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Abstract In this paper, a pre-runtime scheduling approach for hard real-time embedded 
systems with multiple processors is presented considering stringent timing and 
energy constraints. This paper adopts a formal approach, based on time Petri 
nets, for synthesizing feasible schedules. 

1. INTRODUCTION 
Some embedded systems are classified as real-time systems, where the cor­

rect behavior depends not only on the integrity of the results, but also the time 
in which such results are produced. In hard real-time systems, if timing con­
straints are not met, the consequences can be disastrous, including great dam­
age of resources or even loss of human lives. Due to CPU-bound tasks, some 
hard real-time embedded systems need to rely on multiple processors in order 
to meet timing constraints. 

In addition to timing issues, many hard real-time systems have constraints 
on autonomy, since, in many cases, they need to be operated in remote ar­
eas where energy sources may be highly constrained. Therefore, such systems 
cannot exceed their respective energy (or power) constraints for executing their 
associated tasks. Mobile medical devices, for example, have both timing and 
energy constraints that need to be satisfied. Their tasks cannot miss their xt-

Please use the following format when citing this chapter: 

Tavares, E., Olivera, M., Jr., Maciel, P., Souza, B., Neto, S., Barreto, R., Freitas, R., Custodio, M., 2006, in IFIP Inter­
national Federation for Information Processing, Volume 225, From Model-Driven Design to Resource Management for 
Distributed Embedded Systems, eds. B. Kleinjoharm, Kleinjoharm L., Machado R, Pereira C, Thiagarajan PS., (Boston: 
Springer), pp. 255-264. 



256 From Model-Driven Design to Resource Management for Distributed Embedded Systems 

spective deadlines, and cannot exceed a specified energy constraint in order to 
prolong the battery charge usage. 

Taking into account such needs, this paper provides a pre-runtime approach 
based on time Petri nets [6] for synthesizing feasible schedules considering 
timing and energy constraints. In order to provide a more realistic system 
behavior, this work models explicitly the worst-case execution time of the dis­
patcher, since it may affect the tasks' deadline. The approach presented in this 
paper is a depth-first search method that generates a partial state-space com­
puted from a time Petri net model that represents the task's constraints, thus 
tackling the state-space growth inherent to such systems. 

2. RELATED WORKS 
Xu and Pamas [9] present a branch-and-bound algorithm that finds an opti­

mal pre-runtime schedule on a single processor for real-time process segments 
with release, deadline, and arbitrary exclusion and precedence relations. De­
spite the importance of their work, real-world experimental results are not pre­
sented. Abdelzaher and Shin [1] extended Xu and Pamas' work in order to deal 
with distributed real-time systems. This algorithm takes into account delays, 
precedence relations imposed by interprocess communications, and considers 
many possibilities for improving the scheduling lateness at the cost of com­
plexity. 

In [8], Swaminathan and Chakrabarty address the problem of scheduling 
tasks for minimum I/O energy consumption in hard real-time systems . The 
work adopts a pre-runtime scheduling approach and employs pruning tech­
nique based on time and energy, as well as heuristic methods in order to 
reduce the problem complexity. However, the proposed approach does not 
support inter-task relation and does not take into account multiple processors. 
AlEnawy and Aydin [2] introduce static (pre-runtime) and dynamic (runtime) 
scheduling mechanisms for dealing with energy-constrained scheduling. The 
proposed approach does not guarantee that all tasks will be executed, but only 
selected tasks with high priority. Preemption is supported, but inter-task rela­
tions are not taken into account. 

3. COMPUTATIONAL MODEL 
Computational model syntax is given by a time Petri net [6], and its se­

mantics by a timed labeled transition system. A time Petri net (TPN) is a 
bipartite directed graph represented by a tuple V= (P, T, F, W, mo, / ) . P 
(places) and T (transitions) are non-empty disjoint sets of nodes. The edges 
are represented by F C (P x T) U (T x P). VK : P ^ N represents the 
weight of the edges. A TPN marking rrii is a vector rrii G N ' ^ ' , and mo is 
the initial marking. / : T —> N x N represents the timing constraints, where 
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I{t) = [EFT[t),LFT(t)) Vt G T, EFT{t) < LFT{t), EFT{t) is the 
Earliest Firing Time, and LFT{t) is the Latest Firing Time. 

An extended time Petri net with energy and priorities is represented by Vs = 
{V, £, TT). V is the underlying time Petri net, £:: T -^ R+ U {0} is a function 
that assigns transitions to energy consumption values, and TT : T —> N is a 
priority function. 

