
PRE-RUNTIME SCHEDULING CONSIDERING
TIMING AND ENERGY CONSTRAINTS IN
EMBEDDED SYSTEMS WITH MULTIPLE
PROCESSORS

Eduardo Tavares, Meuse Oliveira Jr, Paulo Maciel, Bruno Souza, Silvino
Neto
CIn - UFPE. Recife-PE-BraziL
(eagt, mnoj, prmm, bs) @cin.ufpe.br, silvinovvneto@yahoo.com.br

Raimundo Barreto, Romulo Preitas, Marcelo Custodio
DCC-UFAM. Manaus-AM-Brazil
{ rbarreto, devezas, mmc} @dcc.ufam.edu.br

Abstract In this paper, a pre-runtime scheduling approach for hard real-time embedded
systems with multiple processors is presented considering stringent timing and
energy constraints. This paper adopts a formal approach, based on time Petri
nets, for synthesizing feasible schedules.

1. INTRODUCTION
Some embedded systems are classified as real-time systems, where the cor­

rect behavior depends not only on the integrity of the results, but also the time
in which such results are produced. In hard real-time systems, if timing con­
straints are not met, the consequences can be disastrous, including great dam­
age of resources or even loss of human lives. Due to CPU-bound tasks, some
hard real-time embedded systems need to rely on multiple processors in order
to meet timing constraints.

In addition to timing issues, many hard real-time systems have constraints
on autonomy, since, in many cases, they need to be operated in remote ar­
eas where energy sources may be highly constrained. Therefore, such systems
cannot exceed their respective energy (or power) constraints for executing their
associated tasks. Mobile medical devices, for example, have both timing and
energy constraints that need to be satisfied. Their tasks cannot miss their xt-

Please use the following format when citing this chapter:

Tavares, E., Olivera, M., Jr., Maciel, P., Souza, B., Neto, S., Barreto, R., Freitas, R., Custodio, M., 2006, in IFIP Inter­
national Federation for Information Processing, Volume 225, From Model-Driven Design to Resource Management for
Distributed Embedded Systems, eds. B. Kleinjoharm, Kleinjoharm L., Machado R, Pereira C, Thiagarajan PS., (Boston:
Springer), pp. 255-264.

256 From Model-Driven Design to Resource Management for Distributed Embedded Systems

spective deadlines, and cannot exceed a specified energy constraint in order to
prolong the battery charge usage.

Taking into account such needs, this paper provides a pre-runtime approach
based on time Petri nets [6] for synthesizing feasible schedules considering
timing and energy constraints. In order to provide a more realistic system
behavior, this work models explicitly the worst-case execution time of the dis­
patcher, since it may affect the tasks' deadline. The approach presented in this
paper is a depth-first search method that generates a partial state-space com­
puted from a time Petri net model that represents the task's constraints, thus
tackling the state-space growth inherent to such systems.

2. RELATED WORKS
Xu and Pamas [9] present a branch-and-bound algorithm that finds an opti­

mal pre-runtime schedule on a single processor for real-time process segments
with release, deadline, and arbitrary exclusion and precedence relations. De­
spite the importance of their work, real-world experimental results are not pre­
sented. Abdelzaher and Shin [1] extended Xu and Pamas' work in order to deal
with distributed real-time systems. This algorithm takes into account delays,
precedence relations imposed by interprocess communications, and considers
many possibilities for improving the scheduling lateness at the cost of com­
plexity.

In [8], Swaminathan and Chakrabarty address the problem of scheduling
tasks for minimum I/O energy consumption in hard real-time systems . The
work adopts a pre-runtime scheduling approach and employs pruning tech­
nique based on time and energy, as well as heuristic methods in order to
reduce the problem complexity. However, the proposed approach does not
support inter-task relation and does not take into account multiple processors.
AlEnawy and Aydin [2] introduce static (pre-runtime) and dynamic (runtime)
scheduling mechanisms for dealing with energy-constrained scheduling. The
proposed approach does not guarantee that all tasks will be executed, but only
selected tasks with high priority. Preemption is supported, but inter-task rela­
tions are not taken into account.

