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Abstract This paper presents a learning system for scoring final positions in the Game 
of Go. Our system leams to predict life and death from labelled game records. 
98.9% of the positions are scored correctly and nearly all incorrectly scored posi­
tions are recognized. By providing reliable score information our system opens 
the large source of Go knowledge implicitly available in human game records, 
thus paving the way for a successful application of machi~e learning in Go. 
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1. Introduction 
Evaluating Go positions is one of the hardest tasks in Artificial Intelligence 

(AI). In the last decades, stimulated by Ing's million-dollar price for the first 
computer program to defeat a professional Go player (which has expired un­
challenged), Go has received significant attention from AI research (Bouzy and 
Cazenave, 2001; Miiller, 2002). Yet, despite ali efforts, the best computer Go 
programs are still no match even for human amateurs of only moderate skill. 
Partially this is due to the complexity of Go, which makes brute-force search 
techniques infeasible on the 19 x 19 board. However, on the 9 x 9 board, which 
bas a complexity between Chess and Othello (Bouzy and Cazenave, 2001), the 
current Go programs perform nearly as bad. The main reason lies in the lack of 
good positional evaluation functions. Many (if not ali) of the current top pro­
grams rely on (huge) static knowledge bases derived from the programmers' 
Go skills and Go knowledge. As a consequence the top programs are extremely 
complex and difficult to improve. In principle a learning system should be able 
to overcome this problem. 

In the past decade severa! researchers have used machine-learning techniques 
in Go. After Tesauro's (1995) success story many researchers, including Dahl 
(2001), Enzenberger (1996) and Schraudolph et al. (1994), have applied Tem-
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poral Difference (TD) learning for learning evaluation functions. Although 
TD-learning is a promising technique, which was underlined by NEURoGo's 
latest performance at the 21st Century Championship Cup (Myers, 2002), there 
has not been a major break:through, such as in Backgammon, and we believe that 
this will remain unlikely to happen in the near future as long as most learning 
is done from self-play or against weak: opponents. 

Over centuries humans have acquired extensive knowledge of Go. Since that 
knowledge is implicitly available in the games of human experts, it should be 
possible to apply machine-learning techniques to extract that knowledge from 
game records. So far game records have only been used successfully for move 
prediction (Enderton, 1991; Dahl, 2001; van der Werf et al., 2002). However, 
we are convinced that much more can be learned from these game records. 

One ofthe best sources of game records on the Internet is the No Name Go 
Server game archive (NNGS, 2002). NNGS is a free on-line Go club where 
people from ali over the world can meet and play Go. Ali games played on 
NNGS since 1995 are available on-line. Although NNGS game records contain 
a wealth of information, the automated extraction of knowledge from these 
games is a non-trivial task at least for the following three reasons. 

Missing lnformation. Life-and-death status of blocks is not available. In 
scored games only a single numeric value representing the difference 
in points is available. 

Unfinished Games. Not ali games are scored. Human games often end by one 
side resigning or abandoning the game without finishing it, which often 
leaves the status of large parts of the board unclear. 

Bad Moves. During the game mistak:es are made which are hard to detect. 
Since mistak:es break: the chain of optimal moves it can be misleading 
(and incorrect from a game-theoretical point of view) to relate positions 
before the mistak:e to the final outcome of the game. 

The first step toward making the knowledge in the game records accessible is 
to obtain reliable scores at the end of the game. Reliable scores are obtained by 
correct classification of life-and-death stones on the board. This paper focuses 
on determining life and death for final positions. By focusing on final positions 
we avoid the problem of unfinished games and bad moves during the game, 
which will have to be dealt with later. 

