
RELIABILITY-AWARE POWER MANAGEMENT
OF MULTI-CORE PROCESSORS *

Jan Haase, Markus Damm, Dennis Hauser, Klaus Waldschmidt
J. W. Goethe-Universitt Frankfurt/Main, Technical Computer Sc. Dep.,
Box 11 19 32, D-60054 Frankfurt/Main, Germany
{haaseldammldhauserlwaldschjQti.informatik.uni-frankfurt.de

A b s t r a c t : Long-term reliability of processors is experiencing growing attention
since decreasing feature sizes and increasing power consumption have a
negative influence on the lifespan. The reUabiUty can also be influenced
by Dynamic Power Management (DPM), since it affects the processor's
temperature.

In this paper, it is examined how different DPM-strategies for Multi-
Core processors alter their lifespan. By simulating such a Multi-Core
system using the Self Distributing Virtual Machine (SDVM), thus ex­
ploiting dynamic parallelism, it is shown that its long-term reliability
can be influenced actively with different DPM strategies.

Keywords : Adaptivity; Power Management; Reliability; SDVM.

1. INTRODUCTION
The long-term reliability resp. lifespan of microprocessors hasn't been

much of an issue in the past, since a processor was usually obsolete due
to technological aging (and has been replaced) before it began to fail.
This is about to change for several reasons. First, microprocessors and
multi-core processors are nowadays combined with other components as
complete systems on chip (SoCs) or networks on chip (NoCs). Therefore
the processor cannot be replaced easily. Secondly, smaller feature sizes
and increasing power densities lead to a higher vulnerability to wear-
out based failure mechanisms like electromigration or stress migration.
The international technology roadmap on semiconductors (ITRS) sees a
trend that is threatening "the nearly unlimited lifetime and high level of
reliability that customers have come to expect" [1]. The approaches to
tackle this problem are mostly design-centric. RAMP [2], for example,
is a model to determine lifespan estimates depending on the architecture

* Parts of this work have been supported by the Deutsche Forschungsgemeinschaft (DFG).

Please use the following format when citing this chapter:

Haase, J., Damm, M., Hauser, D., Waldschmidt, K., 2006, in IFIP Intemational Federation for Information Processing,

Volume 225, From Model-Driven Design to Resource Management for Distributed Embedded Systems, eds. B. Kleinjo-

harm, Kleinjoharm L., Machado R., Pereira C , Thiagarajan PS. , (Boston: Springer), pp. 205-214.

206 From Model-Driven Design to Resource Management for Distributed Embedded Systems

of a processor. In a subsequent paper, however, the authors extend
their approach to a so called Dynamic Reliability Management [3], whose
idea is to adjust a processor at runtime (e.g. by voltage scaling) to
meet a certain reliability target, though no algorithms for this cause are
proposed. Apart from this, no further concepts or algorithms for dynamic
reliability management do yet exist.

Our remedy to this problem has two ingredients: Dynamic power man­
agement (DPM) and parallel computing. It has been noted in [4] that
DPM schemes affect a processor's reliability, since it directly affects a
processor's temperature. The essential failure mechanisms like electro-
migration, corrosion, time-dependent dielectric breakdown (TDDB), hot
carrier injection (HCI), surface inversion, and stress migration are more
or less temperature dependent [5]. While DPM tends to lower a pro­
cessor's temperature, which is beneficial, it also leads to the unfavorable
effect of temperature cycling, i.e. frequent heating up and cooling down.

Dynamic power management on multi-core processors, however, has
a lot more possibilities to scale the power consumption of a chip: Aside
from clock frequency reduction (along with dynamic voltage scaling or
adaptive body biasing), whole cores can be switched off without disrupt­
ing the execution of applications. Since the workload and thus DPM in
parallel computing environments also depends on the parallelizability of
an application, it seems to be obvious that this can be done efficiently
only with a dynamic approach.

The SDVM (Self Distributing Virtual Machine) as a middleware for
the dynamic, automatic distribution of code and data over any network of
computing resources seems to be an ideal choice to be run on multi-core
processors in NoCs. In particular, it supports adding and removing of
computing resources at runtime, making the implementation of the afore­
mentioned dynamic power management on multi-core processors possible
in the first place. To permit DPM on an SDVM-driven multi-core proces­
sor, an appropriate power managing mechanism has been implemented,
which scales the performance of the cores according to the current work­
load. The reliability-awareness is then achieved by appropriate power
management policies.