3. COMPUTATIONAL MODEL
Computational model syntax is given by a time Petri net [6], and its se­

mantics by a timed labeled transition system. A time Petri net (TPN) is a
bipartite directed graph represented by a tuple V= (P, T, F, W, mo, /) . P
(places) and T (transitions) are non-empty disjoint sets of nodes. The edges
are represented by F C (P x T) U (T x P). VK : P ^ N represents the
weight of the edges. A TPN marking rrii is a vector rrii G N ' ^ ' , and mo is
the initial marking. / : T —> N x N represents the timing constraints, where

From Model-Driven Design to Resource Management for Distributed Embedded Systems 257

I{t) = [EFT[t),LFT(t)) Vt G T, EFT{t) < LFT{t), EFT{t) is the
Earliest Firing Time, and LFT{t) is the Latest Firing Time.

An extended time Petri net with energy and priorities is represented by Vs =
{V, £, TT). V is the underlying time Petri net, £:: T -^ R+ U {0} is a function
that assigns transitions to energy consumption values, and TT : T —> N is a
priority function.

A set of enabled transitions is denoted by: ET{rni) = {t G T | mi{pj) >
W{pj^t)}, ^pj G P, The time elapsed, since the respective transition en­
abling, is denoted by a clock vector ci G N'^-^^"^*)!. The dynamic firing
interval (Joify) is dynamically modified whenever the respective clock vari­
able c{t) is incremented, and t does not fire. /ip(t) is computed as follows:
I^{t) = {DLB{t),DUB{t)), where DLB(t) = max{Q,EFT{t) - c{t)),
DUB{t) = LFT{t) - c(t), DLB{t) is the Dynamic Lower Bound, and
DLB{t) is the Dynamic Upper Bound.

Let Ve be a time Petri net, C be the set of all clock vectors in Vs, and M^
be the set of reachable markings of P^;. The set of states 5 ofVs is given by
5 C (M X N I ^ ^ (^) I X M), that is, a single state is defined by a triple (m, c, e),
where m is a marking, c is its respective clock vector for ET{m), and e is the
accumulated energy consumption up to this state.

FT{s) is the set of fireable transitions at state 5 defined by: FT{s, Cmax) =
{ti G ET{m) I (e < e^ax)A (7r(t̂) = min(7r(tfc))A {DLB{ti) < mm{DUB{tk)))
, ytk G ET{m)}. ThQfiring domain for t at state 5, is defined by the interval:
FDs{t) = [DLB{t),mm{DUB(tk)% Vt̂ G ET{m),

A timed labeled transition system (TLTS) is a quadruple C= {S, E, -^, 5o),
where 5 is a finite set of states, S is an alphabet of labels representing actions,
-> C 5 X S X 5 is the transition relation, and 5o G 5 is the initial state.

The semantics of a TPN V is defined by associating a TLTS £ p = (5, S, ^ ,
5o): (i) S is the set of states of 7̂ ; (ii) E C (T x N) is a set of actions labeled
with (t, 6) corresponding to the firing of a firable transition (t) at time (6) in the
firing interval FD{t), \/s G S; (iii) -^ C S' x S x 5 is the transition relation;
(iv) So is the initial state of P .

4. SPECIFICATION MODEL
Let T be the set of tasks in a system. A periodic task is defined by r̂ =

{phi^ Ti, Ci^ di^pi, proci), where phi is the initial phase; r̂ is the release time;
Ci is the worst case computation time required for execution of task r ;̂ di is the
deadline; pi is the period; and proci is the processor allocated to such task. A
task is classified as sporadic if it can be randomly activated, but the minimum
period between two activations is known. Pre-runtime scheduling can only
schedule periodic tasks. However, Mok [7] has proposed a translation from
sporadic to periodic tasks. A task Ti precedes task TJ, if TJ can only start exe-