It has been pointed out by Miiller (1997) that proving the score of final 
positions is a hard task. For a set of typical human final positions, Milller showed 
that a combination of complex static analysis and search, still leaves around 
75% of the board-points unproven. Heuristic classification of his program 
EXPLORER classified most blocks correctly, but stillleft some regions unsettled 
(and tobe played out further). Although this may be appropriate for computer­
computer games it can be annoying in human-computer games, especially under 
the J apanese rules which penalize playing more stones than necessary. 
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Since proving the score of most final positions is not (yet) an option, we focus 
on learning a heuristic classification. We believe that a learning algorithm for 
scoring final positions is important because: 1) it provides a more flexible 
framework than the traditional hand-coded static knowledge bases, and 2) it 
is a necessary first step toward learning to evaluate non-final positions. In 
general such an algorithm is good to have because: 1) large numbers of game 
records are hard to score manually, 2) publicly available programs stiH make 
too many mistakes scoring final positions, and 3) it can avoid unnecessarily 
long human-computer games. 

The rest of this paper is organised as follows. Section 2 discusses the scoring 
method. Section 3 presents the learning task. Section 4 introduces the repre­
sentation. Section 5 provides details about the dataset. Section 6 reports our 
experiments. Finally, section 7 presents our conclusions. 

2. The Scoring Method 
The two main scoring methods in Go are territory scoring and area scoring. 

Territory scoring, used by the Japanese rules, counts the surrounded territory 
plus the number of captured opponent stones. Area scoring, used by the Chinese 
rules, counts the surrounded territory plus the alive stones ~n the board. The 
result of the two methods is usually the same up to one point. The result may 
differ since one player placed more stones than the other, for three possible 
reasons; (1) because Black made the first and the last move, (2) because one 
side passed more often during the game, and (3) because of handicap stones. 
(Under Japanese rules the score may also differ because territory surrounded 
by alive stones in seki is not counted.). In this paper area scoring is used since 
it is the simplest scoring method to implement for computers. 

Area scoring works as follows: First, the life-and-death status of blocks 
of connected stones is determined. Second, dead stones are removed from 
the board. Third, each empty point is marked Black, White,, or neutral (the 
non-empty points are already marked by their colour). The empty points can 
be marked by flood filling or by distance. Flood filling recursively marks 
empty points to their adjacent colour. In the case that a flood fill for Black 
overlaps with a flood fill for White the overlapping region becomes neutral. 
(As a consequence ali non-neutral empty regions must be completely enclosed 
by one colour.) Scoring by distance marks each point based on the distance 
toward the nearest remaining black or white stone(s). Ifthe point is closer to a 
black stone it is marked black, if the point is closer to a white stone it is marked 
white, otherwise (if the distance is equal) the point does not affect the score 
and is marked neutra!. Finally, the difference between black and white points, 
together with a possible komi, determines the outcome of the game. 
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In final positions scoring by ftood filling and scoring by distance should 
give the same result. If the result is not the same, there are large open regions 
with unsettled interior points, which usualiy means that some stones should 
have been removed or some points could still be gained by playing further. 
Comparing ftood filling with scoring by distance is therefore a useful check to 
detect whether the game is finished and scored correctly. 

3. The Learning Task 
The task of learning to score comes down to learning to determine which 

blocks of connected stones are dead and should be removed from the board. 
This is learned from a set of labelied final positions, for which the labels contain 
the colour controliing each point. A straightforward implementation would be 
to learn to classify ali blocks based on the labelied points. However, for some 
blocks this not a good idea because their status can be irrelevant and forcing 
them to be classified just complicates the learning task. 

The only blocks required for a correct score are either ali ve and at the border of 
their area, or dead in the opponent' s area. This is illustrated by Figure 1. Here ali 
marked stones must be classified. The stones marked by triangles must be classi­
fied ali ve. The stones marked by squares must be classified dea?. The unmarked 
stones are irrelevant for scoring because they are not at the border of their area 
and their possible capturability does not affect the score. For example, the two 
black stones in the top-left corner kili the white 
block and are in Black's area. However, they can 
always be captured by White, so forcing them 
to be classified as alive or dead is misleading 
and even unnecessary. (The stones in the bottom 
left corner are alive in seki because neither side 
can capture. The two white stones in the upper 
right corner are adjacent to two neutra} points and 
therefore also at the border of White's region.) 

