuss the defect 
classes with respect to their ability to be revealed by UC derived test cases. Addition­
ally, for each defect class typical solutions are presented. Table 3 summarizes the re­
sult of our analysis. A „+" indicates that the corresponding defect class is well ad­
dressed by an approach, a "(+)" indicates that the coiresponding defect class is 
partially considered (e.g. parts of the possible defects in the defect class are ad­
dressed). A "-" indicates that the approach does not consider the coaesponding defect 
class at all. 

In order to assiire comparability of the approaches, we assume a correct UC speci­
fication and evaluate the efficiency of the techniques with respect to a given correct 
specification. All techniques assume a correct requirements specification because the 
test case set derived is as good as the UCs tliemselves. Some approaches give guid­
ance for the specification and validation of use cases. But this aspect is not part of our 
evaluation. Furthermore, to assure an efficient evaluation, we focus on defects which 
can be associated with a single defect class and do not consider defects which result 
by all possible combinations of different defect classes. 

4.2 Completeness Defects 

In general missing UC implementation is revealed easily on the basis of a UC specifi­
cation. Most approaches will uncover a missing UC knplementation, since they iterate 
over all UCs and perform some analysis per UC, e.g. determine all paths within a UC 
or develop a new model e.g. a state chart representation/?er UC. Consequently, there 
is at least one test case per UC which would detect the missing implementation of a 
UC. Whether missing parts of an UC can be uncovered, depends on which coverage 
criteria the corresponding approach defines, e.g. path coverage will easily uncover a 
missing case within a UC. Coverage criteria will be discussed along with control flow 
and sequencing defects. As the approaches [21] and [3] focus on the interaction be­
tween UCs, they are not well suited to uncover missing parts within a UC. 

4.3 Input / Output Defects, Calculation and Data Handling Defects 

The detection of input/output defects, calculation defects as well as data handhng de­
fects depends on the accuracy with which the respective details have been docu­
mented. Due to the fact that UCs are typically phrased in natural language, they are 
imprecise. Therefore, test cases derived fi^om UCs will hardly reveal input/output de­
fects, calculation defects as well as data handling defects. 

Input/Output Defects. In [4] the concept of extended UCs is introduced. Extended 
UCs express the relationship between system state (precondition of aUC), a combina­
tion of inputs and the expected results in terms of a decision table. For each combina­
tion of mputs and system state which results in distinct classes of SUT behaviour a 
new relation in terms of a new row in the decision table is defined. Then, test cases 
are derived using combinatorial strategies. Following this approach, input/output de-



An Analysis of Use Case Based Testing Approaches Based on a Defect Taxonomy 217 

fects can easily be uncovered. A light weight approach is the annotation of UCs or the 
models derived on the basis of UCs with test related data including input values or 
possible ranges for the input or output data. This is the case in [25] and [3]. 

Calculation Defects. Calculation defects are not addressed by any particular ap­
proach especially. However, the approach proposed in [4] is suited best for this pur­
pose. The tabular representation, relating a combination of inputs and system states to 
outputs can easily be adapted to the creation of test cases, which test e.g. a formula 
specified within a UC with different input combinations. 

Data Handling Defects. In [6] the life cycle of a „business object" and related de­
fects are addressed by representing the life-cycle of these objects in terms of activity 
diagrams, which relate UCs to each other. The UCs are grouped into swimlanes, 
where each swimlane represents the life cycle of a business object from its creation 
until its deletion. UCs grouped into the same swimlane manipulate (read, write) the 
corresponding object. Valid sequences of UCs are generated by traversing the activity 
diagram. A path in the activity diagram represents a test case, and thus a possible life-
cycle of a business object. In [21] pre and post conditions of a UC are expressed in 
terms of contracts on the inputs respectively on outputs of a UC e.g. an item has to be 
created so that the UC delete item can be executed. Thus, sequences in the life cycle 
of business objects can be created by concatenating UCs so that the post condition of 
one UC represents the precondition of the next UC. However, both approaches con­
sider only valid paths. Negative test cases, e.g. which test unwanted behaviour are not 
created. 