258 From Model-Driven Design to Resource Management for Distributed Embedded Systems

cuting after r̂ has finished. This work considers that communication between
tasks allocated to the same processor is treated as a precedence relation. A task
Ti excludes task TJ, if no execution of TJ can start while task r̂ is executing. If
it is considered a single processor, then task r̂ could not be preempted by task

When adopting a multiprocessing environment, all inter-processor commu­
nications have to be taken into account, since these communications affect the
system predictability. A inter-processor communication is represented by a
special task, namely, communication task, which is described as follows. Let
fim G A^ be a communication task defined by fim = ('̂ z? TJ, dm, busm), where
r̂ G T is the sending task, TJ ET is the receiving task, ctm is the worst case
communication time, busm G ;B is the bus, where B is the set of buses, and
proci 7̂ procj.

5- MODELING REAL-TIME SYSTEMS
In this work, the proposed modeling adopts a formal method for describing

systems with timing constraints. The proposed modeling applies composition
rules on building blocks models. For lacking of space, this section aims to
present just an overview. For more details the reader is referred to [3].

5.1 TASKS MODELING
The considered building blocks are: (i) Fork; (ii) Join; (iii) Periodic Task

Arrival; (iv) Deadline Checking; (v) Non-preemptive Task Structure; (vi) Pre­
emptive Task Structure; (vii) Resources; and (viii) Inter-Processor Communi­
cation. The blocks are summarized as follows: a) Fork Block. Let us suppose
that the system has n tasks. The fork block is responsible for starting all tasks
in the system. This block models the creation of n concurrent tasks, b) Join
Block. Usually, concurrent activities need to synchronize with each other. The
join block execution states that all tasks in the system have concluded their
execution in the schedule period, c) Periodic Task Arrival Block. This block
models the periodic invocation for all task instances in the schedule period
(Ps)' d) Deadline Checking Block. The proposed modeling method uses
elementary net structures to capture deadline missing. The scheduling algo­
rithm (Figure 5) must eliminate states that represent undesirable situations like
this one. e) Task Structure Block. The task structure may implement ei­
ther preemptive or non-preemptive scheduling methods. Considering a non-
preemptive method, the processor is just released after the entire computation
to be finished. The preemptive method implies that a task are implicitly split
into all possible subtasks, where the computation time of each subtask is ex­
actly equal to one task time unit (TTU). g) Resource Block. The resources
modelled are processors (pproci) and buses (pbusj' An individual resource is

From Model-Driven Design to Resource Management for Distributed Embedded Systems 259

represented by a single place. The presence of a token in a resource place
indicates the availability of this resource.

Figure 1 depicts a Petri net model considering a specification composed of
two non-preemptive tasks: TQ = (0,0,2,7,8, PI) and n = (0,2,2,6,6, PI) .

V t ' O O VJo{7 7 tpcr(CO]

Arr -vc t i D«acil„n« rh»=k3.r<j

Figure 1. An example considering two tasks.

h) Inter-processor Communication Block. In this work, all inter-processor
communications are treated as communication tasks, and message-passing
paradigm is adopted. Additionally, the proposed approach for inter-processor
communication considers that: (a) after the execution of the sending task, the
message transmission is performed; (b) the receiving task can only execute
after receiving the complete message; (c) both the sending and receiving pro­
cessors are ready in the beginning of the communication. In other words, when
the sender is transmitting the data, the receiver is prepared at the same moment
for getting such data. This mechanism may be interpreted as a synchronous
communication. Since interrupts may affect the system predictability, the pro­
posed approach considers polling rather than interrupt handling to implement
the receive operation; (d) point-to-point communication (or unicasting); (f)
buses are reliable; (g) before communication takes place, the bus and, both
sending and receiving processors have to be granted; and (h) communication
time is annotated in the respective communication transition.

Figure 2 depicts the inter-processor communication building block, tg})..
represents the granting of the sending processor, the receiving processor and
the bus. tsendij represents both the message sending and receiving. It is anno­
tated with timing constraint specification, in this case, ctm (worst-case com­
munication time) of the respective communication task fim ^ M. After the
communication, both processors and the bus are released (tcommij)- Pwgbij
represents the waiting for bus and processors granting, p^sij indicates that the
processors are ready to communicate. Pcomaj indicates that the communica­
tion was concluded. Lastly, Prbufij represents the receiving buffer.