3.1 Recursion 
Figure 1. Blocks to classify. 

Usually blocks of stones are not alive on their own. Instead they form chains 
or groups which are only alive in combination with other blocks. Their status 
also may depend on the status of neighbouring blocks of the opponent, i.e., 
blocks can live by capturing the opponent. (Although one might be tempted to 
conclude that life and death should be dealt with at the level of groups this does 
not really help because the human notion of a group is not well defined, difficult 
to program, and may even require an underlying notion of life and death.) 
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Because life and death of blocks is strongly related to the life and death of 
other blocks the status of other (usually nearby) blocks has to be taken into 
account. Partially this can be done by including features for nearby blocks 
in the representation. In addition, it seems natural to consider a recursive 
framework for classification which employs the predictions for other blocks 
to improve performance iteratively. In our implementation this is done by 
training a cascade of classifiers which use previous predictions for other blocks 
as additional input features. 

4. Representation 
In this section we will present the representation of blocks for classification. 

Severa! representations are possible and used in the field. The most primitive 
representations typically employ the raw board directly. A straightforward im­
plementation is to concatenate three bitboards into a feature vector, for which 
the first bitboard contains the block to be classified, the second bitboard con­
tains other friendly blocks and the third bitboard contains the enemy blocks. 
Although this representation is complete, in the sense that ali relevant informa­
tion is preserved it is unlikely to be efficient because of the high dimensionality 
and lack of topologica! structure. 

4.1 Features for Block Classification 
A more efficient representation employs a set of features based on simple 

measurable geometric properties, some elementary Go knowledge and some 
hand-crafted specialised features. Severa! of these features are typically used 
in Go programs to evaluate positions (Chen and Chen, 1999; Fotland, 2002). 
The features are calculated for single friendly and opponent blocks, multiple 
blocks in chains, and colour-enclosed regions (CERs). 

For each block our representation consists of the following features: (Ali 
features are single scalar values unless stated otherwise.) 

- Size measured in occupied points. 

- Perimeter measured in number of adjacent points, including points over 
the edge. 

- Opponents are the occupied adjacent·points. 

- (First order) liberties are the free adjacent points. 

- Protected liberties are the liberties which cannot be played by the oppo-
nent, because of suicide or being directly capturable. 

- Auto-atari liberties are liberties which by playing them reduce the liber­
ties ofthe block from 2 to 1, which means that the blocks would become 
directly capturable (such liberties are protected for an adjacent opponent 
block). 
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- Second-order liberties are the liberties of (first-order) liberties (excluding 
the first-order liberties). 

- Third-order liberties are the liberties of second-order liberties ( excluding 
first- and second-order liberties). 

- Adjacent opponent blocks 
- Local majority is the number of opponent stones minus the number of 

friendly stones within a Manhattan distance of 2 from the block. 
- Centre of mass represented by the distance to the closest and second­

closest edge. 
- Bounding box size is the number of points in the smallest rectangular box 

that can contain the block. 

Adjacent to each block are colour-enclosed regions. CERş consist of con­
nected empty and occupied points, surrounded by stones of one colour or the 
edge. It is important to know whether an adjacent CER is fully accessible, 
because a fully accessible CER surrounded by safe blocks provides at least one 
sure liberty. To detect fully accessible regions we use so-called miai strategies 
as applied by Miiller (1997). In contrast to Miiller's original implementation we 
also add miai accessible interior empty points to the set of accessible liberties, 
and also use protected liberties for the chaining. For fully accessible CERs we 
include: 

- Number of regions 
- Size 
- Perimeter 
- Split points are crucial points for preserving connectedness in the local 

3 x 3 window around the point. (The region could still be connected by 
a big loop outside the local3 x 3 window.) 

For partially accessible CERs we include: 

- Number of partially accessible regions 
- Accessible size 
- Accessible perimeter 
- Size of the unaccessible interior. 
- Perimeter of the unaccessible interior. 
- Split points of the unaccessible interior. 

The size, perimeter and number of split points are summed for ali regions. 
We do not address individual regions because the representation must have a 
fixed number of features, whereas the number of regions is not fixed. 