4.4 Control Flow and Sequencing Defects 

Sequences of interaction between user and system as well as alternatives and excep­
tions within a UC can easily be expressed. Hence, control flow as well as sequencing 
defects in the implementation of that particular UC can easily be detected. But since 
UCs comprise self-contained coherent units of functionality, they are not suited to ex­
press the interplay between distinct UCs. Consequently, test cases which verify the 
correct implementation of the interaction between UCs are hard to be derived from 
UC specifications. 

Some approaches [1] and [8] require structural coverage of UCs by test cases, e.g. 
path coverage. Thus, each path in a UC is executed by at least one test case. Conse­
quently, these approaches will likely reveal control flow defects within the implemen­
tation of a UC. In [1] all paths of a UC are required to be uncovered by a test case. In 
[8] test cases are derived which exercise all combinations of executing and non-
executing an « e x t e n d s » relationship. Most approaches transform the UC model 
into another, more formal model e.g. a state chart or a sequence diagram representa­
tion and require coverage of the new model. This is the case in [24, 6, 25, 29 and 11]. 
Usually the models are then traversed according to coverage criteria of the new 
model. As the transformation into a new model is not automatic, there is a risk not to 
consider all infomiation defined in a UC, and thus, not to detect all defects which 
would be detected based on the original UC specification. 

Control flow defects in the implementation of the interaction between UCs are es­
pecially addressed in [3, 6, 21, 24, 25 and 29]. In [3] the interaction between UCs re-



218 Timea Illes, Barbara Paech 

alizing a user goal is addressed. In [6] valid sequences of UCs are expressed in terms 
of activity diagrams. Test cases are derived by traversing all valid sequences. In [21] 
contracts on the execution of a UC are defined by expressing pre and post conditions 
of a UC. On the basis of these contracts, a transition model of valid UC sequences can 
be defined by concatenating post conditions of a UC with the precondition of another 
UC. Test cases are generated firom the transition model according to given coverage 
criteria. In [24] state models derived from single UCs are merged by "composition". 
Test cases are then derived by covering all valid state combinations in the "com­
posed" state model. In [25] the interaction between UCs is expressed in a new dia­
gram type, the so called "dependency chart". Dependency charts can express depend­
encies between scenarios, e.g. sequential dependencies, alternatives or iterations. The 
authors use the term "scenario" equivalent to the term "use case". Test cases are de­
rived fi-om dependency charts mainly by trying to break the constraints defined. The 
authors give advice on how to break these constraints. In [29] sequential dependencies 
between UCs are identified and represented in terms of an UML interaction overview 
diagram. This diagram is then transformed into a state chart model which is traversed 
in order to derive test cases for each path in the state chart. No approach, except the 
one introduced in [25], considers invalid paths and the systematic derivation of test 
cases for trying to execute invahd paths. 

Table 2 summarizes the evaluation of the approaches according to their efficiency 
to detect control flow defects within the implementation of a UC and respectively in 
the implementation of the interaction between UCs. Approaches which consider both 
defect subclasses are highlighted in light grey. 

Table 2. UC based testing approaches and control flow defects 

Control flow defects within 
the implementation of a UC 
Control flow defects in the 
implementation of the inter­
action between UCs 

1 
1 

+ 

H f7 

if 
-

+ 

2 
o 
p 
•a 
1 
1 

= 

-
1 

i 

1 
f-' So 

2 » 

+ 

•a 

CD ::? 

%^ 
<;.s 

+ 

a s} 
s ^ 
o '. 

1 

- 1 
1 

•' 1 

5 l i s 
J 
! 

1 

i ; 
• 

4.5 Concurrency Defects 

Expressing constraints on the parallel execution is not supported by UCs. Thus, UC 
derived test cases will hardly uncover concurrency defects. 

