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Summary. Immunoinformatics has recently emerged as a buoyant and dynamic 
sub-discipline within the wider field of bioinformatics. Immunoinformatics is the 
application of bioinformatic methods to the unique problems of immunology and 
vaccinology. Immunoinformatics, as a principal component of incipient immunomic 
technologies, is beginning to foment important changes within immunology, as this 
key discipline tries to free itself from the empirical straight jacket that has charac­
terised its development and attempts to grapple with the post-genomic revolution. 
Immunoinformatics is, importantly, also beginning to establish itself as a pivotal 
tool within vaccine discovery. 

2.1 Introduction 

Have you ever had a bout of the common cold? Do you suffer from Hay Fever or a 
nut allergy or Asthma? Have you ever had a more serious infectious disease? Are you 
a victim of a chronic autoimmune disease or even cancer? Now answer a seemingly 
distinct and unrelated question: have you ever used a computer? If you answered yes 
to either group of questions, have you ever thought of combining the two? The use 
of computers to fight infectious disease and other acute and chronic disease states 
may seem far fetched to many, but computers have long been used in the design 
of small molecule drugs, and now they are beginning to impact on the design and 
discovery of immunotherapeutics and prophylactic vaccines. We see this dramatic 
synergy made manifest through the discipline of immunoinformatics, a profound 
and exciting new computational science able to greatly accelerate the speed and 
eff'ectiveness of vaccine and immunotherapeutic discovery. 

The domain of infectious disease - allergy, in all its forms; autoimmune disease, such 
as rheumatoid arthritis; and even cancer - is the domain of Immunology. Immunology 
is, amongst other many other things, the study of how the body defends itself 
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against infection, and from the standpoint of human disease, a proper appreciation 
of innate and adaptive immunity is crucial, as the immune system has evolved, 
at least in part, to combat infectious disease, the greatest source of preventable 
human mortality and morbidity. Immunology is thus a very broad branch of the 
biosciences which has led, directly or indirectly, to many pivotal advances in modern 
bio-medicine. Moreover, our knowledge of the molecular and cellular mechanisms 
which underlie immunity has also allowed for the development of new clinical and 
non-clinical technologies, which have an equally broad range of applications. While 
much of its focus remains strongly anthrocentric, or, at least, centred on the adaptive 
immune system of vertebrates, its societal importance can not be gainsaid, as it deals 
with the physiological function of the immune system in both health and disease; 
the malfunctioning of immunity in immunological disorders (autoimmune diseases, 
allograph rejection, hypersensitivities, and immune deficiency); and the in vitro, in 
vivo, and in situ, chemical and physiological properties of immunological components 
of the immune system. 

However, immunology, and all its attendant disciplines, now find themselves at a 
turning point, whether or not practitioners realize it. After a hundred years of empir­
ical research, immunology is increasingly poised to reinvent itself as a quantitative, 
genome-based science. Like most bioscience disciplines, immunology is increasingly 
facing the challenge of capitalizing on a potentially overwhelming cascade of new 
information delivered by high-throughput, post-genomic technologies. This data is 
both bamboozlingly complex and on a scale which has never been encountered be­
fore. It is also clear, at least to some, that such high throughput approaches will 
engender a paradigm-shift from traditional hypothesis-driven research to a new data-
driven, information-focused approach, with new understanding emerging from the 
analysis of complex, intricate, multifaceted datasets. 

In response to pressures such as these, there has been much recent interest in the 
development and deployment of informatics tools, which can analyze the data that 
arises from immunological research of all kinds. In turn, this has lead to the growth of 
two flavours of computational support for immunology. The first is straightforward 
bioinformatics support, technically indistinguishable from support given to other 
areas of biology, and includes genome annotation of both the human genome and 
diverse microbial species. For example, well in excess of 150 bacterial genomes have 
now been sequenced, and hundreds more are nearing completion [Paine & Flower 
2002]. Another area of growth is immunotranscriptomics, or immunologically tar­
geted Microarray analysis [Walker et al. 2002]. 

The other kind of support is more focussed: immunoinformatics. This is an exciting 
and dynamic specialism, which has emerged in recent years within the wider world of 
bioinformatics. It addresses the particular problems which arise within immunology, 
including the accurate prediction of immunogenicity, be that manifest as the identi­
fication of epitopes or the prediction of whole protein immunogens; this endeavour 
stands as the principal short- to medium-term goal of immunoinformatic investiga­
tion. The theoretical or mathematical modeling of the immune systems seeks, as a 
discipline, to address what some are wont to call important scientific questions: how 
might immunity work? What is the nature of host-pathogen interactions? Work of 
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this sort is described in various Chapters elsewhere in this book: Chapter 4 by Lee 
and Perelson, which describes computational modeling of the function of B cell and 
T cell receptors; Chapter 13 by Denise Kirschner, which describes multi-scale mod­
eling of the immune system in response to pathogens; and Chapter 17 by Melvin 
Cohn, which describes the self/non-self paradox. Immunoinformatics, on the other 
hand, is concerned with prosaic, nitty-gritty, nuts-and-bolts issues: is this particu­
lar amino acid sub-sequence of a protein an epitope? Is this protein within a viral 
genome more antigenic than another? Can we identify common virulence factors in 
the genomes of a distinct phylogenetic grouping of bacteria? It is with questions of 
this sort that immunoinformatics concerns itself; it is a discipline which rolls up its 
sleeves and gets on with the job. 

Like bioinformatics, immunoinformatics is grounded in computer science. Increas­
ingly, however, immunoinformatics integrates a whole array of cross-disciplinary 
techniques from physical biochemistry and biophysics; computational, medicinal, 
and analytical chemistry; structural biology and protein homology modeling, as 
well as many other branches of biological, physical, and computational science. 
Traditionally, it has emphasized problem solving and focused on data classifica­
tion into discrete sets rather than predicting continuous, quantitative data, leading 
to the use of black-box neural networks for prediction and to databases such as 
SYFPEITHI [Rammensee et al. 1999]. Increasingly, however, approaches are turn­
ing towards more quantitative models, familiar from decades of QSAR analysis of 
drug molecules, which predict continuous binding measures. This approach is more 
overtly physico-chemical in nature, with a greater implicit emphasis on the explana­
tion of underlying atomistic molecular mechanisms. These different points of view 
are highly complementary. Remaining conflicts between these diflfering perspectives 
are easily reconciled by methods from Drug Design. Such methods meet both ob­
jectives: seeking to explain and understand without sacrificing efficiency or loosing 
sight of the pragmatic and utilitarian purpose of the undertaking. 

It is perhaps a cliche, or at least a truism, to say that the immune system is complex, 
complicated, and hierarchical, exhibiting considerable emergent behaviour at every 
level from subcellular to organismal. Yet, for all that, this aphorism retains an essen­
tial veracity. If it were not true, then the book you are reading, in silico immunology, 
would not need to be written. The complexity of the immune systems is confounding, 
and, though many might wish to deny it, our ignorance of it remains profound. Yet, 
at the heart of the immune system lie straightforward molecular recognition events: 
the coming together of two or more molecules to form stable complexes of measur­
able duration. In terms of atomistic interactions, these events are indistinguishable 
from the binding phenomena experienced by any macromolecule. The binding of an 
epitope to a major histocompatibility complex protein (MHC), or T Cell Receptor 
(TCR) to a peptide-MHC complex is, thus, in terms of underlying physico-chemical 
phenomena, identical in nature to any other molecular interaction in any other area 
of bioscience. It is only at higher levels - when tens, or thousands, or millions of dif­
ferent molecules come together - that immune systems exhibit, in time and space, 
complex and confusing emergent behavior. In seeking to understand immunology 
and address its problems, immunoinformatics can exploit the observation that the 
immune system is based on simple, understandable molecular events, and, within 
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the biological context of the subject, it does seek, in the broadest sense, to model 
such phenomena. Much of the rest of this chapter will explore how. 