Another way to analyse CERs is to look for possible eyespace. Points form­
ing the eyespace should be empty or contain capturable opponent stones. Empty 
points directly adjacent to opponent stones are not part of the eyespace. Points 
on the edge with one or more diagonally adjacent alive opponent stones and 
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points with two or more diagonally adjacent alive opponent stones are false 
eyes. False eyes are not part of the eyespace (we ignore the unlikely case where 
a big loop upgrades false eyes to true eyes). Initially we assume all diagonally 
adjacent opponent stones tobe ali ve. However, in the recursive framework (see 
below) the eyespace is updated based on the status of the diagonally adjacent 
opponent stones after each iteration. For directly adjacent eyespace of the block 
we include: 

- Size 
- Perimeter 

Since we are dealing with final positions it is often possible to use the opti­
mistic assumption that all blocks with shared liberties can forma chain (during 
the game this assumption is dangerous because the chain may be split). For 
this, so-called, optimistic chain we include: 

- Number of blocks 
- Size 
- Perimeter 
- Split points 
- Adjacent CERs 
- Adjacent CERs with eyespace 
- Adjacent CERs, fully accessible from at least one block. 
- Size of adjacent eyespace 
- Perimeter of adjacent eyespace 
- Externa/ opponent liberties are liberties of adjacent opponent blocks 

which are not accessible from the optimistic chain. 

Adjacent to the block in question there may be opponent blocks. For the 
weakest (measured by the number ofliberties) directly adjacent opponent block 
we include: 

- Perimeter 
- Liberties 
- Shared liberties 
- Split points 
- Perimeter of adjacent eyespace 

The same features are also included for the second-weakest directly adjacent 
opponent block and the weakest opponent block directly adjacent to or sharing 
liberties with the optimistic chain of the block in question. 

By comparing a fiood fill starting from Black with a fiood fill starting from 
White we find unsettled empty regions which are disputed territory (assuming 
ali blocks are alive ). If the block is adjacent to disputed territory we include: 

- Direct liberties in disputed territory. 
- Liberties of all friendly blocks in disputed territory. 
- Liberties of all enemy blocks in disputed territory. 
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4.2 Additional Features for Recursive Classification 
For the recursive classification the following six additional features are used: 

- Predicted value of the strongest friendly block with a shared liberty. 
- Predicted value of the weakest adjacent opponent block. 
- Predicted value of the second-weakest adjacent opponent block. 
- Ave rage predicted value of the weakest opponent block's optimistic chain. 
- Adjacent eyespace size ofthe weakest opponent block's optimistic chain. 
- Adjacent eyespace perimeter of the weakest opponent block's optimistic 

chain. 

Next to these additional features the predictions are also used to update the 
eyespace, i.e., dead blocks can become eyespace for the side th~t captures, ali ve 
blocks cannot provide eyespace, and diagonally adjacent dead opponent stones 
are not counted for detecting false eyes. 

S. The Data Set 
In the experiments we used game records obtained from the NNGS archive 

(NNGS, 2002). All games were played on the 9x9 board between 1995 and 
2002. We only considered games which are played to the end and scored, thus 
ignoring unfinished or resigned games. Since the game records only contain a 
single numeric value for the score, we had to tind a way to labei all blocks. 

5.1 Scoring the Data Set 
For scoring the dataset we initially used a combination of GNuGo and 

manuallabelling. Although G NuGo bas the option to finish games and labei 
blocks the program could not be used without human supervision. The reasons 
for this are bugs, the inherent complexity of the task, and the mistakes made by 
weak human players which ended the game in positions that ~e not final, or 
scored them incorrectly. Fortunately, nearly ali mistakes are easily detected by 
comparing G NUGo's scores and labelled boards with the numeric scores stored 
in the game records. As an extra check ali boards containing open regions with 
unsettled interior points (where flood filling does not give the same result as 
distance-based scoring) were also inspected manually. 