The goal of this paper is to examine the potential of such reliability-
aware power management strategies for multi-core processors by simula­
tion.

2. SDVM - A MIDDLEWARE FOR POWER
OPTIMIZED SOCS

The Self Distributing Virtual Machine (SDVM) [6] was designed to
feature undisturbed parallel computation flow while adding and remov­
ing processing units from computing clusters. These clusters may consist

From Model-Driven Design to Resource Management for Distributed Embedded Systems 207

ID

I I 1 1 1
input parameters
1 1 1 1 1

w
1 1 1 1 1
target addresses

1 1 1 I I
MicroFrame

^ ID

aouote fomb«g<(imj!>le a, double b. int NK

(ioubteT125K2S).

T;0l0] = <b-a>-(f1(a:i-K1(b;v,'2,
r(N>ZS)reti;mO;
(«<i-1;i<=^N•,^•+H

MicroThread

Figure 1. The Miciothread contains a code fragment whereas the Micro/rame con­
tains the parameters needed to execute the corresponding code fragment, as well as
the IDs of other Microframes the results of the execution then should be sent to.

of several processing cores or even full-grown computers, and any con­
nection network topology is supported.

The SDVM is a middleware, implemented as a daemon to be run
on each participating machine or processor, creating a site each. The
sites communicate by sending messages. Applications must be cut to
convenient application fragments, the microthreads^ which can be exe­
cuted on any site. The SDVM follows the dataflow principle, therefore a
microthread is executable if it has received all its needed input param­
eters. These parameters are collected in a special data structure, the
microframe (see Fig. 1). Data, and code, is automatically sent to the
sites where it is needed. Therefore, the SDVM is actually real parallel
processing though it may look like a multi-threaded concept.

The SDVM supports growing and shrinking the cluster at runtime.
When a site is out of work, it requests executable microframe/micro-
thread pairs from other sites automatically. This behavior provides au­
tomatic load balancing, even between processing units with different pro­
cessing speeds, and offers the addition of new sites at runtime. For a de­
tailed description of the scheduling see [6]. If more processing power is
available than needed, the local memory data and possibly microthreads
are pushed out to another site and then the site can be safely shut down.

The SDVM daemon is organized in several modules with different
tasks, which are part of one of three layers:

• The execution layer, where the actual calculationd are performed.
It contains the memory (containing data and microframes), the
code storage (which contains the needed microthreads or requests
them from other sites), the processing manager, the scheduler (see
Fig. 2), and a unit for possible input and output.

• The network layer is the part of the daemon which is related to
sending messages over the network. Messages are encrypted by
a security manager to avoid eavesdropping. The energy manager
which is described in section 4 is located here.

• The maintenance layer is concerned with the organization of the
cluster and the (local) site. Modules are located here which know

208 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Figure 2. The SDVM's scheduling mechanism: The scheduUng manager receives
executable microframes (which have got all their parameters) from the attraction
memory. It then sends a code request to the code manager. When the corresponding
microthread code is locally available (possibly after getting it from another site), the
code manager informs the scheduling manager, which then puts the microframe from
the executable-queue into the ready-queue. The processing manager is always given a
ready microframe. Help requests from other site's scheduling managers are answered
by sending ready or—preferably—executable microframes.

the current composition of the cluster, the physical (IP) addresses
of other sites, data about the local site (e.g. performance data),
and the list of currently running applications and where to find
their microthreads.

The SDVM can be used to simulate a multi-core processor on a com­
puter cluster, but it may even be run on a real multi-core processor,
as well. Due to these features, the SDVM offers the convenient mecha­
nisms to support different power states of processing units in a SoC. The
thereby realized power management is described in the following section.