2.2 Immunogenicity: A Brief Pr imer 

Immunogenicity is that property of a molecular, or supramolecular, moiety that 
allows it to induce a significant response from the immune system. Here a molec­
ular moiety may be a protein, lipid, carbohydrate, or some combination thereof. 
A supramolecular moiety may be a virus, bacteria or protozoan parasite. An im-
munogen - a moiety exhibiting immunogenicity - is a substance which can elicit a 
specific immune response, while an antigen - a moiety exhibiting antigenicity - is a 
substance recognized, in a recall response, by the extant machinery of the adaptive 
immune response, such as T cells or antibodies. Thus, antigenicity is the capacity, 
exhibited by an antigen, for recognition by one or several parts of the antibody 
or TCR immune repertoire. Immunogenicity, on the other hand, is the ability of 
an immunogen to induce a specific immune response when it is exposed to initial 
surveillance by the immune system. These two properties are clearly coupled but 
properly understanding how they are inter-related is by no means facile. 

Predicting actual antigenicity and/or immunogenicity of a complex protein remains 
problematic. It depends simultaneously upon the context in which it is presented 
and also the nature of the immune repertoire that recognizes it. Either or both of 
these components may be critical. For example, the immune response in many im-
munogens or antigens is focused to a handful of immunodominant structures, while 
much of the rest of the molecule may be unable to engender a response. Mutat­
ing an antigen may eliminate, reduce, or even enhance its inherent immunogenicity, 
or, of course, it might move it to other regions of the molecule. In seeking to as­
sess immunogenicity, we must consider properties of the host and the pathogenic 
organism of origin, and not just the intrinsic properties of the antigen itself. The 
composition of the available immune repertoire will affect its response to a given 
epitope and alter its recognition of a particular target. When mounting a response 
in vivo, those elements of an immune repertoire capable of participating, in a given 
response, might have been deleted through their cross-reactivity with host antigens. 
Moreover, fundamental restrictions on the antibody repertoire, imposed by the lim­
ited number of V genes that encode the antigen-binding site of the antibody, may 
also limit responses. Overall, it is clear that antigenicity and immunogenicity have 
many interlinked causes. The induction of immune responses requires critical inter­
action between parts of the innate immune system, which respond rapidly and in a 
relatively nonspecific manner, and other, more specific components of the adaptive 
immune system, which can recognize individual epitopes. 

Immunogenicity is currently the most important and interesting property for analysis 
and prediction by immunoinformatics. Immunogenicity can manifest itself through 
both arms of the adaptive immune response: humoral (mediated through the bind­
ing of whole protein antigens by antibodies) and cellular immunology (mediated by 
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the recognition of proteolytically cleaved peptides by T cells). Humoral Immuno-
genicity, as mediated by soluble or membrane-bound cell surface antibodies, can 
be measured in several ways. Methods such as enzyme-linked immunosorbent assay 
(ELISA) or competitive inhibition assays yield values for the Antibody Titre, the 
concentration at which the ability of antibodies in the blood to bind an antigen has 
reached its half maximal value. One can also measure directly the affinity of anti­
body and antigen, using, for example, equilibrium dialysis. Likewise, measurements 
of cellular immunity through T cell responses have become legion. For class I pre­
sentation, arguably the most direct approach is to measure T cell killing. Cytotoxic 
T lymphocytes or CTL, can induce lysis in target cells. This can be measured using 
a radioisotope of chromium, which is taken into target cells and released during 
CTL lysis. For class II presentation, the proliferative response of CD4+ T cells, 
which acts indirectly by activating B cells or macrophages, can be measured using 
the incorporation of tritiated thymidine into T cell DNA during cell division. Al­
ternatively, Enzyme-Linked ImmunoSpot, or ELISpot, assays measure production 
of cytokines or other molecules by class I and /or class II T-cells when exposed to 
antigen. More recently attention has migrated towards tetramers as tools for detect­
ing T cell responses [Doherty et al. 2000]. MHCrpeptide tetramers are formed from 
four biotinylated peptide-MHC complexes (pMHCs) bound to tetrameric avidin or 
streptavidin. These tetramers bind to TCRs with a proportionately higher affinity 
allowing antigen-T cell interactions to be assessed with greatly enhanced specificity. 

Much of immunogenicity is determined by the presence of epitopes, the principal 
chemical moieties recognized by the immune system. Consequently, the accurate pre­
diction of B cell and T cell epitopes is the pivotal challenge for immunoinformatics. 
Despite a growing appreciation of the role played by non-peptide epitopes, such as 
carbohydrates and lipids, nonetheless peptidic B cell and T cell epitopes (as medi­
ated by the humoral or cellular immune systems respectively) remain the principal 
tools by which the intricacy of immune responses can be surveyed and manipulated, 
since it is the recognition of epitopes by T cells, B cells, and soluble antibodies that 
lies at the heart of the adaptive immune response. Such initial responses lead, in 
turn, to the activation of the cellular and humoral immune systems and, ultimately, 
to the effective destruction of pathogenic organisms. 

While the prediction of B cell epitopes remains primitive and largely unsuccessful 
[Blythe & Flower 2005], a multitude of sophisticated, and successful, methods for 
the prediction of T cell epitopes have been developed [Flower et al 2002]. These be­
gan with early motif methods [Doytchinova et al. 2004c], and have grown to exploit 
both qualitative and semi-quantitative approaches, typified by neural network clas­
sification methods, and a variety of more quantitative techniques [Doytchinova & 
Flower 2002c]. Most modern methods for T cell epitope prediction rely on predicting 
the affinity of peptides binding to MHCs. The T cell, a speciahzed type of immune 
cell mediating cellular immunity, constantly patrols the body seeking out foreign 
proteins derived from microbial pathogens. T cells express a particular receptor: the 
T cell receptor or TCR, which exhibits a wide range of selectivities and affinities. 
TCRs bind MHCs, which are presented on the surfaces of other cells. These proteins 
in turn bind small peptide fragments (epitopes) originating from both endogenous, 
or self, and exogenous, including pathogen-derived, protein sources. It is, as we have 
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said, the recognition of such complexes that lies at the heart of both the adaptive, 
and memory, cellular immune response. 

2.2.1 T cell and Antibody Repertoire 

Until recently, the immune system was thought to discriminate rigidly between "self" 
and "non-self". This discrimination was believed to form the basis of protection of 
the host against pathogens. Such views are changing as studies indicate that deter­
minants of self do not always induce absolute immune tolerance in the host. Under 
certain conditions peptides from self-antigens can be processed and displayed by 
MHC as targets for immune surveillance. This provides a rationale for the investi­
gation of, say, self-epitopes as mediators of autoimmunity, or epitopes from cancer 
antigens as targets for immunotherapy or targeting epitopes from proteins which 
induce allergic reactions. 