A set of enabled transitions is denoted by: ET{rni) = {t G T | mi{pj) > 
W{pj^t)}, ^pj G P, The time elapsed, since the respective transition en­
abling, is denoted by a clock vector ci G N'^-^^"^*)!. The dynamic firing 
interval (Joify) is dynamically modified whenever the respective clock vari­
able c{t) is incremented, and t does not fire. /ip(t) is computed as follows: 
I^{t) = {DLB{t),DUB{t)), where DLB(t) = max{Q,EFT{t) - c{t)), 
DUB{t) = LFT{t) - c(t), DLB{t) is the Dynamic Lower Bound, and 
DLB{t) is the Dynamic Upper Bound. 

Let Ve be a time Petri net, C be the set of all clock vectors in Vs, and M^ 
be the set of reachable markings of P^;. The set of states 5 ofVs is given by 
5 C (M X N I ^ ^ ( ^ ) I X M), that is, a single state is defined by a triple (m, c, e), 
where m is a marking, c is its respective clock vector for ET{m), and e is the 
accumulated energy consumption up to this state. 

FT{s) is the set of fireable transitions at state 5 defined by: FT{s, Cmax) = 
{ti G ET{m) I (e < e^ax)A (7r(t̂ ) = min(7r(tfc))A {DLB{ti) < mm{DUB{tk))) 
, ytk G ET{m)}. ThQfiring domain for t at state 5, is defined by the interval: 
FDs{t) = [DLB{t),mm{DUB(tk)% Vt̂  G ET{m), 

A timed labeled transition system (TLTS) is a quadruple C= {S, E, -^, 5o), 
where 5 is a finite set of states, S is an alphabet of labels representing actions, 
-> C 5 X S X 5 is the transition relation, and 5o G 5 is the initial state. 

The semantics of a TPN V is defined by associating a TLTS £ p = (5, S, ^ , 
5o): (i) S is the set of states of 7̂ ; (ii) E C (T x N) is a set of actions labeled 
with (t, 6) corresponding to the firing of a firable transition (t) at time (6) in the 
firing interval FD{t), \/s G S; (iii) -^ C S' x S x 5 is the transition relation; 
(iv) So is the initial state of P . 

4. SPECIFICATION MODEL 
Let T be the set of tasks in a system. A periodic task is defined by r̂  = 

{phi^ Ti, Ci^ di^pi, proci), where phi is the initial phase; r̂  is the release time; 
Ci is the worst case computation time required for execution of task r ;̂ di is the 
deadline; pi is the period; and proci is the processor allocated to such task. A 
task is classified as sporadic if it can be randomly activated, but the minimum 
period between two activations is known. Pre-runtime scheduling can only 
schedule periodic tasks. However, Mok [7] has proposed a translation from 
sporadic to periodic tasks. A task Ti precedes task TJ, if TJ can only start exe-
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cuting after r̂  has finished. This work considers that communication between 
tasks allocated to the same processor is treated as a precedence relation. A task 
Ti excludes task TJ, if no execution of TJ can start while task r̂  is executing. If 
it is considered a single processor, then task r̂  could not be preempted by task 

When adopting a multiprocessing environment, all inter-processor commu­
nications have to be taken into account, since these communications affect the 
system predictability. A inter-processor communication is represented by a 
special task, namely, communication task, which is described as follows. Let 
fim G A^ be a communication task defined by fim = ('̂ z? TJ, dm, busm), where 
r̂  G T is the sending task, TJ ET is the receiving task, ctm is the worst case 
communication time, busm G ;B is the bus, where B is the set of buses, and 
proci 7̂  procj. 

5- MODELING REAL-TIME SYSTEMS 
In this work, the proposed modeling adopts a formal method for describing 

systems with timing constraints. The proposed modeling applies composition 
rules on building blocks models. For lacking of space, this section aims to 
present just an overview. For more details the reader is referred to [3]. 