3. RELIABILITY AND TEMPERATURE
The long-term reliability of a processor is affected by its operating

temperature as well as thermal cycling. The effect of the temperature
can be modeled by the Arrhenius equation, which describes the influ­
ence of the temperature on the rate of chemical reactions. In terms of
MTTF(Mean-Time-To-Failure), we then have [2]

MTTF ~ e ^ (1)

where T is the operating temperature in Kelvin, k is Boltzmann's con­
stant, and Ea is the activation energy in electron volts of the precise
failure mechanism considered. The Arrhenius equation is the basis for
modeling the temperature-dependence of several failure mechanisms. For
instance, failure due to electromigration in interconnects can be modeled
with the equation [5]

MTTFEM ~ Ao(J - JcritY^eVr (2)

From Model-Driven Design to Resource Management for Distributed Embedded Systems 209

where J is the current density, Jcrit is the critical current density for
electromigration and AQ and N are empirically determined constants.
The activation energy Ea then depends on the material used for the
interconnect and varies from 0.5 to 0.9 eV [5]. Other failure mechanisms
like stress migration or hot carrier injection have different activation
energies.

With the knowledge of the physical and structural construction of
a chip, the models for different failure mechanisms can be combined
to get a model (like RAMP [2]) for the processor's reliability. As we
make no assumptions on the internal structure of the processors or the
materials used, it would make no sense to use those detailed models
for our purposes. Instead, we use equation 1 as a generic temperature-
dependant reliability measure for processors. For Ea we use a value of
0.9 eV.

The temperature of a processor depends on its power consumption,
and since dynamic power management lowers the average temperature,
it should contribute to the chip's lifespan. But, as it was noted in [4], the
switching between different power consumption levels leads to thermal
cycling, which can cause various types of failures like lifted bonds, solder
fatigue or even a cracked die [5]. The effect of thermal cycling on the
reliability of a chip can be modeled by the CofRn-Manson relation, which
computes the number of cycles to failure, Nf^ as [5]

Nf = Co' (AT)-^ (3)

where AT is the magnitude of thermal cycling, Co is a material-de­
pendant constant, and q is the empirically determined CofRn-Manson
exponent. This exponent depends on the failure mechanism considered;
we use a value of 1.9, which focuses on the reliability of the package [2].

For our purposes, we use equations 1 and 3 for a comparitive analysis
of different power management strategies to the non-powermanaged case
to get an acceleration factor (i.e. the ratio) for each of the PM-strategies
described below. Therefore, we don't need to choose a value for Co in
equation 3, since it then cancels out.

3.1 RELIABILITY AWARE POWER
MANAGEMENT

In view of the previous section, a power management strategy which is
aware of reliability issues should limit the temperature as well as temper­
ature changes. While the first is a side effect of usual power management
strategies, the latter might involve keeping a processor "powered up",
although this might not be necessary regarding performance, and is def­
initely not desirable regarding power consumption. So obviously, there's
a trade-off between power consumption, performance and reliability.

210 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Try fo (iot^le «i« mtmb«f
|cif«ctrve«@8sby

0U8*i«f<rftJK«»fof
tnanstton te HF-mode,

siTHM^ ^ S 6 , choose a
core for transttion to
LF-mod6/f»»p,
StEEP-mocfe/resp,

avef396
wof{(k>ad>MAX'?

y e s /

cores in SLEEP-
modeorOFF-

mode present ?

yes Ino

core* Jn tF-
[modepmsen!?

J y e s |

amofts those, c t̂oose \

I6fflperat««fw{mn- |
$}tJ*»»»>UM»ode/ 1

jre&p, HF-mede j »m<m9 ^ose. choose core
i vwtn lowest temperatwe fm
trsmsltkm to {.F^mode / ws|>.
SLgEP-mode/ire&p. C>FF-
mode.

(a) fast-upgrade policy (b) smooth-temperature policy

cores In SLEEP-
modeorOFF-

Ni!' no

average wort<-lQa(J
>MAX2 for more than T
sec, ana cores m U^-

mjode with temperature
<TEMP|^ presert ?

among those, choos
core with hi^esft
tertip6rdture fof tran
siaonto U-fnode

among those, chocse

among those, choose
corewnjift^est
temperature (or tran­
sition to LF-mode/
fesp,si£EP-mode/
resp. OFF-mode

(c) low-temperature policy

In the PM-state "HFM" (High Fre­
quency Mode), the core runs with maxi­
mum clock frequency and supply voltage.

The PM-state "LFM" (Low Frequency
Mode) has lower clock frequency and
supply voltage, yielding less performance
and power consumption, but full func­
tionality.

