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A b s t r a c t : Long-term reliability of processors is experiencing growing attention 
since decreasing feature sizes and increasing power consumption have a 
negative influence on the lifespan. The reUabiUty can also be influenced 
by Dynamic Power Management (DPM), since it affects the processor's 
temperature. 

In this paper, it is examined how different DPM-strategies for Multi-
Core processors alter their lifespan. By simulating such a Multi-Core 
system using the Self Distributing Virtual Machine (SDVM), thus ex­
ploiting dynamic parallelism, it is shown that its long-term reliability 
can be influenced actively with different DPM strategies. 
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1. INTRODUCTION 
The long-term reliability resp. lifespan of microprocessors hasn't been 

much of an issue in the past, since a processor was usually obsolete due 
to technological aging (and has been replaced) before it began to fail. 
This is about to change for several reasons. First, microprocessors and 
multi-core processors are nowadays combined with other components as 
complete systems on chip (SoCs) or networks on chip (NoCs). Therefore 
the processor cannot be replaced easily. Secondly, smaller feature sizes 
and increasing power densities lead to a higher vulnerability to wear-
out based failure mechanisms like electromigration or stress migration. 
The international technology roadmap on semiconductors (ITRS) sees a 
trend that is threatening "the nearly unlimited lifetime and high level of 
reliability that customers have come to expect" [1]. The approaches to 
tackle this problem are mostly design-centric. RAMP [2], for example, 
is a model to determine lifespan estimates depending on the architecture 
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of a processor. In a subsequent paper, however, the authors extend 
their approach to a so called Dynamic Reliability Management [3], whose 
idea is to adjust a processor at runtime (e.g. by voltage scaling) to 
meet a certain reliability target, though no algorithms for this cause are 
proposed. Apart from this, no further concepts or algorithms for dynamic 
reliability management do yet exist. 

Our remedy to this problem has two ingredients: Dynamic power man­
agement (DPM) and parallel computing. It has been noted in [4] that 
DPM schemes affect a processor's reliability, since it directly affects a 
processor's temperature. The essential failure mechanisms like electro-
migration, corrosion, time-dependent dielectric breakdown (TDDB), hot 
carrier injection (HCI), surface inversion, and stress migration are more 
or less temperature dependent [5]. While DPM tends to lower a pro­
cessor's temperature, which is beneficial, it also leads to the unfavorable 
effect of temperature cycling, i.e. frequent heating up and cooling down. 

Dynamic power management on multi-core processors, however, has 
a lot more possibilities to scale the power consumption of a chip: Aside 
from clock frequency reduction (along with dynamic voltage scaling or 
adaptive body biasing), whole cores can be switched off without disrupt­
ing the execution of applications. Since the workload and thus DPM in 
parallel computing environments also depends on the parallelizability of 
an application, it seems to be obvious that this can be done efficiently 
only with a dynamic approach. 

The SDVM (Self Distributing Virtual Machine) as a middleware for 
the dynamic, automatic distribution of code and data over any network of 
computing resources seems to be an ideal choice to be run on multi-core 
processors in NoCs. In particular, it supports adding and removing of 
computing resources at runtime, making the implementation of the afore­
mentioned dynamic power management on multi-core processors possible 
in the first place. To permit DPM on an SDVM-driven multi-core proces­
sor, an appropriate power managing mechanism has been implemented, 
which scales the performance of the cores according to the current work­
load. The reliability-awareness is then achieved by appropriate power 
management policies. 

The goal of this paper is to examine the potential of such reliability-
aware power management strategies for multi-core processors by simula­
tion. 

2. SDVM - A MIDDLEWARE FOR POWER 
OPTIMIZED SOCS 

The Self Distributing Virtual Machine (SDVM) [6] was designed to 
feature undisturbed parallel computation flow while adding and remov­
ing processing units from computing clusters. These clusters may consist 
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Figure 1. The Miciothread contains a code fragment whereas the Micro/rame con­
tains the parameters needed to execute the corresponding code fragment, as well as 
the IDs of other Microframes the results of the execution then should be sent to. 

of several processing cores or even full-grown computers, and any con­
nection network topology is supported. 

The SDVM is a middleware, implemented as a daemon to be run 
on each participating machine or processor, creating a site each. The 
sites communicate by sending messages. Applications must be cut to 
convenient application fragments, the microthreads^ which can be exe­
cuted on any site. The SDVM follows the dataflow principle, therefore a 
microthread is executable if it has received all its needed input param­
eters. These parameters are collected in a special data structure, the 
microframe (see Fig. 1). Data, and code, is automatically sent to the 
sites where it is needed. Therefore, the SDVM is actually real parallel 
processing though it may look like a multi-threaded concept. 