5.1 TASKS MODELING 
The considered building blocks are: (i) Fork; (ii) Join; (iii) Periodic Task 

Arrival; (iv) Deadline Checking; (v) Non-preemptive Task Structure; (vi) Pre­
emptive Task Structure; (vii) Resources; and (viii) Inter-Processor Communi­
cation. The blocks are summarized as follows: a) Fork Block. Let us suppose 
that the system has n tasks. The fork block is responsible for starting all tasks 
in the system. This block models the creation of n concurrent tasks, b) Join 
Block. Usually, concurrent activities need to synchronize with each other. The 
join block execution states that all tasks in the system have concluded their 
execution in the schedule period, c) Periodic Task Arrival Block. This block 
models the periodic invocation for all task instances in the schedule period 
(Ps)' d) Deadline Checking Block. The proposed modeling method uses 
elementary net structures to capture deadline missing. The scheduling algo­
rithm (Figure 5) must eliminate states that represent undesirable situations like 
this one. e) Task Structure Block. The task structure may implement ei­
ther preemptive or non-preemptive scheduling methods. Considering a non-
preemptive method, the processor is just released after the entire computation 
to be finished. The preemptive method implies that a task are implicitly split 
into all possible subtasks, where the computation time of each subtask is ex­
actly equal to one task time unit (TTU). g) Resource Block. The resources 
modelled are processors (pproci) and buses (pbusj' An individual resource is 



From Model-Driven Design to Resource Management for Distributed Embedded Systems 259 

represented by a single place. The presence of a token in a resource place 
indicates the availability of this resource. 

Figure 1 depicts a Petri net model considering a specification composed of 
two non-preemptive tasks: TQ = (0,0,2,7,8, PI) and n = (0,2,2,6,6, PI) . 

V t ' O O VJo{7 7 tpcr(CO] 

Arr -vc t i D«acil„n« rh»=k3.r<j 

Figure 1. An example considering two tasks. 

h) Inter-processor Communication Block. In this work, all inter-processor 
communications are treated as communication tasks, and message-passing 
paradigm is adopted. Additionally, the proposed approach for inter-processor 
communication considers that: (a) after the execution of the sending task, the 
message transmission is performed; (b) the receiving task can only execute 
after receiving the complete message; (c) both the sending and receiving pro­
cessors are ready in the beginning of the communication. In other words, when 
the sender is transmitting the data, the receiver is prepared at the same moment 
for getting such data. This mechanism may be interpreted as a synchronous 
communication. Since interrupts may affect the system predictability, the pro­
posed approach considers polling rather than interrupt handling to implement 
the receive operation; (d) point-to-point communication (or unicasting); (f) 
buses are reliable; (g) before communication takes place, the bus and, both 
sending and receiving processors have to be granted; and (h) communication 
time is annotated in the respective communication transition. 

Figure 2 depicts the inter-processor communication building block, tg}).. 
represents the granting of the sending processor, the receiving processor and 
the bus. tsendij represents both the message sending and receiving. It is anno­
tated with timing constraint specification, in this case, ctm (worst-case com­
munication time) of the respective communication task fim ^ M. After the 
communication, both processors and the bus are released (tcommij)- Pwgbij 
represents the waiting for bus and processors granting, p^sij indicates that the 
processors are ready to communicate. Pcomaj indicates that the communica­
tion was concluded. Lastly, Prbufij represents the receiving buffer. 
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|tgb^{0.0] tsend^fcm,, cm^ 

i 'PbuSk^ 

6>{H5)-[>eHhe^$>H3 
Figure 2. Building block. Figure 3. Modeling example. 

Figure 3 applies the building block inter-processor communication for mod­
eling the sending and receiving tasks r̂  and TJ, respectively. It is worth observ­
ing that task TJ has a refined place in order to consume the buffered message. 
More specifically, the place p^^g. is substituted for the sequence {jprecij» Ueaj ̂  
Pwgj)' 

5.2 DISPATCHER OVERHEAD MODELING 
The dispatcher overhead is captured in the grant-processor transition. When 

the task is non-preemptive, the timing interval of the grant-processor transition 
corresponds to the worst case execution time of the dispatcher. Since this is 
a simple solution, in the following presentation, the dispatcher overhead only 
considers preemptive tasks. When the task is preemptive, the model is slightly 
more complex. In this case, the proposed modeling adopts the TPN with pri­
orities. 

The proposed model considers two grant-processor transitions: grant-
processor-with-overhead (tguj.) and grant-processor-without-overhead {tgwoi)^ 
As it can be seen in Figure 4, the timing interval ([a, ô ]) for transition tgyj. 
models such timing overhead. Place PprockTi states that task r̂  was the last 
executed task by the processor prock. The dispatcher overhead is considered 
in two situations: (1) when the next task to use the processor is different from 
the task that used the processor before; or (2) when a task instance ends its 
execution. The first situation is represented by the place PprockTi^ where if 
such place is marked, it implies that the processor was lastly allocated to task 
Ti. However, the second situation needs an explanation. Supposing that a task 
instance i of task TJ ends its execution, and the following task to be executed 
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is the task instance z + 1 of the same task TJ. In this case, although the two 
instances are from the same task, the dispatcher caUing is mandatory. As pre­
sented below, for solving this problem the model consider two final transitions, 
one that removes the marking in place PprockTi and the other that does not. 