Since the scores did not match in many positions the labelling proved to 
be very time consuming. We therefore only used GNuGo to labei the games 
played in 2002 and 1995. With the 2002 games a classifier was trained. When 
we tested the performance on the 1995 games it outperformed GNuGo's la­
belling. So therefore our classifier replaced GNuGo for labelling all other 
games (1996-2001), retraining it each time a new year was labelled. Although 
this speeded up the process it still required a fair amount of human intervention 
mainly because of games that contained incorrect scores in their game record. 
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A few hundred games had to be thrown out completely because they were 
not finished, contained illegal moves, contained no moves at ali (for at least one 
side ), or both sides were played by the same player. In a small number of cases, 
where the last moves would have been trivial but not actually played, we made 
the last few moves manually. 

Eventually we ended up with a dataset containing 18,222 final positions. 
Around 10% ofthese games were scored incorrectly (by the players) and were 
inspected manually. (Actually the number of games we inspected is signif­
icantly · higher because of the games that were thrown out and because our 
initial classifiers and GNuGo made mistakes). On average the final positions 
contained 5.8 alive blocks, 1.9 dead blocks, and 2.7 irrelevant blocks. (In the 
case that one player gets the full board ali his blocks were assumed irrelevant 
although at least one block should of course be classified as alive.) 

Since the Go scores on the 9x9 board range from -81 to +81 the chances 
of an incorrect labelling leading to a correct score are low, nevertheless it could 
not be ruled out completely. On inspecting an additional 1% of the positions 
randomly we found none that were labelled incorrectly. Finally, when ali games 
were labelled, we re-inspected ali positions for which our best classifier seemed 
to predict an incorrect score. This final pass detected 42 positions (0.2%) which 
were labelled incorrectly, mostly because our initial classifiers had made the 
same mistakes as the players that scored the games. 

5.2 Statistics 

Since many game records contained incorrect scores we looked for reasons 
and gathered statistics. The first thing that carne to mind is that weak players 
might not know how to score. Therefore in Figure 2 the percentage of incorrectly 
scored games related to the strength of the players is shown. (Although in each 
game only one si de may have been responsible for the incorrect score, we always 
assigned blame to both sides.) The two marker types distingui~h between rated 
and unrated players. Although unrated players have a value for their rating, it 
is an indication given by the player and not by the server. Only after playing 
sufficiently many games the server assigns players a rating. 

Although a significant number of games are scored incorrectly this is usually 
not considered a problem when the winner is correct. (Players typically forget 
to remove some stones when they are far abead.) Figure 3 shows how often 
incorrect scoring by rated players converts a win to a loss. 

It should be noted that the percentages in Figures 2 and 3 were weighted over 
ali games regardless of the player. Therefore they do not necessarily reflect the 
probabilities for individual players, i.e., the statistics can be dominated by a 
small group of players that played many games. This group at least contains 
some computer players which have a tendency to get robbed of their points 
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Figure 3. Incorrect winners. 

in the scoring phase. We therefore also calculated some statistics that were 
normalised over individual players. For rated players the average probability 
of scoring a game incorrectly is 4.2%, the probability of cheating (the incorrect 
score converts loss to win) is 0.66 %, and the probability of getting cheated is 
0.55%. For unrated players the average probability of scoring a game incorrectly 
is 11.2%, the probability of cheating is 2.1 %, and the probability of getting 
cheated is 1.1%. The fact that the probability of getting cheated is lower than 
the probability of cheating is the result of a small group of pţayers (several of 
which are computer programs) that systematically Iose points in the scoring 
phase, and a larger group of players that take advantage of them. 

6. Experiments 
In this section experimental results are presented for: ( 1) selecting a classifier, 

(2) performance ofthe representation, (3) recursive performance, (4) full board 
performance, and (5) performance on the 19 x 19 board. Unless stated otherwise 
the various training and validation sets, used in the experiments, were extracted 
from games played between 1996 and 2002. The test set was always the same, 
containing 7149labelled blocks extracted from 919 games played in 1995. 