260 From Model-Driven Design to Resource Management for Distributed Embedded Systems

|tgb^{0.0] tsend^fcm,, cm^

i 'PbuSk^

6>{H5)-[>eHhe^$>H3
Figure 2. Building block. Figure 3. Modeling example.

Figure 3 applies the building block inter-processor communication for mod­
eling the sending and receiving tasks r̂ and TJ, respectively. It is worth observ­
ing that task TJ has a refined place in order to consume the buffered message.
More specifically, the place p^^g. is substituted for the sequence {jprecij» Ueaj ̂
Pwgj)'

5.2 DISPATCHER OVERHEAD MODELING
The dispatcher overhead is captured in the grant-processor transition. When

the task is non-preemptive, the timing interval of the grant-processor transition
corresponds to the worst case execution time of the dispatcher. Since this is
a simple solution, in the following presentation, the dispatcher overhead only
considers preemptive tasks. When the task is preemptive, the model is slightly
more complex. In this case, the proposed modeling adopts the TPN with pri­
orities.

The proposed model considers two grant-processor transitions: grant-
processor-with-overhead (tguj.) and grant-processor-without-overhead {tgwoi)^
As it can be seen in Figure 4, the timing interval ([a, ô]) for transition tgyj.
models such timing overhead. Place PprockTi states that task r̂ was the last
executed task by the processor prock. The dispatcher overhead is considered
in two situations: (1) when the next task to use the processor is different from
the task that used the processor before; or (2) when a task instance ends its
execution. The first situation is represented by the place PprockTi^ where if
such place is marked, it implies that the processor was lastly allocated to task
Ti. However, the second situation needs an explanation. Supposing that a task
instance i of task TJ ends its execution, and the following task to be executed

From Model-Driven Design to Resource Management for Distributed Embedded Systems 261

is the task instance z + 1 of the same task TJ. In this case, although the two
instances are from the same task, the dispatcher caUing is mandatory. As pre­
sented below, for solving this problem the model consider two final transitions,
one that removes the marking in place PprockTi and the other that does not.

In spite of this block may seem complicated, it is worth noting that this
modeling is performed automatically by a tool. For more details, the interested
reader is referred to [3].

PprocicJni, PprtJCKTi

Pwti Vj Pwgj

Figure 4- Building block dispatcher overhead.

6. ENERGY CONSUMPTION
Considering the Petri net task model, system energy consumption is associ­

ated with transitions representing dispatcher overhead (tgw), task computation
(tc), and message transmission {tsend)- Taking into account preemptive tasks,
the energy consumption value of each computation time unit is equal to Ei/ci,
where Q is the worst-case computation time (WCET) and Ei is the worst-case
energy consumption of a task r .̂ Additionally, it is worth stating that the en­
ergy consumption value associated with tsend represents the sum of energy
consumption values for sending and receiving the respective message.

The energy consumption for the dispatcher, the execution of tasks, and each
message exchange must be known beforehand. In this work, the values were
measured through a real prototype. The sum of energy dissipated in dispatcher,
fired computation, and message transmission transitions results the total energy
consumed during an execution of a schedule period.

The usage of the pre-runtime scheduler improves the accuracy of timing and
energy consumption estimation. On the other hand, runtime approach cannot
assure such an accuracy, since unpredictability of tasks arrival leads to more
context-switching, increasing the energy consumption substantially.

262 From Model-Driven Design to Resource Management for Distributed Embedded Systems

The proposed method does not substitute other Lower-Power and Power-
Aware techniques (e.g. dynamic voltage-scaling). Instead, the proposed method
is a complement to such techniques, since the scheduling synthesis algorithm
avoids unnecessary context-switching between tasks. Therefore, the generated
schedule contains optimizations in terms of energy consumption,

7. P R E - R U N T I M E SCHEDULING
SYNTHESIS

This section shows a description of how to minimize the state space size,
and the algorithm that implements the proposed method.