Concurrency defects are addressed in [29] by defining dependencies between UCs 
and documenting these dependencies in terms of UML interaction overview diagrams. 
The dependencies concerning constraints on the parallel execution cover: parallel 
execution (when two or more UCs can be executed in parallel), pre­
emption/suspension (when one UC pre-empts the execution of another UC having a 
higher priority), exclusion (when a UC can not be executed during the execution of 



An Analysis of Use Case Based Testing Approaches Based on a Defect Taxonomy 219 

another UC) and multi-instantiation (when multiple instances of a UC may be exe­
cuted at once). Exclusion and suspension are not part of UML 2.0 interaction over­
view diagrams. Thus, two additional stereotypes have been added to denote the corre­
sponding relationships. The approach also contains a methodology to transfomi these 
diagrams into state machines which are traversed and covered in order to obtain test 
cases. Concurrency is also addressed in [25]. Dependency charts can express con­
straints on the parallel execution of scenarios. Thus, enforced, prohibited as well as an 
accidental parallelism can be expressed in terms of relationships between scenarios. 
Furthermore, constraints on the starting time (scenarios have to start/end at the same 
time or scenarios have to start one after the other with a given time interval between 
them) as well as data/resource dependencies can be included. Test cases for each 
identified dependency have to be developed. The authors propose to focus on "un­
wanted" behaviour by defining test cases which try to break dependency constraints. 
In [24] the necessity of modelling parallelism is stated, but how this should be ex­
pressed and how corresponding test cases should be derived is not explained. In [6] it 
is possible to express that the executions of two UCs are independent of each other. 
But, there is no advice on how to derive test cases which address parallelism. 

4.6 GUI &NFR Defects 

UCs specify the functional requirements for a system, i.e. they indicate "what" should 
be realized by the system, in contrast to non-&nctional requirements, which describe 
"how well" a requirement should be realized. The latter can not be expressed well in 
terms of UCs. Furthermore, UCs abstract fi:om a specific user interface, they specify 
e.g. that an actor initiates a particular function, but they do not define whether this ac­
tion occurs by clicking on a hyperlink of a web interface or by selecting a menu item 
from a windows-based system. Consequently, UCs are not well suited to derive test 
cases for this class. 

GUI defects are considered solely in [1] and [25]. In these approaches, GUI-related 
information can be annotated to test cases [1] or to intemiediate models derived from 
UCs [25]. The authors do not illustrate how this information can be systematically 
used to develop (flirther) test cases. 

Non-functional defects, especially performance defects are addressed in [25] only. 
According to this, the semi-formal models developed on the basis of scenarios are an­
notated with non-fimctional requirements. When test cases are derived by covering 
the state chart, these requirements have to be considered. 

4.7 Inter Software Defects 

UCs abstract from the internal realization of the functionality, more precisely they de­
scribe the functionality without specifying, whether it will be realized by the SUT or 
by a third party component. Accordingly, the defects detected by UC derived test 
cases are mostly independent of the realizing (sub)system. A missing case within the 
implementation of a UC will e.g. be detected by a test case derived from this UC, in-



220 Timea Illes, Barbara Paech 

dependent of the realizing (sub)system. There are, however particular cases, which 
have to be considered. 

The first case concerns undesired functionality of a third party system. In the case 
of COTS-software, which is intended to be used in different contexts, the functional­
ity provided is often much more comprehensive than the functionality needed in the 
context of the SUT. Consequently, prevention defects (e.g. settings in a web browser 
prevent the execution of parts of a web based application written in JavaScript) as 
well as overlapping defects (e.g. when the "back" functionality in a web browser and 
the "back" functionality in the web application interleave) are very likely to occur. 
The second particular case concerns known defects in third party software. These de­
fects represent a special kind of control flow defects, namely exception handling de­
fects, where the SUT has to deal with exceptions of third party software. 

As the architectural decisions, as well as decisions concerning which components 
will be developed and which will be bought, occur at a later development stage as the 
development of the UCs, the information on additional functionality is not contained 
in UCs. Therefore, UC derived test cases will hardly uncover the defects mentioned 
before. 

Inter software defects are addressed in [24] and in [25] in the requirements specifi­
cation phase, where guidance is given on how to identify the interface of the SUT. 
According to this, all hardware interfaces as well as software interfaces to the SUT 
are identified. These interfaces are considered (and covered) duiing the system test. In 
[29] concurrency defects mainly in the context of distributed components of a soft­
ware system are addressed. Nevertheless, none of these approaches deals with over­
lapping functionality or with known defects in the third party software. 