6.1 Selecting a Classifier 
An important choice is selecting a good classifier. In pattern recognition there 

is a wide range of classifiers to choose from (Jain et al., 2000). We tested a 
number ofwell-know classifiers for their performance on datasets of 100, 1000, 
and 10000 examples. The classifiers are: Nearest Mean Classifier (NMC), 
Linear Discriminant Classifier (LDC), Logistic Linear Classifier (LOGLC), 
Quadratic Discriminant Classifier (QDC), Nearest Neighbour Classifier (NNC), 
K-Nearest Neighbours Classifier (KNNC), BackPropagation Neural net Clas­
sifier with momentum and adaptive learning (BPNC), Levenberg-Marquardt 
Neural net Classifier (LMNC), and RProp Neural net Classifier (RPNC). Some 
preliminary experiments with a Support Vector Classifier, Decision Tree Clas-
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sifiers, a Parzen classifier and a Radial Basis Neural net Classifier were not 
pursued further because of excessive training times and/or poor performance. 
Ali classifiers except the neural net classifiers, for which we directly used the 
standard matlab toolbox, were used as implemented in PRTools3 (Duin, 2000). 

The results, shown in Table 1, indicate that performance first of ali depends 
on the size of the training set. The linear classifiers perform better than the 
quadratic classifier and nearest neighbour classifiers. For large datasets train­
ing KNNC is very slow because it takes a long time to tind an optimal value of 
the parameter k. The number of classifications per second of (K)NNC is also 
low because of the large number of distances that must be computed (ali train­
ing examples are stored). Although the performance of the nearest neighbour 
classifiers might be improved by editing and condensing the dataset, we did not 
investigate them further. 

Classifier Training size Training error Testerror Training time Classi. speed 
(%) (%) (s) (s-1) 

NMC 100 2.8 3.9 0.0 4.9 X 104 

1,000 4.0 3.8 0.1 5.2 X 104 

10,000 3.8 3.6 0.5 5.3 X 104 

LDC 100 0.7 3.0 0.0 5.1 X 104 

1,000 2.1 2.0 0.1 5.2 X 104 

10,000 2.2 1.9 0.9 5.3 X 104 

LOGLC 100 0.0 9.3 0.2 5.2 X 104 

1,000 0.0 2.6 1.1 5.2 X 104 

10,000 1.0 1.2 5.6 5.1 X 104 

QDC 100 0.0 13.7 0.1 3.1 X 104 

1,000 1.0 2.1 0.1 3.2 X 104 

10,000 1.9 2.1 1.1 3.2 X 104 

NNC 100 0.0 18.8 0.0 4.7 X 103 

1,000 0.0 13.5 4.1 2.4 X 102 

10,000 0.0 10.2 4.1 X 103 , 2.4 X 10° 
KNNC 100 7.2 13.1 0.0 4.8 X 103 

1,000 4.2 4.4 1.0 X 101 2.4 X 102 

10,000 2.8 2.8 9.4 X 103 2.6 X 10° 
BPNC 100 0.5 3.6 2.9 1.8 X 104 

1,000 0.2 1.5 1.9 X 101 1.8 X 104 

10,000 0.5 .1.0 1.9 X 102 1.9 X 104 

LMNC 100 2.2 7.6 2.6 X 101 1.8 X 104 

1,000 0.7 2.8 3.2 X 102 1.8 X 104 

10,000 0.5 1.2 2.4 X 103 1.9 X 104 

RPNC 100 1.5 4.1 1.4 1.8 X 104 

1,000 0.2 1.7 7.1 1.8 X 104 

10,000 0.4 1.1 7.1 X 101 1.9 X 104 

Table 1. Performance of classifiers. 
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The best classifiers are the neural network classifiers. It should however be 
noted that their performance may be slightly overestimated with respect to the 
size of the training set, because we used an additional validation set to stop 
training (this was not possible for the other classifiers because they are not 
trained incrementally). The Logistic Linear Classifier performs nearly as good 
as the neural network classifiers, which is quite an achievement considering 
that it is just a linear classifier. 

