
Chapter 8

ANALYZING TRANSACTION LOGS FOR
EFFECTIVE DAMAGE ASSESSMENT

Prahalad Ragothaman and Brajendra Panda

Abstract In this research, we have proposed to divide the log into several segments based
on three different methods with a view to reduce log access time, as a result,
expediting recovery. We offer to segment the log based on the number of com­
mitted transactions, time and space. A fixed number of transactions will form
a segment in the first approach. In the second method, a new segment will be
formed with all committed transactions after a set time has elapsed. In the third
approach, a segment will be built with all the committed transactions after they
have used up a set size of disk space. The three schemes mentioned also vouch
for the fact that no segment will grow out of proportion since we are enforcing
constraints on their sizes. The algorithms to implement this approach will be
relatively simple and easy. Performances of these algorithms have been tested
through simulation programs and the results are discussed.

Keywords: Transaction dependency, damage assessment, log segmentation, defensive infor­
mation warfare

1. Introd uction
In this rapidly changing world where everything boils down to time, infor­

mation sharing plays a vital role. Computers are the most powerful means to
share information. With the dawn of Internet technologies, this process has
become faster and efficient. But unfortunately, the Internet has also attracted
a large number of malicious users who have used it to break into systems and
render them inconsistent and unstable. Though there are several protection
mechanisms available to stop malicious users from intruding into the system,
they are not always successful as savvy hackers find different ways to attack
systems. Hence the next best thing would be to detect the attack and bring
the system back to a consistent state as soon as possible. Some of the most
recent intrusion detection techniques are presented in [4,5,10]. But intrusion

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI:

© IFIP International Federation for Information Processing 2003
E. Gudes et al. (eds.), Research Directions in Data and Applications Security

10.1007/978-0-387-35697-6_26

http://dx.doi.org/10.1007/978-0-387-35697-6_26

90 DATA AND APPLICATIONS SECURITY

detection techniques are beyond the scope of this research and hence we shall
not discuss them in detail.

Traditional recovery methods [2,3,6] recover databases after a failure. The
log is scanned from the end until the last checkpoint and all those active trans­
actions whose effects were saved into the database are undone and those trans­
actions that were committed but whose effects were not saved into the database
are redone. Also in the traditional logging mechanism, read operations are not
stored and the log is periodically purged to free up disk space. However, for
recovery of databases after an attack by a malicious transaction we require that
both read and write operations of transactions are stored in the log and the
log is never purged. This causes the log to grow to astronomical proportions
and scanning such a log will become a very tedious and slow process. This
will lead to a prolonged denial-of-service. A solution is to devise methods that
read only parts of log and skip as much as possible while guaranteeing that
the sections skipped do not contain any affected transactions. This is done by
log segmentation. Segmenting the log based on transaction dependency [8]
and data dependency [9] achieves this goal. However, these approaches use in­
tricate computation and slow down transaction processing although achieving
faster damage assessment and recovery. In this research we intended to strike
a balance between log segmentation overhead and time needed for damage as­
sessment and recovery. We offer to segment the log based on the number of
committed transactions, time and space. Through simulation we verified the
improved performance of our proposed methods.

A major drawback of the approaches presented in [8,9] is that a segment can
grow to exorbitant proportions. For example, in case of transaction dependency
based log segmentation, if a large number of transactions are dependent on a
single transaction, the cluster can become massive and might even become
as big as the entire log in the worst case. Therefore, scanning for affected
transactions in the clusters will be no different from scanning the entire log,
as a result, slowing the process of damage assessment and recovery. A similar
analogy can be extended to the data dependency approach.

Another drawback in both these approaches is the amount of system re­
sources used in building the segments. In real time, clustering the log based
on transaction dependency and data dependency involves usage of valuable
system resources when execution of operations of transactions must be given
higher priority. In an ideal scenario, a database is not attacked very frequently.
Hence, having simple algorithms to build the segments and designing efficient
algorithms to assess damage is necessary.