As we have said, MHCs bind peptides. These are themselves derived through the 
degradation, by protelotytic enzymes, of foreign and self proteins. Foreign epitopes 
originate from benign or pathogenic microbes, such as viruses and bacteria. Self epi­
topes originate from host proteins that find their way into the degradation pathway 
as part of the cell's intrinsic quality control procedures. The proteolytic pathway 
by which peptides become available to MHCs is very complex and many, many im­
portant details and molecular components remain to be elucidated. Yet, it is the 
complexity and degeneracy of the T cell presentation pathway that allows peptides 
with diverse post-translational modifications, such as phosphorylation or glycosyla-
tion, to form pMHCs, and thus, ultimately, to be recognized by TCRs. Moreover, 
MHCs are very catholic in terms of the molecules they bind and are not restricted 
to peptides. Chemically modified peptides and peptidomimetics are also bound by 
MHCs. It is also well known that many drug-like molecules bind to MHCs [Pichler 
2002]. 

As we shall see below, the overall presentation process is long, complicated, and 
involves many subsidiary steps. There are several alternative processing pathways, 
but the principal ones seem linked to the two major types of MHC: Class I and 
Class H. Class I MHCs are expressed by almost all nucleated cells in the body. 
They are recognized by T cells whose surfaces are rich in CDS co-receptor protein. 
Class H MHCs are only really expressed on so-called professional antigen present­
ing cells and are recognized by T cells whose surfaces are rich in CD4 co-receptors. 
MHCs are polymorphic. Generally, most humans have six classic MHCs: 3 Class 
I (HLA-A, B, and C) and 3 class H (HLA-DR, DP, and DQ), these proteins will 
have different sequences, or different HLA alleles, in different individuals. Different 
MHC alleles, both class I and Class H, have different peptide specificities. A simple 
way to look at this phenomenon is to say that MHCs bind peptides which exhibit 
certain particular sequence patterns and not others. Within the human population 
there are an enormous number of different, variant genes coding for MHC proteins, 
each of which exhibits discernibly different peptide-binding sequence selectivities. T 
cell receptors, in their turn, also exhibit different and typically weaker affinities for 
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different peptide-MHC complexes. The combination of MHC and TCR selectivities 
thus determines the power of peptide recognition in the immune system and thus 
the recognition of foreign proteins and pathogens. This will be discussed more thor­
oughly in accompanying chapters. Whatever dyed-in-the-wool immunologists may 
say, such interactions form the quintessential nucleus of immune recognition, and 
thus the principal point of intervention by immunotherapeutics. 

2.3 Epitopes and Epitology 

The word epitope is widely used amongst biological scientists. Etymologically speak­
ing, its roots are Greek, and, like most words, its meanings are diverse and in a state 
of constant flux. It is most often used to refer to any region of a biomacromolecule 
which is recognized, or bound, by another biomacromolecule. For an immunologist, 
the meaning is more restricted and refers to particular structures recognized by the 
immune system in particular ways. The region on a macromolecule, which under­
takes the recognition of an epitope, is called a paratope. In terms of the physical 
chemistry of binding, then we need think only of equal partners in a binding reaction. 
B cell epitopes are regions of a protein recognized by Antibody molecules. T cell 
epitopes are short peptides which are bound by major histocompatibility complexes 
(MHC) and subsequently recognized by T cells. 

A B cell epitope is a region of a protein, or other biomacromolecule, recognized by 
soluble or membrane-bound Antibodies. B-cell epitopes are classified as either linear 
or discontinuous epitopes. Linear epitopes comprise a single continuous stretch of 
amino acids within a protein sequence, while an epitope whose residues are distantly 
separated in the sequence and are brought into physical proximity by protein folding 
is called a discontinuous epitope. Although most epitopes are, in all likelihood, 
discontinuous, experimental epitope detection has focused on linear epitopes. Linear 
epitopes are believed to be able to elicit antibodies that can subsequently cross-react 
with its parent protein. 

A T cell epitope is a short peptide bound, in turn, by MHC and TCR, to form 
a ternary complex. The formation of such a complex is the primary, but not sole, 
molecular recognition event in the activation of T cells. Many other co-receptors 
and accessory molecules, in addition to CD4 and CDS molecules, are also involved 
in T cell recognition. The recognition process is not simple and remains poorly 
understood. However, it has emerged that the process involves the creation of the 
immunological synapse, a highly organised, spatio-temporal arrangement of recep­
tors and accessory molecules of many types. The involvement of these accessory 
molecules, although essential, is not properly understood, at least from a quantita­
tive perspective. Ultimately, the accurate modelling of all these complex processes 
will be required to gain full and complete insight into the process of epitope presen­
tation. 
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We will explore how epitopes arise rather more fully below. The peptides presented 
by class I and class II MHCs differ, principally in terms of their length. Class I 
peptides are primarily derived from intracellular proteins, such as viruses. These 
proteins are targeted to the proteasome, which cuts them into short peptides. Sub­
sidiary enzymes also cleave these peptides, producing a range of peptide lengths, 
of which the distribution used to be believed to fall neatly into the range: 8 to 11 
amino acids. More recently, however, this has been shown that much longer pep­
tides, currently up to 15 amino acids, can also be bound by MHCs and recognized 
by TCRs [Probst-Kepper et al. 2001]. For Class II, the receptor mediated intake of 
extracellular protein derived from a pathogen is targeted to an endosomal compart­
ment, where such proteins are cleaved by cathepsins, a particular class of protease, to 
produce peptides which are typically somewhat longer than Class I. These, again, ex­
hibit a considerable distribution of lengths, centred on a range of 15-20 amino acids. 
However, longer and shorter peptides can also be presented, via Class II MHCs, to 
immune surveillance. Peptide cleavage specificity exhibited by Cathepsins has also 
been investigated and some insight has been gained into cleavage motifs [Chapman 
1998]. However, considerably more work is required before truly efficient predictive 
methods can be realized. 

It is now generally accepted that only peptides that bind to MHC at an affinity 
above a certain threshold will act as T cell epitopes and that, to some extent at 
least, peptide affinity for the MHC correlates with T cell response. This particular 
issue is somewhat complicated and obscured by hearsay and dogma: as with many 
questions important to immunoinformatics, the key, systematic studies remain to 
be done. The behaviour of heteroclitic peptides, where synthetic enhancements to 
binding affinity are often reflected in enhanced T cell reactivity, seems compelling 
evidence of the relationship between affinity and immunogenicity. However, and 
whatever people may say, affinity of binding is an important component of recogni­
tion and thus of the overall process leading to the generation of an immune response. 
Not the only, or, necessarily, the most important part, but a key part nonetheless. 
Its importance is debated, particularly by people critical of the immunoinformatic 
endeavour. Nevertheless, its utility in this context is clear. Experimental immunolo-
gists and vaccinologists are constantly using nascent immunoinformatic approaches 
to select, filter, or prune lists of candidate peptides in order to identify functional 
epitopes. 