Minimizing State Space Size. The analysis based on the interleaving
of actions is the fundamental point to be considered when analyzing state space
explosion problem. Thus, the analysis of n concurrent actions has to verify
all n\ interleaving possibilities, unless there are dependencies between these
actions. This work proposes three ways for minimizing the state space size:

Modeling. The proposed method models dependencies between actions ex­
plicitly. Partial-Order. If actions can be executed in any order, such that the
system always reaches the same state, these actions are independent. In other
words, it does not matter in which order these are executed [4]. Independent
actions are those that do not disable any other action, such as: arrival, release,
precedence, processor releasing, and so on. This reduction method proposes
to give a different choice-priority level for each class of independent activities.
The dependent activities, \\kQ processor granting, have lowest choice-priority.
Therefore, when changing from one state to another state, it is sufficient to
analyze the class with highest choice-priority and pruning the other ones. Re­
moving Undesirable States. Section 5.1 presents how to model undesirable
error states, for instance, states that represent missed deadlines. The method
proposed is of interest for schedules that do not reach any of these undesirable
states. When generating the TLTS, transitions leading to undesirable error
states have to be discarded.

Pre-Runtime Scheduling Algorithm. The algorithm adopted in
this work is a depth-first search method on a TLTS. So, the TLTS is partially
generated, according to the need. The stop criterion is obtained whenever
the desirable final marking M^ is reached. For more information about this
algorithm the interested reader is referred to [3].

8. CASE STUDY
In order to show the practical usability of the proposed approach in more de­

tails, a pulse-oximeter [5] is used as a case study. This equipment is responsible

From Model-Driven Design to Resource Management for Distributed Embedded Systems 263

1 s c h e d u l i n g - s y n t h e s i s (S,M^,TPN, emax)
2 {
3 i f (S.M = M^) r e t u r n TRUE;
4 t a g { S) ;
5 PT = pruning(firable{5,emax));
6 if {|PT| = 0) return FALSE;
7 for each {{t^O) £ PT) {
8 S'= fire{S, t, 6) ;
9 if (untagged(S') A
10 scheduling-synthesis iS' ,M^ ,'J:FN,emax)) {
11 add-in-trans-system {S,S',t,^);
12 return TRUE;
13 }
14 }
15 r e t u r n FALSE;
16 }

Figure 5. Scheduling synthesis algorithm.

for measuring the oxygen saturation in the blood system using a non-invasive
method. A pulse-oximeter may be used in many circumstances, like checking
whether the oxygen saturation is lower or not than the acceptable, when a pa­
tient is sedated with anesthetics for a surgical procedure. This equipment is
widely used in center care units (CCU).

For the sake of this paper, Table 1 shows the pulse oximeter task specifi­
cation. In addition, the intertask relations are TEI PRECEDES TE2, TE2 PRECEDES

TE3, TE3 PRECEDES TE4, TAl PRECEDES TA2, TA2 PRECEDES TA3, TAB PRECEDES TA4, TA4

PRECEDES TA5, TA5 PRECEDES TA6, TA6 PRECEDES TA7, TA7 PRECEDES TA8. All tasks

are preemptive. The dispatcher overhead is 200 microseconds and its respec­
tive worst-case energy consumption is 3958166,22 nJ. For this case study,
the task time unit (TTU) adopted is 100 microseconds and the schedule energy
constraint is 2 J .

Using the proposed approach, a feasible schedule was found in 45.9980
seconds, after visiting 42135 states. Due to lack of space, neither the Petri net
model nor the found schedule is shown. The energy used by the found schedule
totalizes 1,794,314,752.32 nJ {= 1.795 J). For this example, the scheduling
algorithm found a schedule without any context-switching. To conclude, the
scheduling synthesis algorithm was executed on a AMD Duron 1200 Mhz, 256
MB RAM, OS Linux, and compiler GCC 3.3.2.