In spite of this block may seem complicated, it is worth noting that this 
modeling is performed automatically by a tool. For more details, the interested 
reader is referred to [3]. 

PprocicJni, PprtJCKTi 

Pwti Vj Pwgj 

Figure 4- Building block dispatcher overhead. 

6. ENERGY CONSUMPTION 
Considering the Petri net task model, system energy consumption is associ­

ated with transitions representing dispatcher overhead (tgw), task computation 
(tc), and message transmission {tsend)- Taking into account preemptive tasks, 
the energy consumption value of each computation time unit is equal to Ei/ci, 
where Q is the worst-case computation time (WCET) and Ei is the worst-case 
energy consumption of a task r .̂ Additionally, it is worth stating that the en­
ergy consumption value associated with tsend represents the sum of energy 
consumption values for sending and receiving the respective message. 

The energy consumption for the dispatcher, the execution of tasks, and each 
message exchange must be known beforehand. In this work, the values were 
measured through a real prototype. The sum of energy dissipated in dispatcher, 
fired computation, and message transmission transitions results the total energy 
consumed during an execution of a schedule period. 

The usage of the pre-runtime scheduler improves the accuracy of timing and 
energy consumption estimation. On the other hand, runtime approach cannot 
assure such an accuracy, since unpredictability of tasks arrival leads to more 
context-switching, increasing the energy consumption substantially. 
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The proposed method does not substitute other Lower-Power and Power-
Aware techniques (e.g. dynamic voltage-scaling). Instead, the proposed method 
is a complement to such techniques, since the scheduling synthesis algorithm 
avoids unnecessary context-switching between tasks. Therefore, the generated 
schedule contains optimizations in terms of energy consumption, 

7. P R E - R U N T I M E SCHEDULING 
SYNTHESIS 

This section shows a description of how to minimize the state space size, 
and the algorithm that implements the proposed method. 

Minimizing State Space Size. The analysis based on the interleaving 
of actions is the fundamental point to be considered when analyzing state space 
explosion problem. Thus, the analysis of n concurrent actions has to verify 
all n\ interleaving possibilities, unless there are dependencies between these 
actions. This work proposes three ways for minimizing the state space size: 

Modeling. The proposed method models dependencies between actions ex­
plicitly. Partial-Order. If actions can be executed in any order, such that the 
system always reaches the same state, these actions are independent. In other 
words, it does not matter in which order these are executed [4]. Independent 
actions are those that do not disable any other action, such as: arrival, release, 
precedence, processor releasing, and so on. This reduction method proposes 
to give a different choice-priority level for each class of independent activities. 
The dependent activities, \\kQ processor granting, have lowest choice-priority. 
Therefore, when changing from one state to another state, it is sufficient to 
analyze the class with highest choice-priority and pruning the other ones. Re­
moving Undesirable States. Section 5.1 presents how to model undesirable 
error states, for instance, states that represent missed deadlines. The method 
proposed is of interest for schedules that do not reach any of these undesirable 
states. When generating the TLTS, transitions leading to undesirable error 
states have to be discarded. 

Pre-Runtime Scheduling Algorithm. The algorithm adopted in 
this work is a depth-first search method on a TLTS. So, the TLTS is partially 
generated, according to the need. The stop criterion is obtained whenever 
the desirable final marking M^ is reached. For more information about this 
algorithm the interested reader is referred to [3]. 