In this research, we present simpler models to build the log. We keep in
mind not to allow the clusters to grow too large by enforcing restrictions on
clusters like number of committed transactions, the size of clusters, or a time
window for clusters. We have also presented an algorithm that carries out the

Ragothaman f3 Panda 91

process of damage assessment when the log is clustered according to any of
the three models that we have developed. We have provided simulation results
to show effectiveness of our approaches.

The rest of the paper is organized as follows. The log segmentation models
along with their respective algorithms are presented in Section 2. In Section
3, we offer the damage assessment model. Section 4 discusses the analysis of
results obtained through simulation. Section 5 concludes the paper.

2. Log Segmentation Model

As stated earlier, we have developed methods of segmenting the log so that
the segments are limited from growing out of proportion. A segment is formed
after a certain condition such as a fixed number of committed transactions, a
specified time window, or the space occupied by the committed transactions
is satisfied. Our model is based on the following assumptions: (1) transaction
operations are scheduled in accordance with the rigorous two-phase locking
protocol as defined in [3], (2) read operations are also recorded in the log file,
(3) intrusion is detected using one of the intrusion detection techniques and
the id of the attacking transaction is available, (4) the log is never purged, and
(5) blind writes are not allowed. Next, we define a few data structures that are
used in the algorithms.

Tuft: A tuft is a group of transactions that adheres to anyone of the three
models presented. The transactions in the tuft are stored in the chronological
order of their commit time. A tuft is denoted by fi where i denotes the tuft
number.

Read_items: It is a table that consists of two fields: the tuft number and a
list of all the data items that were read by all the transactions in that tuft.

Tuft_table: This table lists transaction number and the corresponding tuft in
which the transaction's operations are stored.

To implement the algorithms, a temporary log file is maintained. The tem­
porary log file is the system generated log that stores all necessary operations
of transactions. The operations of the transactions in the temporary log file are
considered to build the tufts. During checkpoint, the following steps take place:
no new transactions are considered, all active transactions are completed, the
modified database buffers are saved into the stable storage, an end-checkpoint
record is added to the last tuft after the last transaction, the temporary log file
is deleted, and then execution of new transactions resume. The methods of
segmentation are discussed below with the help of examples. Algorithms to
implement these approaches are also provided.

92 DATA AND APPLICATIONS SECURITY

2.1 Log Segmentation Based on Number of
Committed Transactions

In this approach, a fixed number of committed transactions are grouped to­
gether to form a tuft. Consider the following piece of history, H, in the tem­
porary log file. Ti represents the start of transaction i and Ci represents the
commit record of transaction i. Individual operations of the transactions are
not shown for simplicity.

H: TI Ts CI T7 C7 Tg Cs TID TI2 cI2 TIS T2 ClO TI3 Cg T6 Ts CIS C2

T4 Cs C4 TIS Cis C6 CI3'

Let us assume that five committed transactions form a tuft. Thus, the tufts
are:

fl = {TI' T7, Ts, T I2 , T lO }

f2 = {Tg, TIS, T2, Ts, T4}
f3 = {TIS, T6 , Ti 3}

It has to be observed that the transactions are considered in the order of
their commit sequence. Doing so ensures that the partial order among the
transactions is maintained in the tufts. A lemma to prove this is provided later.
The variables that are used to implement the algorithm for this approach are
given below.

TransactionLin_tuft is a variable that holds the number of transactions that
make a tuft. Transaction_count is a variable that holds the number of transac­
tions that are recorded into the tuft so far.

Algorithm 1:
1. Initialize i = 1;
2. Create tuft f i;

Add a record for (f i) in the read_items table;
transaction_count := 1;

3. if(transaction_count != transactions_in_tuft);
3.1. Read next committed transaction, Tj ,

from the temporary log file and store the
operations of Tj in (fi).