The SDVM supports growing and shrinking the cluster at runtime. 
When a site is out of work, it requests executable microframe/micro-
thread pairs from other sites automatically. This behavior provides au­
tomatic load balancing, even between processing units with different pro­
cessing speeds, and offers the addition of new sites at runtime. For a de­
tailed description of the scheduling see [6]. If more processing power is 
available than needed, the local memory data and possibly microthreads 
are pushed out to another site and then the site can be safely shut down. 

The SDVM daemon is organized in several modules with different 
tasks, which are part of one of three layers: 

• The execution layer, where the actual calculationd are performed. 
It contains the memory (containing data and microframes), the 
code storage (which contains the needed microthreads or requests 
them from other sites), the processing manager, the scheduler (see 
Fig. 2), and a unit for possible input and output. 

• The network layer is the part of the daemon which is related to 
sending messages over the network. Messages are encrypted by 
a security manager to avoid eavesdropping. The energy manager 
which is described in section 4 is located here. 

• The maintenance layer is concerned with the organization of the 
cluster and the (local) site. Modules are located here which know 
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Figure 2. The SDVM's scheduling mechanism: The scheduUng manager receives 
executable microframes (which have got all their parameters) from the attraction 
memory. It then sends a code request to the code manager. When the corresponding 
microthread code is locally available (possibly after getting it from another site), the 
code manager informs the scheduling manager, which then puts the microframe from 
the executable-queue into the ready-queue. The processing manager is always given a 
ready microframe. Help requests from other site's scheduling managers are answered 
by sending ready or—preferably—executable microframes. 

the current composition of the cluster, the physical (IP) addresses 
of other sites, data about the local site (e.g. performance data), 
and the list of currently running applications and where to find 
their microthreads. 

The SDVM can be used to simulate a multi-core processor on a com­
puter cluster, but it may even be run on a real multi-core processor, 
as well. Due to these features, the SDVM offers the convenient mecha­
nisms to support different power states of processing units in a SoC. The 
thereby realized power management is described in the following section. 

3. RELIABILITY AND TEMPERATURE 
The long-term reliability of a processor is affected by its operating 

temperature as well as thermal cycling. The effect of the temperature 
can be modeled by the Arrhenius equation, which describes the influ­
ence of the temperature on the rate of chemical reactions. In terms of 
MTTF(Mean-Time-To-Failure), we then have [2] 

MTTF ~ e ^ (1) 

where T is the operating temperature in Kelvin, k is Boltzmann's con­
stant, and Ea is the activation energy in electron volts of the precise 
failure mechanism considered. The Arrhenius equation is the basis for 
modeling the temperature-dependence of several failure mechanisms. For 
instance, failure due to electromigration in interconnects can be modeled 
with the equation [5] 

MTTFEM ~ Ao(J - JcritY^eVr (2) 
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where J is the current density, Jcrit is the critical current density for 
electromigration and AQ and N are empirically determined constants. 
The activation energy Ea then depends on the material used for the 
interconnect and varies from 0.5 to 0.9 eV [5]. Other failure mechanisms 
like stress migration or hot carrier injection have different activation 
energies. 

With the knowledge of the physical and structural construction of 
a chip, the models for different failure mechanisms can be combined 
to get a model (like RAMP [2]) for the processor's reliability. As we 
make no assumptions on the internal structure of the processors or the 
materials used, it would make no sense to use those detailed models 
for our purposes. Instead, we use equation 1 as a generic temperature-
dependant reliability measure for processors. For Ea we use a value of 
0.9 eV. 

The temperature of a processor depends on its power consumption, 
and since dynamic power management lowers the average temperature, 
it should contribute to the chip's lifespan. But, as it was noted in [4], the 
switching between different power consumption levels leads to thermal 
cycling, which can cause various types of failures like lifted bonds, solder 
fatigue or even a cracked die [5]. The effect of thermal cycling on the 
reliability of a chip can be modeled by the CofRn-Manson relation, which 
computes the number of cycles to failure, Nf^ as [5] 

Nf = Co' (AT)-^ (3) 

where AT is the magnitude of thermal cycling, Co is a material-de­
pendant constant, and q is the empirically determined CofRn-Manson 
exponent. This exponent depends on the failure mechanism considered; 
we use a value of 1.9, which focuses on the reliability of the package [2]. 