Epitopes, whether B cell or T cell, are, as we have mentioned several times above, 
short continuous or discontinuous sequences or strings of amino acids. These may 
be of different length and exist in different contexts, but they remain sequences. 
As such they can be stored in functional immunological databases, much as whole 
sequences are stored in GenBank or Swiss-Prot. As we shall see in the next section, 
there are many of such resources, most available via the Internet. 
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2.4 Databases 

For some time, the database has been the lingua franca or, more prosaically, the com­
mon language of bioinformatics. The creation, and the manipulation of databases, 
which contain biologically relevant information, is the most critical feature of con­
temporary bioinformatics. The same is true of immunoinformatics. This is manifest 
through its support for post-genomic bioscience and as a discipline in its own right. 
Functional data, as housed in databases, will rapidly become the principal currency 
in the dynamic information economy of 21** Century immunology. Having said all 
that, there is nothing particularly new about immunological databases, at least in 
the sense that they do no more than apply standard data warehousing techniques in 
an immunological context. Nonetheless, the continuing development of an expand­
ing variety of immunoinformatic database systems indicates that the application of 
bioinformatics to immunology is beginning to broaden and mature. 

Example databases, such as IMGT [Robinson et al. 2003] or Kabat [Wu & Kabat 
1970], have made the sequence analysis of important immunological macromolecules 
their focus for many years [Brusic et al. 2002]. Functional, or epitope-orientated, 
databases are somewhat newer, but their provenance is now well established. Gen­
erally speaking, such databases record data on T cell epitopes or peptide-MHC 
binding affinity. Arguably, the highest quality database currently available is the 
HIV Molecular Immunology database [Korber et al. 2001b], which focuses on the 
sequence and the sequence variations of a single virus, albeit one of unique med­
ical important. However, the scope of the database is, in terms of the kinds of 
data it archives, less restricted than others, containing information on both cellular 
immunology (T cell epitopes and MHC binding motifs) and humoral immunology 
(linear and conformational B cell epitopes). 

An early, and widely used, database is SYFPEITHI [Rammensee et al. 1999], another 
high quality development, which contains an up-to-date and useful compendium of 
T cell epitopes. SYFPEITHI also contains much data on MHC peptide ligands, 
peptides isolated from cell surface MHC proteins ex vivo, but purposely excludes 
binding data on synthetic peptide. MHCPEP [Brusic et al. 1998], a now defunct 
database, pooled both T cell epitope and MHC binding data in a flat file, introducing 
a widely used conceptual simplification, which combines together the bewildering 
variety of binding measures, reclassifying peptides as either Binders or Non-Binders. 
Binders are further sub-divided as High-binders, Medium binders, and Low binders. 
More recently, Brusic and coworkers have developed a much more complex and 
sophisticated database: FIMM [Schonbach et al. 2005]. This system integrates a 
variety of data on MHC-peptide interactions: in addition to T cell epitopes and 
MHC-peptide binding data, it also archives a wide variety of other data, including 
sequence data on MHCs themselves together with data on the disease associations 
of particular MHC alleles . 

More recently, related, yet distinct, databases have begun to emerge, each addressing 
data on different aspects of molecular immunology. Kangueane and coworkers have 
developed a database that focuses solely on X-ray crystal structures of MHC-peptide 
complexes [Govindarajan et al. 2003], while Middleton et al. describe the Allele 
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Frequency Database which lists population frequencies of particular MHC alleles 
[Middleton et al. 2003]. All these databases are available via the Internet. 

AntiJen [Toseland et al. 2005], formerly known as JenPep[Blythe ei al 2002, Mc-
Sparron et al 2003], is a database developed recently, which brings together a vari­
ety of kinetic, thermodynamic, functional, and cellular data within immunobiology. 
While it retains a focus on both T cell and B cell epitopes, AntiJen is the first func­
tional database in immunology to contain continuous quantitative binding data on a 
variety of immunological molecular interactions, rather than the kind of subjective 
classifications described above. Data archived includes thermodynamic and kinetic 
measures of peptide binding to TAP and MHC, peptide-MHC complex binding to 
T cell receptors, and general immunological protein-protein interactions, such as 
the interaction of co-receptors, interactions with superantigens, etc. Although the 
nature of the data within AntiJen sets it apart from other immunology databases, 
there is, nonetheless, considerable overlap between other systems and AntiJen. 

Moreover, AntiJen shares characteristics with several other newly-emergent non-
immunological databases: thermodynamic binding databases, such as BindingDB 
[Chen et al. 2002], and a variety of other databases of different sorts, of which BIND 
[Bader & Hogue 2000] and Brenda [Schomburg et al. 2002] are prime examples. 
Such databases, which contain experimental measured binding affinities, are a rel­
atively recent development. The focus of these databases is rigorously measured 
thermodynamic properties derived from experimental protocols such as Isothermal 
Titration Calorimetry (ITC), which can return not only free energies of binding, but 
also equivalent enthalpies, entropies, and heat capacities. As these protocols are well 
standardized, databases, such as BindingDB, can easily record precise experimental 
conditions. 

In the domain of immunological experiments, AntiJen records IC50, BL50, t l / 2 mea­
surements, etc. For each such measurement, it also archives standard experimental 
details, such as pH, temperature, the concentration range over which the experiment 
was conducted, the sequence and concentration of the reference radiolabeled peptide 
competed against, together with their standard deviations. As it is rare to find a 
paper which records all such data in a reliable way, thus standardization remains a 
significant issue. It is also unclear how much more data remains to be collated. 
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2.5 Immunoinformatic Datamining 

A useful simplification of biological computation is to split methods between the ar­
eas of datamining and simulation. In truth, of course, there is a continuous spectrum 
of techniques stretching from one extreme to the other. Within immunology, a key 
example of data mining is the identification of peptide binding motifs, which seeks 
to characterize the peptide specificity of different MHC alleles in terms of dominant 
anchor positions with a strong preference for certain amino acids [Sette et al. 1989]. 
Such motifs are undoubtedly popular amongst immunologists, as they are simple to 
understand and just as simple to implement either visually or computationally. For 
example, human Class I allele HLA-A*0201, probably the best-studied allele, has 
anchor residues at peptide positions P2 and P9. At P2, acceptable amino acids would 
be L and M, and V and L at position P9. Secondary anchors, which are residues 
that are favourable, but not essential, for binding, may also be present. A seem­
ingly uncountable number of papers have, over the past 15 years or so, successfully 
extended this to include the specificity patterns of many other alleles, both human 
and animal. However, despite this success, there are many fundamental problems 
with the motif approach. 

The most significant of problem with motifs is that they are deterministic: a peptide 
either is, or is not, a binder. A brief reading of the literature shows that motif matches 
produce many false positives, and probably also produces an equal number of false 
negatives, although such negative results are seldom screened. Thus being motif-
positive, as the jargon can put it, is neither necessary not sufficient for affinity for 
an MHC. Although it is clear that so-called primary anchors do often dominate 
binding, it is well known, that binding motifs, as descriptions of the process, are 
fundamentally flawed. Not hopeless, not useless, but partial and incomplete. In the 
sense that motifs are widely used and widely understood, they are indeed most 
useful, but as accurate predictors of binding they leave much to be desired. Such 
shortcomings have led many to seek other data mining solutions to the peptide-MHC 
affinity problem. 