Table 3. UC based testing approaches and addressed defect classes 

Completeness 
Input / Output 
Calculation 
Data Handling 
Control flow/ Sequencing 
Concurrency 
GUI 
NFR 
Inter Software 
Hardware 

f 
1 
+ 

-
-
-
f+) 

(+) 

-
-

M 

.g 
H 
a 
o 

Q 
w 
O 

(+) 
(+) 

-
f+) 

-

-
-

2 

S 

+ 
+ 

(+) 
-
-

-

-
-

+ 

. 
-
(+) 
+ 

-

-
-

W 
O 
P 
•a 
'% 

en 

I d 

1/5 

+ 

-
-
-
(+) 

-

-
-

a 
•a 

CO 

H 
•T3 
U 
CO 

cd 

pa 
S 
< + 

-
-
-
f+) 

-

-
-

1 
g 
o 1 i 
i 
1 
oi (+) 
-
-
(+) 
(+) 

-

-
-

5^ 

s 
1 
1 
+ 

-
-
-
+ 

-
-
-
(+) 
(+) 

+ 

(+) 

-
+ 
+ 

f+) 
f+) 
(+) 
(+) 

5^ 
Ci 

1 
o 

:s 
to 
(U 
H •g a o 

1 
en 
+ 

-
-
-
+ 
+ 

-
-
(+) 
-



An Analysis of Use Case Based Testing Approaches Based on a Defect Taxonomy 221 

4.8 Hardware Defects 

UCs not only abstract from the realization, but also from the underlying hardware and 
external devices. Indeed, most defects at the interface of the SUT occur in the hard­
ware. But as stated in [16], a software defect will also occur, if the software system 
does not recognise and treat a defect in the hardware. Hence, test cases have to be de-
fmed, which address defects in the software concerning the exception handling of 
hardware defects. Since UCs do not contain information on hardware, UC derived test 
cases are not well suited to reveal this type of defects. 

Similar to software defects, hardware defects are addressed in [24] in the require­
ments specification phase. Hardware interfaces to the SUT are identified and docu­
mented. These interfaces can be considered during system testing. In [25] dependency 
charts, an annotation can be associated to a causal dependency concerning constraints 
on hardware, e.g. a printer has to be connected before a particular scenario can be 
executed (e.g. printing a document). 

5 Conclusion and Future Work 

In this paper we identified defect classes and discussed their ability to be uncovered 
by UC based testing approaches. Control flow and completeness defects are addressed 
by almost all approaches. No approach proposes a methodology to enrich UCs with 
GUI and NFR related information and to systematically derive test cases for testing 
the GUI and non-fonctional requirements. SCENT [25] is the most comprehensive 
approach, addressing more defect classes than all other approaches which have been 
analysed. It is a lightweight approach for UC based testing which addresses most of 
the defect classes by annotating UC derived models with test related information. In 
order to define a middleweight and more thorough approach for UC based testing, 
some issues concerning the integration of the GUI and of NFRs must be considered. 
Our future work will address the definition of an integrated model for RE and test de­
velopment which allows the detection of NFR and GUI defects. Furthermore, we aim 
at designing a thorough evaluation of the approaches according to a strong bench­
mark. 

References 

1. Ahlowalia, N.: Testing from Use Cases Using Path Analysis Technique, International Con­
ference On Software Testing Analysis & Review, (2002) 

2. Allmann, C , Denger, C , Olsson, T.: Analysis of Requirements-based Test Case Creation 
Techniques, lESE-Report No. 046.05/E, (2005), http://www.iese.fraunhofer.de/pdf_files/ 
iese-046_05 .pdf, last visited July 2006 

3. Alspaugh, T.A., Richardson, D.J., and Standish, T.A.; Scenarios, State Machines and Pur­
pose Driven Testing, 4th International Workshop on Scenarios and State Machines: Mod­
els, Algorithms and Tools (SCESM'05), St. Louis, USA, (2005) 