8. CASE STUDY 
In order to show the practical usability of the proposed approach in more de­

tails, a pulse-oximeter [5] is used as a case study. This equipment is responsible 



From Model-Driven Design to Resource Management for Distributed Embedded Systems 263 

1 s c h e d u l i n g - s y n t h e s i s (S,M^,TPN, emax) 
2 { 
3 i f (S.M = M^) r e t u r n TRUE; 
4 t a g { S ) ; 
5 PT = pruning(firable{5,emax)); 
6 if {|PT| = 0) return FALSE; 
7 for each {{t^O) £ PT) { 
8 S'= fire{S, t, 6) ; 
9 if (untagged(S') A 
10 scheduling-synthesis iS' ,M^ ,'J:FN,emax) ) { 
11 add-in-trans-system {S,S',t,^); 
12 return TRUE; 
13 } 
14 } 
15 r e t u r n FALSE; 
16 } 

Figure 5. Scheduling synthesis algorithm. 

for measuring the oxygen saturation in the blood system using a non-invasive 
method. A pulse-oximeter may be used in many circumstances, like checking 
whether the oxygen saturation is lower or not than the acceptable, when a pa­
tient is sedated with anesthetics for a surgical procedure. This equipment is 
widely used in center care units (CCU). 

For the sake of this paper, Table 1 shows the pulse oximeter task specifi­
cation. In addition, the intertask relations are TEI PRECEDES TE2, TE2 PRECEDES 

TE3, TE3 PRECEDES TE4, TAl PRECEDES TA2, TA2 PRECEDES TA3, TAB PRECEDES TA4, TA4 

PRECEDES TA5, TA5 PRECEDES TA6, TA6 PRECEDES TA7, TA7 PRECEDES TA8. All tasks 

are preemptive. The dispatcher overhead is 200 microseconds and its respec­
tive worst-case energy consumption is 3958166,22 nJ. For this case study, 
the task time unit (TTU) adopted is 100 microseconds and the schedule energy 
constraint is 2 J . 

Using the proposed approach, a feasible schedule was found in 45.9980 
seconds, after visiting 42135 states. Due to lack of space, neither the Petri net 
model nor the found schedule is shown. The energy used by the found schedule 
totalizes 1,794,314,752.32 nJ {= 1.795 J). For this example, the scheduling 
algorithm found a schedule without any context-switching. To conclude, the 
scheduling synthesis algorithm was executed on a AMD Duron 1200 Mhz, 256 
MB RAM, OS Linux, and compiler GCC 3.3.2. 

9. CONCLUSIONS 
This paper proposed a pre-runtime scheduling approach considering energy 

and timing constraints for embedded hard real-time systems with multiple pro­
cessors. Predictability is an important concern when considering time-critical 
systems. The scheduling approach presented guarantees that all critical tasks 
meet their deadlines and the schedule satisfies the energy constraint. In spite 
of the analysis technique (i.e. state space exploration) is not new, to the best 
of our present knowledge, there is no similar work reported that uses formal 
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Table 1. Task specification for the pulse Oximeter 

TasklD r c 
TEl •• 
TE2 
TE3 
TE4 
TE5 
TAl 
TA2 
TA3 
TA4 
TA5 
TA6 
TA7 
TA8 
rci TC2 
TC3 
TC4 
TC5 
TC6 
TC7 
Ml 

— 0 41 
37141 
576 41 
947 41 

0 45 
0 41 

14150 
19141 
323 50 
382 41 
523 50 
573 41 
714 50 
764 60 

— a " 
1000 
1000 
1000 
1000 
2000 
5000 
5000 
5000 
5000 
5000 
5000 
5000 
5000 
5000 

. 0 50 10000 
0 50 10000 

764 45 10000 
0 90 10000 

p proc/bus from to Energy | 
••"2500 PI 

2500 PI 
2500 PI 
2500 PI 
2500 PI 

16000 Fl 
16000 PI 
16000 PI 
16000 PI 
16000 PI 
16000 PI 
16000 PI 
16000 PI 
16000 P2 
16000 P2 
16000 P2 
16000 P2 
16000 P2 

0 90 10000 160000 P2 
0 90 10000 
- 7 -

80000 P2 
- busl 

- - 8576,79 nJj 
- 52,48 n J 
- 8576.79 nj\ 

52,48 n J 
- 222,30 n J 1 

55j6nJ 
222,50 n J 
55,76 n J 
122,50 n J 

- 55,16 nJ 
222,50 nJ 
55,16 n J 

- 222,50 nJ 
- 430,2 nJ 
_ 444,00 nJ 

n\l,5nJ 
935,1 nJ 
935,1 nJ 
7089,3 nJ 
935,1 nJ 

TAB TCI 879^2 nJ 

methods for modeling time-critical systems with energy constraints, considers 
arbitrary precedence/exclusion relations, and finds pre-runtime schedules. As 
future work, it is proposed to generate automatically the system source code 
from a feasible schedule, meeting not only timing constraints but also energy 
constraints. 
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