The development of data driven predictive methods in immunoinformatics is now 
two decades old. Early methods attempted to predict epitopes directly, and, in the 
absence of knowledge of the peptide preferences of MHC restriction, enjoyed hmited 
success [Deavin et al 1996, Flower 2003]. As described in chapter 8, several groups 
have used techniques from artificial intelligence research, such as artificial neural 
networks (ANNs) and hidden Markov models (HMMs), to tackle the problem of 
predicting peptide-MHC affinity [Brusic & Flower 2004]. ANNs and HMMs, are, for 
slightly different applications, particular favourites among bioinformaticians when 
looking for tools to build predictive models. However, the development of ANNs 
is often complicated by their preponderance for problems of interpretation, and 
also for overtraining and over-fitting. Of course, many other methods - indeed, in all 
probability, all methods - suffer similar or equivalent problems. Indeed, over-fitting is 
the curse of all data driven methods. Support vector machines are currently fiavour-
of-the-month. Whether this method, or indeed any other AlS-based approach, will 
ever escape the traps which have caught-out other techniques remains to be seen. A 
number of prediction servers are available over the web. See table 2.1. 
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In the prediction of MHC-binding, the main issues are the quahty, quantity, ability 
to represent available data, the complexity of the selected predictive model rela­
tive to the natural complexity of the peptide-MHC interaction, and the training 
and testing of the predictive model. A good quality data set is critical to the cre­
ation of an accurate prediction system. Available data contains significant biases, as 
peptides are often pre-selected for experimental testing using binding motifs. Data 
is often intrinsically poor and requires data cleaning. Data quantity also has im­
portant implications for the selection of appropriate prediction methods. Guidelines 
have been given based on a recent comparative study of algorithm performance [Bru-
sic k, Flower 2004, Yu et al. 2002] and were suggested in the context of Artificial 
Intelligence techniques, which have well defined data requirements: 

1. If there is no binding data at all, then speculative molecular modeling is the 
only option. Here, supertype analysis, as described later, can be useful. 

2. When the number of available peptides is below 50, binding motifs are the most 
pragmatic solution. 

3. With 50-100 peptides, quantitative matrices or SVMs can be used. 
4. With data sets comprising over 100 peptides, HMMs or ANNs can be used. 
5. With very large data sets, only really available for HLA-A*0201, ANNs can 

provide high specificity predictions, albeit at the price of slightly lowered sensi­
tivity. 

Our own QSAR methods have slightly diff'erent data requirements. For more in­
formation on these approaches see Chapter 8. The minimum set size is about 20 
peptides, though models only begin to gain statistical significance at 40 peptides 
and above. When sets reach 200 or above, then it becomes possible to introduce 
reliable cross-terms: 1-2 and 1-3 side chain-side chain interactions in our case. 

However, as we have explained above, it is not just quantity, but data diversity, that 
is an issue. As diversity in peptide sequence and binding affinity increases, so does 
the predictivity and generality of the models. Highly degenerate data or data with a 
very narrow affinity range often prove difficult. Predictive models should be tested 
before use, using internal cross-validation and the splitting of data into training and 
test sets. 

2.6 Modelling T cell Mediated Antigen Presentation and 
Recognition 

One of the most challenging problems in modern computational vaccinology is the 
effective modeling of the cellular presentation of antigenic epitopes. Professional 
antigen-presenting cells (APCs), such as dendritic cells or macrophages, endocytose 
and process protein antigens into peptides, which are subsequently presented on 
the cell surface associated with MHC molecules. This presentation can then result 
in the stimulation of cytotoxic or helper T cells. Conceptually, the phenomenon of 
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Fig. 2.1. The 'Simple' Class I Processing Pathway: A schematic showing asimplified 
view of class I antigen presentation. Peptides are generated initially from whole 
proteins via cleavage in the proteasome, followed by transport, into the endoplasmic 
reticulum (ER), by the transporter associated with processing (TAP). ERAAP trims 
peptides prior to  binding by MHC molecules. MHCs are transported to the cell 
surface where they are recognized by T cells. The kind of measurable quantities, 
such as affinities or cleavage patterns, available for each step on the pathway are 
shown. This process approximates to  a funnel with the principal bottleneck being 
binding by the MHC. The kind of model we have worked on (QSAR or MD model) 
is also indicated. 

antigen presentation can be divided into three mechanistic stages. Firstly, antigen 
uptake: the recognition of antigen proteins by cell surface-receptors and the subse- 
quent internalization of soluble, extracellular antigens. Secondly, antigen processing: 
intracellular enzymatic degradation and transport of endocytosed and cytoplasmic 
endogenous and exogenous proteins followed by peptide loading of MHC molecules. 
Thirdly, the exocytosis of MHC complexes, containing self and exogenous and en- 
dogenous antigenic peptides, and CD1, which presents potentially antigenic lipids. 
Put a t  its simplest, fragments of extracellular proteins are presented by class I1 
MHCs and fragments of intracellular proteins are presented by class I MHCs; so- 
called cross-presentation refers to the presentation of extracellular antigens in the 
context of class I MHCs and vice-versa. 

Much of what we adumbrate below will focus on class I antigen presentation; a 
somewhat simplified description of the many subsidiary steps involved in class I 
presentation is shown in Figure 2.1. Significant advances have been made recently 
in the modeling of class I presentation, particularly the prediction of proteasomal 
cleavage patterns and peptide binding to TAP. Together studies on proteasomal 
cleavage and TAP transport represent a good first attempt to produce useful pre- 
dictive tools for the processing aspect of Class I restricted epitope presentation. 
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Cytosolic proteins, after labeling with ubiquitin, are transported to the proteasome, 
a multimeric protease responsible for most protein digestion within the cytosol, 
where they are cleaved into short peptides, typically 15 or fewer amino acids in 
length. Several methods have been development for predicting semi-stochastic pro-
teasomal protein cleavage [Brusic k. Flower 2004]. All perform statistical analysis of 
digested fragments from a small set of proteins, principally enolase-1, and augmented 
this sparse data-set with signals apparent in the termini of peptides eluted from cell 
surface MHCs. This developed the work of [Altuvia & Margaht 2000], who showed 
that the termini of peptides eluted from cell surface MHCs exhibit distinct sequence 
motifs at the C, but not the N, terminus, consistent with peptides undergoing N 
terminal trimming by other proteases subsequent to digestion by the proteasome. 
Several of these methods are available via the Internet. The predictive power shown 
by different prediction methods is only beginning to be evaluated objectively. [Sax-
ova et al. 2003] evaluated three publicly available methods for proteasomal cleavage 
prediction, and found that the best method gave an accuracy value of 70% at the 
C-termini. Clearly, considerable progress is still required. 

Peptides generated by the proteasome are subsequently bound by the transmem­
brane peptide transporter TAP, which translocates them from the cytoplasm to the 
endoplasmic reticulum (ER). In the ER peptides are bound by MHCs. A number of 
studies have been conducted into the peptide substrate specificities exhibited by the 
TAP transporter [Doytchinova et al. 2004a], leading to the development of several 
predictive models for the determination of peptides that bind to TAP. Most identify 
strong sequence patterns at the C-termini. This feature, also present in proteasome 
cleavage patterns, is consistent with a role for ERAAP in N-terminal trimming of 
peptides within the lumen of the endoplasmic reticulum. 