If a core is in the "SLEEP" state, it is
switched off while its state is stored, so it
can resume computation pretty quickly.
The power consumption is reduced.

The PM-state "OFF" is self-
explanatory; the state of the core
is not stored and the power consump­
tion is minimal. Resumption of the
computation takes more time than in
SLEEP-mode.

(d) four PM-states

Figure 3. Power management policies.

In our simulation, we consider two reliability aware dynamic power
management (RADPM) strategies: The low-temperature-policy, which
tries to keep the temperature as low as possible, and the smooth-temper­
ature-policy, whose goal is to restrict thermal cycling. These policies are
compared to the (reliability unaware) fast-upgrade-policy, which tries to
optimize performance and serves as a representative of usual power man­
agement strategies. The simulated computing environment is a homoge­
nous multi-core-processor with four cores. Each core has four different
Power-Management states (see Figure 3(d)).

From Model-Driven Design to Resource Management for Distributed Embedded Systems 211

Figure 3 shows diagrams describing the three PM-pohcies in detail.
Note that the parallehzation of the apphcations is influenced indirectly
by altering the PM-states and thus the performance of the different cores.

4. IMPLEMENTATION AND RESULTS
The aforementioned power management capabilities were integrated

into the SDVM by implementing the so-called energy manager. This
energy manager has a master mode and a slave mode. Only one core's
energy manager is in master mode (the master core), which then controls
the PM-states of all cores. The main task of the energy managers in slave
mode is to listen to the master core and to implement its orders, setting
the local site to the desired PM-state. If a slave energy manager observes
the absence of the master core (due to a crash or shutdown), it starts an
election of a new master core.

The basis for the decision for a new power configuration is the tem­
perature and the mean workload of each core. This information is dis­
tributed through the cluster by the SDVM's cluster manager's message
mechanism.

The test set-up simulates a homogenous multi-core processor with four
cores. To this end, the SDVM runs on a cluster of four identical com­
puters. To each PM-state, a typical power consumption value based on
an Intel Pentium M processor [7] is assigned (see Table 1).

Table 1. PM-states and their power consumption

PM-state I HF HFidZe LF hFidie SLEEP O F F

power consumption I 15 W 10 W 7.5 W 4 W 3 W 0.2 W

The temperature Tj of a core is determined out of its power consump­
tion by the formula

TJ = TA + OAJ ' PDISS (4)

Where TA is the environmental temperature, 9AJ is the thermal resis­
tance of the core, and PDISS is the power consumption. For 6AJ^ a value
oi4.b°C/W isused.

With this set-up, each PM-strategy (and the "no-PM strategy" as a
reference) was simulated using identical workloads composed of multiple
instances of a parallelized example application (Romberg integration [6]).
The results of the simulations of the PM-strategies are given in figures 4,
5, and 6 showing the workload (area chart) and the temperature (black
line) of the four cores for the fast-upgrade, smooth-temperature and low-
temperature policy respectively.

The figures 4, 5, and 6 show a clear difference between the three poli­
cies. The low-temperature policy restricts the maximum temperature to

212 From Model-Driven Design to Resource Management for Distributed Embedded Systems

Site1 Site 2

157 314 471 628 785

runtime (s)
157 314 471 628 785

runtime (s)

Figure 4- Fast-upgrade policy.

164 328 492 656 820 984 0 164 328 492 656 820 984

runtime (s) runtime (s)

Figure 5. Smooth-temperature policy.

61°C, while with the other two pohcies a maximum temperature of 86° C
is obtained. The higher temperature of core 1 in figure 4 is caused by
the fact that the fast-upgrade policy always leaves one core in HF-mode.

Regarding thermal cycling, we see a reduction both in frequency and
magnitude by the smooth-temperature policy compared to the fast-up­
grade policy. Because of the temperature hmitation, the low-temperature
policy causes thermal cycling of lower magnitude, but also with higher
frequencies, expecially when the temperature limit is reached.

From Model-Driven Design to Resource Management for Distributed Embedded Systems 213

Site1 Site 2

2 ^

E ^

1 11 B 9

1 II11 ira rai

fr M1 li i II1 u 11—.—II. ill. 1
165 330 495

Site 3

II ^

f'^^'^-Plll

lj3[
^ --J

llillpii
165 330 495 660 825 990 0 165 330 495 660 825 990

runtime (s) runtime (s)

Figure 6. Low-temperature policy.