The results of Table 1 were obtained with neural networks that employed one 
hidden layer containing 15 neurons with hyperbolic tangent sigmoid transfer 
functions. Since our choice for 15 neurons was quite arbitrary a second exper­
iment was performed in which we varied the number of neurons in the hidden 
layer. In Figure 4 results are shown for the RPNC. The classification errors 
marked with triangles represent results for training on 5,000 examples, the stars 
indicate results for training on 15,000 examples. The solid lines are measured on 
the independent test set, whereas 
the dash-dotted lines are obtained 
on the training set. The results 
show that even moderately sized 
networks easily overfit the data. 
Although the performance initially 
improves with the size of the net­
work, it seems to level off for net­
works with over 50 hidden neurons 
(the standard deviation is around 
0.1 %). Again clearly the key fac­
tor in improving performance is in 
increasing the training set. 

1.6 . . . . . . . . . . . . • -6 • Tralnlng error (5000 examples) 
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Figure4. Sizing the neural network for the RPNC. 

6.2 Performance of the Representation 
In section 4 we claimed that a raw board representation is inefficient for 

predicting life and death. To validate this claim we measured the performance 
of such a representation and compared it to our specialised representation. 

The raw representation consists of three concatenated bitboards, for which 
the first bitboard contains the block tobe classified, the second bitboard contains 
other friendly blocks and the third bitboard' contains the enemy blocks. To 
remove symmetry the bitboards are rotated such that the centre of mass of the 
block to be classified is always in a single canonica! region. 

Since high-dimensional feature spaces tend to raise several problems which 
are not directly caused by the quality of the individual features we also tested two 
compressed representations. These compressed representations were generated 
by performing Principal Component Analysis (PCA) on the raw representation. 
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For the first PCA mapping the number of features was chosen identica! to our 
specialised representation. For the second PCA mapping the number of features 
was set to preserve 90% of the total variance. 

The results, shown in Table 2, are obtained for the RPNC with 15, 35, and 75 
neurons in the hidden layer, for training sets with 100, 1,000 and 10,000 exam­
ples. AH values are averages over 11 runs with different training sets, validation 
sets (same size as the training set), and random initialisations. The errors, mea­
sured on the test set, indicate that a raw representation alone requires too many 
training examples tobe useful in practice. Even with 10,000 training examples 
the raw representation performs much weak:er than our specialised representa­
tion with only 100 training examples. Simple feature-extraction methods such 
as Principal Component Analysis do not seem to improve performance, indicat­
ing that preserved variance of the raw representation is relatively insignificant 
for determining life and death. 

Training Size Extractor Test error Test error Test error 
15 neurons 35 neurons 75 neurons 

(%) (%) (%) 
100 - 29.1 26.0 27.3 
100 pca1 22.9 22.9 22.3 

' 
100 pca2 23.3 24.3 21.9 
1000 - 13.7 13.5 13.4 
1000 pca1 16.7 16.2 15.6 
1000 pca2 14.2 14.5 14.4 
10000 - 7.5 6.8 6.5 
10000 pca1 9.9 9.3 9.1 
10000 pca2 8.9 8.2 7.7 

Table 2. Performance of the raw representation. 

6.3 Recursive Performance 
Our recursive framework for classification is implemented as a cascade of 

classifiers which use extra features, based on previous predictions as discussed 
in subsection 4.2, as additional input. The performance measured on an inde­
pendent test set for the first 4 steps is shown for various sizes of the training 
set in Table 3. The results are averages of 5 runs with randomly initialised 
networks containing 50 neurons in the hidden layer (the standard deviation is 
around 0.1 %). 

The results show that recursive predictions improve the performance. How­
ever, the only significant improvement comes from the first iteration. The im­
provements are by far not significant for the average 3- and 4-step errors. The 
reason for this is that sometimes the performance got stuck or even worsened 
after the first iteration. Preliminary experiments suggest that large networks 
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were more likely to get stuck after the first iteration than small networks, which 
might indicate some kind of overfitting. A possible solution to overcome this 
problem is to retrain the networks a number of times, and pick the best based on 
the performance on the validation set. If we do this the best networks, trained 
on 100,000 training examples, achieve a 4-step error of 0.25%. 