9. CONCLUSIONS
This paper proposed a pre-runtime scheduling approach considering energy

and timing constraints for embedded hard real-time systems with multiple pro­
cessors. Predictability is an important concern when considering time-critical
systems. The scheduling approach presented guarantees that all critical tasks
meet their deadlines and the schedule satisfies the energy constraint. In spite
of the analysis technique (i.e. state space exploration) is not new, to the best
of our present knowledge, there is no similar work reported that uses formal

264 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Table 1. Task specification for the pulse Oximeter

TasklD r c
TEl ••
TE2
TE3
TE4
TE5
TAl
TA2
TA3
TA4
TA5
TA6
TA7
TA8
rci TC2
TC3
TC4
TC5
TC6
TC7
Ml

— 0 41
37141
576 41
947 41

0 45
0 41

14150
19141
323 50
382 41
523 50
573 41
714 50
764 60

— a "
1000
1000
1000
1000
2000
5000
5000
5000
5000
5000
5000
5000
5000
5000

. 0 50 10000
0 50 10000

764 45 10000
0 90 10000

p proc/bus from to Energy |
••"2500 PI

2500 PI
2500 PI
2500 PI
2500 PI

16000 Fl
16000 PI
16000 PI
16000 PI
16000 PI
16000 PI
16000 PI
16000 PI
16000 P2
16000 P2
16000 P2
16000 P2
16000 P2

0 90 10000 160000 P2
0 90 10000
- 7 -

80000 P2
- busl

- - 8576,79 nJj
- 52,48 n J
- 8576.79 nj\

52,48 n J
- 222,30 n J 1

55j6nJ
222,50 n J
55,76 n J
122,50 n J

- 55,16 nJ
222,50 nJ
55,16 n J

- 222,50 nJ
- 430,2 nJ
_ 444,00 nJ

n\l,5nJ
935,1 nJ
935,1 nJ
7089,3 nJ
935,1 nJ

TAB TCI 879^2 nJ

methods for modeling time-critical systems with energy constraints, considers
arbitrary precedence/exclusion relations, and finds pre-runtime schedules. As
future work, it is proposed to generate automatically the system source code
from a feasible schedule, meeting not only timing constraints but also energy
constraints.

REFERENCES
[1] T. Abdelzaher and K. Shin. Combined task and message scheduling in distributed real-time

systems. IEEE Trans. Parallel Distributed Systems, 10(11):1179-1191, Nov 1999.
[2] T. A. AlEnawy and H. Aydin. On energy-constrained real-time scheduling. Proceedings

of the 16th EuroMicro Conference on Real-Time Systems (ECRTS 04), June 2004.
[3] R. Barreto. A Time Petri Net-Based Methodology for Embedded Hard Real-Time Software

Synthesis. PhD Thesis, Centro de Informatica - UFPE, April 2005.
[4] P. Godefi"oid. Partial Order Methods for the Verification of Concurrent Systems. PhD

Thesis, University of Liege, Nov. 1994.
[5] M. Nogueira Oliveira Junior. Desenvolvimento de Um Prototipo para a Medida Nao Inva-

siva da Saturagao Arterial de Oxigenio em Humanos - Oximetro de Pulso (inPortuguese).
MSc Thesis, Departamento de Biofisica e Radiobiologia, Universidade Federal de Pemam-
buco, August 1998.

[6] P. Merlin and D. J. Faber. Recoverability of communication protocols. IEEE Trans. Comm.,
24(9):1036-1043, Sep. 1976.

[7] A. K. Mok. Fundamental Design Problems of Distributed Systems for the Hard-Real-Time
Environment. PhD Thesis, MIT, May 1983.

[8] V. Swaminathan and K. Chakrabarty. Pruning-based, energy-optimal, deterministic i/o
device scheduling for hard real-time systems. ACM Trans. Embedded Comput. Syst. 4(1),
pages 141-167, 2005.

[9] J. Xu and D. Pamas. Scheduling processes with release times, deadlines, precedence, and
exclusion relations. IEEE Trans. Soft. Engineering, 16(3):360-369, March 1990.