Table 2. AFT^ AFTC^ mean runtime, and mean power consumption of all cores

PM-policy

n o P M
fast-upgrade

smooth-temperature
low-temperature

AFT

1
0.12
0.19
0.1

AFTC

1
3.27
1.2

3.28

mean
runtime

32.7s
35.0s
35.9s
64.8s

power
consumption

48.15 W
31.55 W
37.29 W
23.18 W

Using the models described in section 3, we computed for each policy
the acceleration factors AFT a-nd AFTC giving the acceleration of the
time to failure due to temperature and temperature cycling respectively.
Table 2 gives the means of these values over all cores, together with the
mean runtime and the mean power consumption.

The acceleration factors without power management are 1, since this
ca^e is the reference. We see that all PM-strategies are beneficial re­
garding failure due to temperature, especially the low-temperature and
the fast-upgrade policy. The fact that the low temperature policy is not
much better than the fast upgrade policy regarding AFT (despite the
lower maximum temperature) is owed to prolonged computation dura­
tions of the first whereas the latter has shorter computation durations
which leaves more time for cooling down. In view of thermal cycling,
the smooth-temperature policy is the clear winner, while the other two
policies show obvious acceleration.

This clearly shows that the reliability of a multi-core chip can be
influenced actively with PM-strategies. It should be pointed out that
such an approach is only possible using dynamic power management.

214 From Model-Driven Design to Resource Management for Distributed Embedded Systems

which in turn can be implemented only within a system which distributes
the workload dynamically, as the SDVM does. Incorporating reliability
awareness into compile-time power management schemes seems to be
almost infeasible.

5. CONCLUSION
In this paper, we proposed reliability-aware dynamic power manage­

ment (RADPM), which incorporates lifespan-controUing goals. The us­
ability of RADPM to prolong system-lifetime was demontrated by simu­
lating a multi-core chip on the Self Distributing Virtual Machine (SDVM).
The SDVM was augmented for this purpose with the so-called energy
manager, which implements different PM-policies. The basic approach,
however, could be implemented on any multi-core system which dis­
tributes the workload dynamically.

The PM-policies presented are no final solutions for RADPM, but
serve as a proof of concept, that the long-term reliability of a multi-core
chip can actually be altered deliberately with RADPM. Real implemen­
tations for RADPM on mult-icore chips could include, for example, a
"reliability account" for each core or could consider the geometric config­
uration of the cores on the chip to optimize the temperature distribution.

A new insight, however, is that parallelism may not only be used to
improve performance, but to improve reliability as well.

The SDVM's homepage containing its complete source code and doc­
umentation can be found at: h t t p : / / s d v m . t i . c s . u n i - f r a n k f u r t . d e .

REFERENCES
[1] ITRS, "Critical reliability challenges for the international technology roadmap

for semiconductors," 2003, international Sematech Technology Transfer document
03024377A-TR.

[2] J. Srinivasan, S. V. Adve, P. Bose, J. Rivers, and C.-K. Hu, "Ramp: A model
for reliability aware microprocessor design," in IBM Research Report, RC23048
(W0312-122), Dec. 2003.

[3] J. Srinivasan and et al., "The case for lifetime reliability-aware microprocessors,"
in Proc. of the 31st Annual Intl. Symp. on Comp. Architecture, 2004.

[4] K. Mihic, T. Simunic, and G. D. Micheli, "Reliability and power management of
integrated systems," in DSD - Euromicro Symposium on Digital System Design,
2004, pp. 5-11.

[5] JEDEC, "Failure mechanisms and models for semiconductor devices," 2003,
jEDEC Publication JEP122-B, Jedec Solid State Technolgy Association.

[6] J. Haase, F. Eschmann, B. Klauer, and K. Waldschmidt, "The SDVM: A Self
Distributing Virtual Machine," in Organic and Pervasive Computing -ARCS
2004: International Conference on Architecture of Computing Systems, ser. Lec­
ture Notes in Computer Science, vol. 2981. Heidelberg: Springer Verlag, 2004.

[7] Intel, "Pentium M Processor Datasheet," Apr. 2004, http:/ /www.intel .com/
design/mobile/datashts/252612.htm.