Add a new record in the tuft_table for Tj;
3.2. Add the read set of Tj in the read_items

table against tuft (f i);

3.3. Increment transaction_count;
3.4. Goto Step 3;

4. Else
4.1. Increment i;
4.2. Goto Step 2;

Ragothaman fj Panda 93

This process of segmenting the log is much simpler than the log segmen­
tation algorithms based on either transaction dependency or data dependency
approach. Also, we do not run the risk of segments growing too large. We can
rest assured that a segment, a tuft in this case, will definitely end once a fixed
number of transactions commit. If the algorithm, at Step 3.1, does not find
any committed transactions to store into the tuft, it will wait until a transaction
commits and then proceed with the rest of the steps in the algorithm.

2.2 Log Segmentation Based on a Time Window

For this protocol, we assume that the commit time of each transaction is also
stored along with the commit record of the transaction. Using this method, all
transactions that committed in a particular window of time will form a tuft.
To explain the idea let us consider a piece of log from the temporary log file.
Commit time (assume in AM) of each transaction shown next to the commit
record of that transaction.

H: TI T5 cI[9:05] T7 c7[9:07] T9 cs[9:12] TlO TI2 C12[9:15] TI5 T2
clO[9:16] TI3 eg[9:16] T6 Ts CI5[9:23] c2[9:25] T4 cs[9:40]
q[9:42] TIS cIs[9:43] c6[9:43] CI3[1O:1O]·

The operations of each individual transaction and aborted transactions are
not shown for simplicity. Let us assume that the time allotted to build a tuft
is five minutes. Let us also assume that this algorithm started at 9:00 AM.
Thus all transactions that committed between 9:00 AM and 9:05 AM, both
times inclusive, must form a tuft. The next window of time will begin at 9:06
AM and end at 9: 10 AM and so on. If no transaction committed in a particular
window of time, that tuft will be used for the committed transactions that occur
in the next window of time. The tufts and their transactions for the history
given above are shown below.

(rd = {TIl
(r2) = {T7}
(r3) = {T5' T12}
(r4) = {TlO' T9}
(r5) = {TI5. T2}
(r6) = {Ts. T4, TIS, T6}
(rd = {TI3}

As in the previous model, here too we do not have to worry about a tuft
growing too big. The tuft will certainly end when the time slice ends. The
number of transactions in a tuft is not known unlike the previous method. Nor
is the size of each tuft. A regulation on the size of the tuft can be enforced and
this method is discussed in the next section.

As mentioned before, we assume that tuft r 1 will be created at 9:00 AM.
Hence r 3 will be created at 9: 11 AM. With respect to tuft r 3 from the above

94 DATA AND APPLICATIONS SECURITY

example, we will define a few necessary data structures that are required in the
algorithm to implement this approach.

Tuft_end_time is the variable that holds the time at which the current tuft
must end. The variable Time1)jJast-creation holds the time when the most
recent tuft was built. CurrenUime stores the time at that moment. It has to
be noted that CurrenUime will be called only once and the same time will be
used through one iteration of the algorithm. Period_oj_creation holds the time
period after which the next tuft must be built. Commiuime(Ti) is the time at
which transaction Ti committed.

When the procedure starts, tuft_end_time is initialized to currenUime plus
the period_oj_creation. Time1)f_last-creation is initialized to the currenuime.
All those transactions that have their commit time between the time_of_last­
creation and tuft_end_time will form a tuft. When the tuft ends, the win­
dow is advanced to the next time slice by adding the period_of_creation to
the tuft_end_time and setting the time_of_last-creation to the tuft_end_time.