So far, so good: a reasonably straightforward and uncomplicated linear pathway 
has been modeled with some success. However, there are, in reality, many other 
processing components and, indeed, whole presentation pathways, which greatly 
complicate the simple picture sketched out above. The growing complexity of antigen 
presentation is best exemplified by the class I processing pathway. See Figure 2.2. 
As well as the proteasome, peptides are cleaved by other cytosolic proteases, such 
as Tripeptidyl peptidase II (TPPII), currently the only well characterized protolytic 
enzyme known to be involved in presenting epitopes, although it is most probable 
that many others are involved. Peptides cleaved by the proteasome or TPPII are 
degraded by cytosolic proteases such as LAP and TOP. Peptides transported into the 
ER by TAP then bind to MHCs. This process is catalysed by a variety of chaperones, 
including Tapasin, calnexin, and ERp57. Peptides in the ER pool are trimmed by 
ERAAP and other proteases, such as L-RAP. Other anterograde and retrograde 
routes operate between the cytosol and the ER, by which means protein fragments 
can access diff'erent proteases, including puromycin resistant aminopeptidease. 

At the other end of the process, extracellular proteins undergo antigen capture 
mediated by receptor-mediated endocytosis, entering the class I pathway through 
mechanisms of cross-presentation. The exact nature and number of such receptors 
remains obscure. Accurate modeling of this process is complicated by the observation 
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Fig. 2.2. Complex Antigen Presentation Pathway: A more realistic schematic of 
the class I antigen presentation pathway compared to Figure 2.1. This incorporates 
several proteases as well as different mechanisms of cross-presentation. Peptides are 
created or bound at indicated stage. The route taken by peptides is shown by arrows. 
Two points are of note: first, the synergistic interaction of TPPII and proteasome in 
the proteolytic creation of peptides and second the retrograde access to the cytosol. 

that all cellular compartments or pools, whether conceptual or membrane bound, 
are leaky. 

So far, not so good; at least from the view-point of someone trying to model the 
process. The accurate prediction of antigen processing and presentation depends on 
a proper understanding of the molecular mechanisms underlying the overall path­
way. In order to develop a general model of cell surface epitope presentation, each of 
these steps would require its own predictive model for both the thermodynamics of 
peptide specificity and substrate-dependent peptide kinetics. The process requires 
decomposition into a set of peptide cleavage and peptide binding steps, each of 
which would then be open to modeling. This would not, in itself, account for the 
complexities of antigen presentation. Rather, we will need to supplement individ­
ual bioinformatic models with well understood mathematical models, such as those 
prototyped on reaction kinetics within multifurcating, multi-enzyme pathways: so 
called "metabolic control theory" [Fell 2005], which can account for substrate flux 
within multi-step, multi-component metabolic pathways, and allow for the ready in­
corporation of quantitative aspects of individual bioinformatic models. An effective 
model of this type, however hard to realize in practice, would, in all probability, 
better help us to understand why certain peptides come to dominate presentation: 
the apparently intractable problem of epitope immunodominance. 
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The presentation of peptides by the MHC is often viewed as the most discriminatory 
step of the presentation process. However, peptide recognition by the T cell is also 
vitally important. If we define recognition as the interaction of TCR and pMHC, 
then many complex subsequent steps are involved in the actual activation of T 
cells. Recognition is not an isolated event and the context in which an antigen is 
encountered by a T cell will determine if TCR engagement leads to full activation 
or tolerance. In the presence of costimulation, antigen presentation by an activated 
APC will lead to full activation. However, antigen presentation by a resting APC 
will lead to tolerance. Moreover, molecular recognition of toll-like receptor ligands by 
other receptors also has a key role in activating APCs and promoting the activation 
of T cells. 

2.7 Immunoinformatics and Systems Biology 

At the level of the antigen, and more specifically the protein antigen, immunogenic-
ity is contingent upon properties of the molecule itself, as well as properties of both 
the host and the pathogen, be that microbe or cancer cell. It is, therefore, a collec­
tive property of the entire system of interacting cells and organisms. The response 
of the host is mediated by the recognition of T cell and B cell epitopes, as well as 
the recognition of more mechanistically-generic danger signals. The level of expres­
sion of the antigen and its subcellular location within the pathogenic organism are 
also potentially key arbiters of immunogenicity. The argument runs thus: a poorly 
expressed, under-represented protein in an inaccessible compartment of a microbial 
cell is unlikely to be an important antigen, however potent its individual epitopes 
may be. How such antigens interact with components of the presentation pathway 
is also important: both viral and bacterial proteins are known to interfere with pro­
cesses of antigen presentation: some down regulate MHC production, for example, 
others interfere with peptide transport. 

Immunonomics is a newly coined term which subsumes both the theoretical and 
experimental study of immunology and related disciplines in a post-genomic con­
text. We have already described how the complex process of antigen presentation 
and subsequent T Cell recognition is beginning to be modeled. Such attempts, while 
noteworthy, are still floundering due to lack of relevant data. There is still an ob­
vious need for experiments which directly support the development of useful and 
accurate in silico models. Immunoinformaticians need quality data to work from; 
existing data is seldom satisfactory. Informaticians can no longer exist solely on 
the crumbs dropped from the experimentalist's table. Instead, there is a clear and 
palpable requirement for experiments specifically addressing the kind of predictions 
that immunoinformaticans need to make. Antigen Presentation is being addressed 
by experiment as well as through the development of theoretical methods. Such ex­
periments are, typically, still operating at the phenomenological level: describing the 
phenomenon but not dissecting it. 

Another aspect of immunogenicity prediction, focuses on system properties of indi­
vidual gene products from pathogenic micro-organisms. These seek to predict post-
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translational modifications, subcellular localization, and expression levels. Together 
these appear to be important factors in the identification of potential antigens. Cell 
surface proteins, or ones secreted into the extracellular milieu, are more directly 
open to surveillance by the immune system. Poorly expressed genes are unlikely to 
be potent antigens because, again, they will not be seen by the immune system. 
The presence of post-translational modifications can often act as danger signals or 
are potent immunomodulators either as components of T cell epitopes or through 
their binding to other receptors. The identification of pathogen proteins which are 
highly expressed and/or found or outside the pathogen cell and/or contain post-
translational modifications is a highly complementary approach to the detection of 
epitopes, which can be used to select potential antigens with or without knowledge 
of T cell or B cell responses. An alternative to this approach is to attempt the di­
rect identification of antigens without reference to any mechanistic detail. Here one 
might endeavor to discriminate between sets of known antigens and sets of known 
non-antigens or random sets of proteins. While conceptually simple and straight­
forward, this approach is untested: at present, neither large sets of antigens nor 
appropriate descriptors are forthcoming. 

The effective prediction of protein expression levels in a pathogenic microbe is a 
potentially important indicator of putative immunogenicity. However, there are in­
herent difficulties in both the process of prediction itself and in even knowing what 
an appropriate expression level is. Clearly, under certain conditions, such as starva­
tion, patterns of expression will change dramatically, being up-regulated or down-
regulated significantly. Generally, we can assume that the successful surveillance of 
a microbial protein by the immune system will be linked, in part at least, to its 
presence in sufficient quantities. There are many ways to predict expression levels 
but the best studied is codon usage [Karlin & Mrazek 2000]. Different organisms dis­
play different codon biases: the preference for one codon rather than another when 
coding for amino acids. Moreover, there is also a correlation between the choice of 
which codon is used and the level and rate at which a protein is expressed. The 
ability to predict different expression levels under different conditions is difficult 
and requires at least a partial understanding of the whole hierarchy of immune 
regulation: transcription factors and their binding sites, operons, promotors, mulit-
component regulatory networks, etc. To address this pivotal challenge will require 
the combined ingenuity and imagination of experimentalists, theorists, immunoin-
formaticans, computer scientists, and mathematicians. 