Training Size Direct error 2-step error 3-step error 4-step error 
(%) (%) (%) (%) 

1,000 1.93 1.60 1.52 1.48 
10,000 1.09 0.76 0.74 0.72 

100,000 0.68 0.43 0.38 0.37 

Table 3. Recursive performance. 

6.4 Full Board Performance 
So far we have concentrated on the percentage of blocks that are classified 

correctly. Although this is an important measure it does not directly tell us how 
often boards will be scored correctly (a board may contain multiple incorrectly 
classified blocks). Further we do not yet know what the effect is on the score 
in number of board points. Therefore we tested our classifier on the full-board 
test positions (which were not used for training or validation). 

For our best 4-step classifier trained with 100,000 examples we found that 
1.1% ofthe boards were scored incorrectly. For 0.5% ofthe boards the winner 
was not identified correctly. The average number of incorrectly scored board 
points (using distance-based scoring) was 0.15, however in case a board is 
scored incorrectly this usually affects around 14 board points (which counts 
double in the numeric score). 

6.5 Performance on the 19 x 19 Board 
The experiments presented above were ali performed on the 9 x 9 board 

which, as was pointed out before, is a most challenging environment. Never­
theless, it is interesting to test whether the techniques scale up to the 19 x 19 
board. So far we did not have the time to labellarge quantities of 19 x 19 
games. So, training directly on the 19 x 19 board was not an option. Despite of 
this we tested our classifiers, which were trained from blocks observed on the 
9 x 9 board, on the problem set IGS3l_counted from the Computer Go Test 
Collection. This set contains 31labelled 19 x 19 games played by amateur dan 
players, and was used by Miiller (1997). On the 31 final positions our 4-step 
classifier classified 5 blocks incorrectly (0.5% of ali relevant blocks), and as a 
consequence 2 final positions were scored incorrectly. The average number of 
incorrectly scored board points was 2.1 (0.6% ). 
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In his paper Miiller stated that heuristic classification of his program Ex­
PLORER classified most blocks correctly. Although we do not know the exact 
performance of EXPLORER we believe it is safe to say that our system, which 
scored 99.4% of ali board points correctly, is performing at least ata compa­
rable level. Furthermore, since our system was not even trained explicitly for 
19 x 19 games there may still be significant room for improvement. 

7. Conclusions 

We have developed a system that learns to score final positions from labelled 
examples. On unseen game records our system scored around 98.9% of the 
positions correctly without any human intervention. Compared to the average 
rated player on NNGS (who for scored 9 x 9 games has a rating of 7 kyu) our 
system is more accurate at removing ali dead blocks, and performs comparable 
on determining the correct winner. 

By comparing numeric scores and counting unsettled interior points we can 
efficiently detect nearly ali incorrectly scored final positions. Although some 
final positions are assessed incorrectly by our classifier, most are in fact scored 
incorrectly by the players. Detecting these games is important because most 
machine-learning methods require reliable training data for sood performance. 

7.1 Fu ture Work 

By providing reliable score information our system opens the large source of 
Go knowledge which is implicitly available in human game records. The next 
step will be to apply machine learning in non-final positions. We believe that 
the representation and techniques presented in this paper provide a solid basis 
for static predictions in non-final positions. 

The good performance of our system was obtained without any search, indi­
cating that static evaluation is sufficient for most human final positions. Nev­
ertheless, we believe that some (selective) search can still improve the perfor­
mance. Adding selective features that involve search and integrating our system 
into MAGOG, our 9x9 Go program, will be an important next step. 

Although the performance of our system is already quite good for labelling 
game records, there are, at least in theory, still positions which may be scored 
incorrectly when our classifier makes the same mistake as the human players. 
Future work should determine how often this happens in practice. 

Another point where our system can be improved is the representation. Al­
though the current representation performs adequately, some features may be 
redundant or correlated. Feature extraction, feature selection, and possibly 
adding some new features may improve performance even further. 
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