For our purposes, we use equations 1 and 3 for a comparitive analysis 
of different power management strategies to the non-powermanaged case 
to get an acceleration factor (i.e. the ratio) for each of the PM-strategies 
described below. Therefore, we don't need to choose a value for Co in 
equation 3, since it then cancels out. 

3.1 RELIABILITY AWARE POWER 
MANAGEMENT 

In view of the previous section, a power management strategy which is 
aware of reliability issues should limit the temperature as well as temper­
ature changes. While the first is a side effect of usual power management 
strategies, the latter might involve keeping a processor "powered up", 
although this might not be necessary regarding performance, and is def­
initely not desirable regarding power consumption. So obviously, there's 
a trade-off between power consumption, performance and reliability. 



210 From Model-Driven Design to Resource Management for Distributed Embedded Systems 

Try fo (iot^le «i« mtmb«f 
|cif«ctrve«@8sby 

0U8*i«f<rftJK«»fof 
tnanstton te HF-mode, 

siTHM^ ^ S 6 , choose a 
core for transttion to 
LF-mod6/f»»p, 
StEEP-mocfe/resp, 

avef396 
wof{(k>ad>MAX'? 

y e s / 

cores in SLEEP-
modeorOFF-

mode present ? 

yes Ino 

core* Jn tF-
[modepmsen!? 

J y e s | 

amofts those, c t̂oose \ 

I6fflperat««fw{mn- | 
$}tJ*»»»>UM»ode/ 1 

jre&p, HF-mede j »m<m9 ^ose. choose core 
i vwtn lowest temperatwe fm 
trsmsltkm to {.F^mode / ws|>. 
SLgEP-mode/ire&p. C>FF-
mode. 

(a) fast-upgrade policy (b) smooth-temperature policy 

cores In SLEEP-
modeorOFF-

Ni!' no 

average wort<-lQa(J 
>MAX2 for more than T 
sec, ana cores m U^-

mjode with temperature 
<TEMP|^ presert ? 

among those, choos 
core with hi^esft 
tertip6rdture fof tran 
siaonto U-fnode 

among those, chocse 

among those, choose 
corewnjift^est 
temperature (or tran­
sition to LF-mode/ 
fesp,si£EP-mode/ 
resp. OFF-mode 

(c) low-temperature policy 

In the PM-state "HFM" (High Fre­
quency Mode), the core runs with maxi­
mum clock frequency and supply voltage. 

The PM-state "LFM" (Low Frequency 
Mode) has lower clock frequency and 
supply voltage, yielding less performance 
and power consumption, but full func­
tionality. 

If a core is in the "SLEEP" state, it is 
switched off while its state is stored, so it 
can resume computation pretty quickly. 
The power consumption is reduced. 

The PM-state "OFF" is self-
explanatory; the state of the core 
is not stored and the power consump­
tion is minimal. Resumption of the 
computation takes more time than in 
SLEEP-mode. 

(d) four PM-states 

Figure 3. Power management policies. 

In our simulation, we consider two reliability aware dynamic power 
management (RADPM) strategies: The low-temperature-policy, which 
tries to keep the temperature as low as possible, and the smooth-temper­
ature-policy, whose goal is to restrict thermal cycling. These policies are 
compared to the (reliability unaware) fast-upgrade-policy, which tries to 
optimize performance and serves as a representative of usual power man­
agement strategies. The simulated computing environment is a homoge­
nous multi-core-processor with four cores. Each core has four different 
Power-Management states (see Figure 3(d)). 
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Figure 3 shows diagrams describing the three PM-pohcies in detail. 
Note that the parallehzation of the apphcations is influenced indirectly 
by altering the PM-states and thus the performance of the different cores. 

4. IMPLEMENTATION AND RESULTS 
The aforementioned power management capabilities were integrated 

into the SDVM by implementing the so-called energy manager. This 
energy manager has a master mode and a slave mode. Only one core's 
energy manager is in master mode (the master core), which then controls 
the PM-states of all cores. The main task of the energy managers in slave 
mode is to listen to the master core and to implement its orders, setting 
the local site to the desired PM-state. If a slave energy manager observes 
the absence of the master core (due to a crash or shutdown), it starts an 
election of a new master core. 

The basis for the decision for a new power configuration is the tem­
perature and the mean workload of each core. This information is dis­
tributed through the cluster by the SDVM's cluster manager's message 
mechanism. 

The test set-up simulates a homogenous multi-core processor with four 
cores. To this end, the SDVM runs on a cluster of four identical com­
puters. To each PM-state, a typical power consumption value based on 
an Intel Pentium M processor [7] is assigned (see Table 1). 