3. Binder, R.: Testing Object-Oriented systems, Addison-Wesley, (2000) 



222 Timea Illes, Barbara Paech 

4. Beizer, B.: Bug Taxonomy and Statistics, Appendix, Software Testing Techniques, Second 
Edition, Van Nostrand Reinhold, New York, (1990) 

5. Briand, L., and Labiche, Y.: A UML-based Approach to System Testing, Technical Report, 
Carleton University, (2002) 

6. Bugzilla, https://bugzilla.mDzilla.org/, last visited July 2006. 
7. Camiello, A., Jino, M., and Lordello, M.: Structural Testing with Use Cases, WER04 -

Workshop em Engenharia de Requisitos, Tandil, Argentina, (2004) 
8. Compiere, http://www.compiere.org/, last visited July 2006 
9. Firefox, http://www.firefox.com/, last visited July 2006 
10. Grieskamp, W., Lepper, M., Schulte, W., Tillmann. N.: Testable Use Cases in the Abstract 

State Machine Language, Second Asia-Pacific Conference on Quality Software 
(APAQS'Ol), (2001) 

11. Gutierrez, J.J., Escalona, M.J., Mejias, M., Torres, J., Alvarez, J.A.: Comparative Analysis 
of Methodological Proposes to Systematic Generation of System Test Cases from System 
Requirements, Proceedings of the 3rd Intemational Workshop on System Testing and Vali­
dation, (SV'2004), ISBN: 3-8167-6677, Paris, France, (2004), pp. 151-160 

12. Intemational Software Testing Qualifications Board, ISTQB Standard Glossary of Terms 
used in Software Testing VI. 1, (2005) 

13. International Standard ISO/IEC 9126, Information technology - Software Product Evalua­
tion - Quality Characteristics and Guidelines for Their Use, Intemational Organization for 
Standardization, Intemational Electrotechnical Commission, Geneva, (1991) 

14. Jacobson, I., Christerson, M., Jonsson, P., and Oevergaard, G.: Object-Oriented Software 
Engineering: A Use Case Driven Approach, Addison Wesley, (1992) 

IS.Kaner, C , Falk, J., and Nguyen, H. Q.: Testing Computer Software, 2nd Ed., Wiley, New 
York, (1999) 

16. Krsul, I : Software Vulnerability Analysis, Department of Computer Sciences, Purdue Uni­
versity, Ph.D. Thesis, COAST TR 98-09; (1998) 

17. Lough M.L.: A Taxonomy of Computer Attacks with Applications to Wireless, PhD Thesis, 
Virginia Polytechnic Institute, (2001) 

18. Meyers, G.J., The Art of Software Testing, John Wiley & Sons, New York, (1979) 
19. Mozilla.org, http://www.mozilla.org/, last visited July 2006 
20.Nebut, C , Fleurey, F., Le Traon, Y., and Jezequel, J.-M.: Requirements by conti-acts allow 

automated system testing, Proc. of the 14th. IEEE Intemational Symposium on Software 
Reliability Engineering (ISSRE'03), (2003) 

21. Object Management Group. UML Superstnrcture Specification, v.2.0, (2005) 
22. opentaps, http://www.opentaps.org/, last visited July 2006 
23. Rupp, C , and Queins, S.: Vom Use-Case zum Test-Case, OBIEKTspektram, vol. 4, (2003) 
24. Ryser, J., and Glinz, M.: SCENT: A Method Employing Scenarios to Systematically Derive 

Test Cases for System Test, Technical Report, University of Zurich, (2000/03) 
25. Thunderbird, http://www.mozilla.com/thunderbird/, last visited July 2006 
26. Vijayaraghavan, G.; A Taxonomy of E-Commerce Risks and Failures. (Master's Thesis) 

Department of Computer Sciences, Florida Institute of Technology, Melbourne, FL, May 
2002 

27. Weidenhaupt, K., Pohl, K., Jarke, M., and Haumer, P.: Scenaiio Usage in System Develop­
ment; A Report on Current Practice. IEEE Software, (1998) 

28. Whittle, J., Chaki-aborty, J., and Krueger, I.: Generating Simulation and Test Models from 
Scenarios, 3rd World Congress for Software Quality, (2005) 