Another important aspect of the prediction of immunogenicity is the accurate iden­
tification of Post-Translational Modifications (PTMs). These can take many forms 
and many potentially contribute to the molecular basis of immunogenicity. PTMs 
can include glycosylation and lipidation. Glycosylated proteins can be targets for 
binding by cell surface receptors based on sugar binding leptin domains. Glycosy­
lated epitopes can also be bound by TCRs and antibodies. Lipids can act as epitopes 
directly through their presentation by GDI. PTMs can also be transitory, such as 
phosphorylation, or more permanent, such as modified amino acids. Many of these 
can be part of functional epitopes recognized by the immune system. Glycosylation 
of a protein, for example, is dependent on the presence of sequence patterns or motifs 
(Ser/Thr-X-Asn for N-linked glycosylation and Ser/Thr for 0-linked) but this is not 
enough to correctly predict them. If these motifs are present at solvent inaccessible 
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regions of a protein rather on the surface then they will not be glycosylated. More­
over, the other residues which surround these patterns will also affect the specificity 
of the glyscosylating enzymes: Pro as the X in the Ser/Thr-X-Asn motif for N-linked 
glycosylation will essentially prevent glycosylation. Glycosylation, in particular, is 
also very dependent on context, and it is thus a system property of an organism, 
and can vary considerably in terms of the nature and extent of the different sugars 
that can become attached to proteins, at least in eukaryotic systems. 

Arguably, the most useful, and thus the best studied, of what we might broadly term 
system approaches to the identification of immunogens, has been the prediction of 
subcellular location. There are two basic types of prediction method: the manual 
construction of rules based on knowledge of what determines subcellular location 
and the application of data-driven machine learning methods, which automatically 
identify factors determining subcellular location by discriminating between proteins 
from different known location. Accuracy differs markedly between different methods 
and different compartments, due to a paucity of data or the inherent complexity 
that determines protein location. Such methods are often classified according to the 
input data required and how the prediction rules are constructed. Input data which 
is used to discriminate between compartments include: the amino acid composition 
of the whole protein; sequence derived features of the protein, such as hydrophobic 
regions; the presence of certain specific motifs; or a combination thereof. Phyloge-
netic profiles can also be used to predict protein location, as the location of close 
protein homologues can be assumed to be similar. 

Signal complexity is a more complicated problem. A very complex signal will require 
considerable data so that one might be confident in the model. A simple signal, on 
the other hand, may prove difficult because many, otherwise unrelated, proteins may 
posses a sorting signal which appears similar, but only by chance. For example, the 
SWISS-PROT sequence database contains about twice as many non-perioxisomal 
proteins with a PTSl sorting signal than real perioxisome-located proteins. 

Another challenge is the difference in locations evinced by different organisms. 
PSORT, a knowledge-based, multi-category program for the prediction of subcellular 
location, and often regarded as the gold standard for such predictions, is composed 
of several different programs. Of special interest in this context is PSORT-B, which 
generates predictions for subcellular location in bacteria. It reports precision values 
of 96.5% and recall values of 74.8%. PSORT-B is a multi-category method which 
makes use of six algorithms: SCL-BLAST, which uses protein homology to identify 
location; PROSITE, which detects motifs; HMMTOP, which predicts membrane 
proteins; outer membrane ^5-barrel proteins are identified using specific sequence 
patterns; SubLocC, is an SVM that uses protein amino acid composition to assign 
a cytoplasmic or non-cytoplasmic location; and a Hidden Markov Model trained to 
identify signal peptide cleavage sites. The results of these 6 methods are combined 
using a Bayesian Network. 

Another well known method of interest here is SignalP, which is based on neural 
networks and predicts N-terminal Spase-I-cleaved secretion signal sequences and 
their cleavage site. The signal predicted is the type-II signal peptide common to 
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both eukaryotic and prokaryotic organisms, for which there is wealth of data, in 
terms of both quality and quantity. A recent enhancement of SignalP is a Hidden 
Markov Model version which is also able to discriminate uncleaved signal anchors 
from cleaved signal peptides. One of the Hmitations of SignalP is over-prediction, 
as it is unable to discriminate between several very similar signal sequences, regu­
larly predicting membrane proteins and lipoproteins as type-II signals. Many other 
kinds of signal sequence exist. A number of methods have been developed to predict 
lipoproteins, for example. The prediction of proteins that are translocated via the 
TAT-dependent pathway is also important but has not been addressed in any depth. 

2.8 Immunoinformatics and Vaccinology 

Vaccines are molecular entities which can, in effect, mimic infectious organisms so 
that such microbes can later be recognised and destroyed by the human body or 
other host, without harm to itself, during subsequent infection. Based on sound, 
experimental data, immunoinformaticians are using statistical and artificial intel­
ligence methods to identify computationally antigenic proteins and epitopes from 
pathogenic micro-organisms - bacteria, virus, parasites, or fungi - which the immune 
system can then recognize, tagging these invading microbes for eventual destruction. 
However, in order to realise the burgeoning power of these advances still requires 
much effort. 

Vaccines can provide both therapeutic and prophylatic treatments of autoimmune 
diseases, allergy, and cancer, as well as infectious disease. In light of the many per­
ceived threats to human health, views about infectious disease, in particular, are 
altering rapidly, leading to a radical reappraisal of the role of vaccines in the fight 
against pathogenic micro-organisms. Immunovaccinology is the name given to a ra­
tional form of vaccinology based very firmly upon our increasing understanding of 
the fundamental mechanisms which underpin immunology. It must also exploit the 
potential power of post-genomic technologies. Humanity has sought to address infec­
tion through the systematic use of biological and chemical entities: small molecule 
drugs and supramolecular vaccines. It is now generally accepted that mass vaccina­
tion, taking account, as it does, of the principal of herd immunity, is amongst the 
most effective prophylactic approaches to the treatment, or rather, pretreatment, of 
infectious disease. 

The discovery of vaccination is generally attributed to Edward Jenner, who noted 
that milkmaids, who had contracted cowpox, a virus related to smallpox, seemed 
immune to the disease. On 14*̂ ^ May 1796, he used the fluid from a cowpox pustule 
to build protective immunity against smallpox in James Phipps, an 8 year old boy. 
Jenner then infected him with smallpox. The boy did not become ill. Later, Vaccina­
tion - the word Jenner had invented for his treatment (from the Latin vacca, a cow) 
- was adopted for immunization against any disease. In 1980, the World Health Or­
ganisation was able to announce the total eradication of smallpox through worldwide 
vaccination. 
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However, vaccination has, until relatively recently, been a highly empirical science, 
relying on poorly understood, non-mechanistic approaches to the development of 
new vaccines. As a consequence of this, relatively few effective vaccines were de­
veloped, and deployed, during most of the two centuries that have elapsed since 
Jenner's work in the closing years of the Eighteenth century. In the post war years, 
when antibiotics were king, the threat posed by serious infectious disease, at least in 
First World countries, seemed to all but vanish, as vaccines and antimicrobial drugs 
combined to almost eliminate it. The present era is characterized by worries over 
a variety of burgeoning threats to human well-being: bio-terror ism, climate change, 
antibiotic resistance, etc. These changes have led, amongst other things, to the re-
emergence of diseases such as TB, and exotic emergent diseases, e.g. SARS or avian 
flu. 