Table 1. PM-states and their power consumption 

PM-state I HF HFidZe LF hFidie SLEEP O F F 

power consumption I 15 W 10 W 7.5 W 4 W 3 W 0.2 W 

The temperature Tj of a core is determined out of its power consump­
tion by the formula 

TJ = TA + OAJ ' PDISS (4) 

Where TA is the environmental temperature, 9AJ is the thermal resis­
tance of the core, and PDISS is the power consumption. For 6AJ^ a value 
oi4.b°C/W isused. 

With this set-up, each PM-strategy (and the "no-PM strategy" as a 
reference) was simulated using identical workloads composed of multiple 
instances of a parallelized example application (Romberg integration [6]). 
The results of the simulations of the PM-strategies are given in figures 4, 
5, and 6 showing the workload (area chart) and the temperature (black 
line) of the four cores for the fast-upgrade, smooth-temperature and low-
temperature policy respectively. 

The figures 4, 5, and 6 show a clear difference between the three poli­
cies. The low-temperature policy restricts the maximum temperature to 
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Figure 4- Fast-upgrade policy. 
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Figure 5. Smooth-temperature policy. 

61°C, while with the other two pohcies a maximum temperature of 86° C 
is obtained. The higher temperature of core 1 in figure 4 is caused by 
the fact that the fast-upgrade policy always leaves one core in HF-mode. 

Regarding thermal cycling, we see a reduction both in frequency and 
magnitude by the smooth-temperature policy compared to the fast-up­
grade policy. Because of the temperature hmitation, the low-temperature 
policy causes thermal cycling of lower magnitude, but also with higher 
frequencies, expecially when the temperature limit is reached. 
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Figure 6. Low-temperature policy. 

Table 2. AFT^ AFTC^ mean runtime, and mean power consumption of all cores 

PM-policy 

n o P M 
fast-upgrade 

smooth-temperature 
low-temperature 

AFT 

1 
0.12 
0.19 
0.1 

AFTC 

1 
3.27 
1.2 

3.28 

mean 
runtime 

32.7s 
35.0s 
35.9s 
64.8s 

power 
consumption 

48.15 W 
31.55 W 
37.29 W 
23.18 W 

Using the models described in section 3, we computed for each policy 
the acceleration factors AFT a-nd AFTC giving the acceleration of the 
time to failure due to temperature and temperature cycling respectively. 
Table 2 gives the means of these values over all cores, together with the 
mean runtime and the mean power consumption. 

The acceleration factors without power management are 1, since this 
ca^e is the reference. We see that all PM-strategies are beneficial re­
garding failure due to temperature, especially the low-temperature and 
the fast-upgrade policy. The fact that the low temperature policy is not 
much better than the fast upgrade policy regarding AFT (despite the 
lower maximum temperature) is owed to prolonged computation dura­
tions of the first whereas the latter has shorter computation durations 
which leaves more time for cooling down. In view of thermal cycling, 
the smooth-temperature policy is the clear winner, while the other two 
policies show obvious acceleration. 

This clearly shows that the reliability of a multi-core chip can be 
influenced actively with PM-strategies. It should be pointed out that 
such an approach is only possible using dynamic power management. 
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which in turn can be implemented only within a system which distributes 
the workload dynamically, as the SDVM does. Incorporating reliability 
awareness into compile-time power management schemes seems to be 
almost infeasible. 

5. CONCLUSION 
In this paper, we proposed reliability-aware dynamic power manage­

ment (RADPM), which incorporates lifespan-controUing goals. The us­
ability of RADPM to prolong system-lifetime was demontrated by simu­
lating a multi-core chip on the Self Distributing Virtual Machine (SDVM). 
The SDVM was augmented for this purpose with the so-called energy 
manager, which implements different PM-policies. The basic approach, 
however, could be implemented on any multi-core system which dis­
tributes the workload dynamically. 

The PM-policies presented are no final solutions for RADPM, but 
serve as a proof of concept, that the long-term reliability of a multi-core 
chip can actually be altered deliberately with RADPM. Real implemen­
tations for RADPM on mult-icore chips could include, for example, a 
"reliability account" for each core or could consider the geometric config­
uration of the cores on the chip to optimize the temperature distribution. 

A new insight, however, is that parallelism may not only be used to 
improve performance, but to improve reliability as well. 

The SDVM's homepage containing its complete source code and doc­
umentation can be found at: h t t p : / / s d v m . t i . c s . u n i - f r a n k f u r t . d e . 
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