A vaccine is a molecular, or super-molecular, agent which elicits specific, protec­
tive immunity against pathogenic microbes and the diseases they cause. Protective 
immunity is an enhanced adaptive immune response to re-infection, as potentiated 
by immune memory, which, ultimately, mitigates the effect of subsequent infection. 
Historically, vaccines have been attenuated whole pathogen vaccines such as Sabin's 
Polio vaccine or BCG for TB. Recently, safety concerns have led to the development 
of other strategies, focusing separately on subunit/antigen and epitope vaccines (see 
Figure 2.3). Hepatitis B vaccine is an example of an antigen - or subunit - vaccine, 
and many epitope-based vaccines have now entered clinical trials. Nevertheless, de­
spite much effort, both publicly and commercially funded, efficacious vaccines are 
not yet available for many major pathogens such as Shigella, H. pylori, or Meningo­
coccus B. 

WHOLE 
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Fig. 2.3. Types of Vaccine: The three main kinds of vaccine component: whole 
organism attenuated pathogen; subunit whole protein vaccine; polyepitope vaccine. 
These three are the principal kind of core components of modern vaccines. Epitopes 
can, potentially, also be carbohydrate or lipid based or a mixture. Modern vaccines 
are delivered in a variety of ways, such as DNA or as part of a viral vector. Vaccines 
are also often delivered with adjuvants, molecules which can exacerbate an initial 
immune response. 
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Ultimately, the utilitarian value of epitope and immunogenicity prediction will need 
to be demonstrated through their usefulness in experimental vaccine discovery pro­
grammes. All of the methods, we have adduced, focus primarily on the discovery of 
T cell epitopes, which can prove useful, amongst other things, as diagnostic markers 
of microbial infection and as the potential basis of epitope vaccines. Many workers 
have, in recent years, used computational methods as part of their strategy for the 
identification of both Class I and Class II restricted T cell epitopes. However, it 
is certainly encouraging that many experimental immunologists are now beginning 
to see the need for informatics techniques. Computer-based data and knowledge 
management is essential if this data deluge is not to overwhelm the post-genomic 
vaccinologist. 

There is a clear need to produce more accurate prediction algorithms, which cover 
more Class I and Class II alleles in more species. Yet, for these improved method­
ologies to be ultimately effective, i.e. that they are taken up and used routinely 
by experimental immunologists, these methods must also be tested rigorously for 
a sufficiently large number of peptides that their accuracy can be shown to work 
to statistical significance. To do this requires more than new algorithms and soft­
ware, it requires the confidence of experimentalists to exploit the methodology and 
to commit laboratory experimentation. Yet most of these tools remain daunting for 
laboratory-based immunologists. The use of these methods should be routine. It is 
not only a matter of training and education. These methods must, ultimately, be 
made more accessible and robust. 

2.9 Discussion 

From a societal standpoint, immunology is rightly viewed as an important - even a 
paramount - science. Immunologists are sometimes regarded as a discipline apart. 
Immunology has a high standing in the wider scientific community: its journals have 
high impact factors, and it is a large and, generally speaking, a well funded disci­
pline. Immunology is intimately connected with disease: infectious, most obviously, 
but also autoimmune disease, inherited and multi-factorial genetic disease, cancer, 
and allergy. Yet, for all its prestige, immunology finds itself at a pivotal point in 
its history. After more than a century of empirical research, it is on the brink of 
reinventing itself as a post-genomic science. How will it cope? One obvious way is 
through embracing computational science. 

Immunoinformatics is an amalgam of many different disciplines. Operationally, it 
has grown from bioinformatics and much of immunoinformatics is ostensibly the 
application of standard bioinformatic techniques, such as Micro Array analysis or 
comparative genomics, to the context of immunology. There are, however, several 
areas which are unique to immunology. Amongst these, the accurate prediction of 
immunogenicity, be that manifest as the identification of epitopes or the prediction 
of whole protein antigenicity. It can be fairly described as both the high frontier 
of immunoinformatic investigation and a grand scientific challenge: it is difficult. 
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yet exciting, and, gis a central tool in the drive to develop improved vaccines and 
diagnostics, is also of true practical value. It requires not only an understanding of 
immunology but also the integration of many other disciplines, both experimental 
(physical biochemistry, cell biology, etc.) and theoretical (computer science, etc.). 

We have discussed several distinct areas of immunoinformatic research, yet, there 
are many others, such as predicting B cell epitopes and adjuvant discovery among 
them. Immunoinformatics is changing quickly, with many groups trying to improve 
databases and algorithms. However, despite the steady increase in studies report­
ing the real-world use of prediction algorithms, there is still an on-going need for 
truly convincing validations of the underlying approach. Why should this be? As 
we have seen, predicting T-cell epitopes remains a daunting challenge. We still need 
to understand the underlying cell biology and model accurately the complexities 
of the class I and class II antigen presentation pathway. We also still need to un­
derstand and accurately model the underlying physical chemistry, in terms of both 
thermodynamics and kinetics, of peptide binding to MHCs and of TCRs binding to 
pMHCs. 

We have come to a turning point, where a number of technologies have obtained 
the necessary level of maturity: post-genomic strategies on the one hand and pre­
dictive computational methods on the other. Progress will occur in two ways. One 
will involve closer connections between immunoinformaticians and experimentalists 
seeking to discover new vaccines. In such a situation, work would progress through 
a cyclical process of using and refining models and experiments, at each stage mov­
ing closer towards a common goal of effective, cost-efficient vaccine development. 
The other way is the devolved model, where methods are made accessible and used 
remotely via the web and the GRID. 

However, when deprived of direct collaboration, there is still a clear and obvious 
need for experimental work to be conducted in support of the development of accu­
rate in silico methods. Recent work from our laboratory shows the way. Peptides, as 
reported in literature binding experiments and epitope identification exercises, have 
heavily biased sequence compositions, resulting from a process of pre-selection which 
leads to spiraling self-reinforcement. Since only part of a given selection will bind, 
this rapidly converges to a very limited, and thus incomplete, model of binding dom­
inated by the selection criteria used. These problems would be resolved by a properly 
designed training set. We have addressed this experimentally, beginning by correlat­
ing 90 literature peptide IC50S with cell surface BL50 measurements [Doytchinova et 
al. 2004c]. Using models derived from these values, we predicted super-binders with 
pico-molar affinities much greater than reported values. Using analogues of super 
binders with modified anchor positions, we then evaluated the relative dominance of 
anchor positions in a fully systematic manner. Our ability to combine in vitro and in 
silico analysis allows us to improve both the scope and power of our predictions in a 
way that would be impossible using only data from the literature. To ensure we pro­
duce useful, quality in silico models, rather than worthless and unusable methods, 
we need to value the predictions generated by immunoinformatics for themselves 
and conduct experiments appropriately. 
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The innate and inherent complexity of the immune system is confounding at all 
levels. Nevertheless, the work of many skilled immunoinformaticains has attempted 
and nonetheless clearly succeeded in producing useful, if doubtless imperfect, models 
with true utilitarian value. Progress is, and will continue, being made. We should feel 
confident that the great synergy arising within this discipline will be of true benefit 
to Immunology, leading to clear improvements in vaccine candidates, diagnostics, 
and laboratory reagents. Methods able to predict immunogenicity accurately will 
become landmark tools for the immunologist and vaccinologist working in the world 
of tomorrow. 
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