Algorithm 2:
1. Initialize i = 1;

tuft_end_time = currenUime + period_of_creation;
time_ofJast-creation = current-time;

2. Create tuft r i ;

add a new record for r i in the read_items table;
3. WAIT UNTll... (currenuime >= tuft_end_time)

3.1. Read all transactions, Tj' from temporary log where
(commiuime(Tj) > time_of_last-creation) and
(commiuime(Tj) <= tuft_end_time) and
record their operations into tuft r i.
Add a new record for Tj in the tuft table;

3.2. Add the read set of Tj to the read_items table against tuft r i;
3.3. Increment i;
3.4. time_of_last-creation = tuft_end_time;
3.5. tuft_end_time = tuft_end_time + period_of_creation;

Go to Step 2;

2.3 Log Segmentation Based on Fixed Size Tuft

In this approach, the size of the tuft is kept constant. Operations of com­
mitted transactions are added to the tuft until there is no more space for the
next committed transaction to fit into it. It is assumed that the size of a tuft is
bigger than the largest transaction. If a committed transaction does not fit into
the current tuft, we close the tuft and create a new one. We do not allow the
transactions to span from one tuft to another. This will result in wastage of disk

Ragothaman fj Panda 95

space in this approach. But if we do allow the transactions to span, damage as­
sessment will be more complicated. This will be evident when we present the
damage assessment model in Section 3. Key variables and data structures used
in the algorithm are shown below.

SizeoJ(i) returns the size of i. is the size of the tuft. Var is a vari­
able that has units as bytes. Tlar is the largest transaction in terms of size.
Space_available(i) contains the space available in i.

Algorithm 3:
1. i = 1;

= sizeof(Tlar) + var;
2. Create tuft r i;

space_available(r i) =
Add a new record for r i in the read_items table;

3. Read next committed transaction, Tk, from temporary log file;
4. if sizeof(Tk) <= space_available(ri);

4.1. Store the operations ofTk in ri;
4.2. Add the read set of Tk to the read_items table against tuft r i;
4.3. Add a record for the transaction Tk in the tuft_table;
4.4. space_available(ri) = space_available(r i) - sizeof(Tk);
4.5 Go to Step 3;

5. Else
5.1 Increment i;
5.2 Create tuft ri;

space_available(ri) = tuft_size;
Add a new record for ri in the read_items table;

5.3 Go to Step 3.

3. Damage Assessment Model

Damage spreads in a database when valid transactions directly or indirectly
read data items written maliciously by attacking transactions and then update
other data items. Damage assessment is the process of identifying all those
data items written by transactions that read damaged data written either by
malicious transactions or other affected transactions. This process is often ex­
ecuted by denying service of the system to other valid transactions. Other valid
transaction must not be kept waiting for long while damage assessment is done.
Thus, this process has to be done in as efficient a manner as possible and open
the system for other transactions. The damage assessment model presented in
this section holds good for segmented logs developed by anyone of the three
methods proposed earlier. It is assumed that the intrusion is detected and all the
attacking transactions are known before the start of damage assessment. When

96 DATA AND APPLICATIONS SECURITY

an attack is detected, the following steps take place: (1) no new transactions
are accepted (2) all active transactions are completed, any updates made by
these transactions are saved to the database and the tufts updated accordingly,
and (3) the temporary log file is deleted. Thus the temporary log file can be
completely ignored during damage assessment. Some of the variables and data
structures used in this algorithm are given below.

affected_items: It is a list containing data items that were written either by
a malicious transaction or by a transaction that read a data item written by a
malicious transaction.

affected_transactions: This list contains all malicious transactions and those
transactions that read malicious data items.

The process of damage assessment starts by identifying all malicious trans­
actions. The tuft in which the first malicious transaction, say Tm , is stored is
obtained by looking up in the tufUable. All transactions that appear in all of
the tufts prior to the one in which T m appears can be safely ignored because
they are not affected. No valid transaction that read a data item written by Tm
and appearing in one of the tufts prior to the one in which T m is present will be
affected because it would have committed earlier than Tm. The data items that
were written by Tm are stored into the affected_items list. The same procedure
is carried out for any malicious transaction that we encounter further in the
process of damage assessment.

Each of the transactions that appear in the same tuft as transaction T m is
scanned to check if it is affected. The read set of the transactions is intersected
with the affected_items. If the result is not a null set, then that transaction is
affected because it has read a data item written by a malicious transaction. The
transaction number is added to the affected_transactions list and its write set is
appended to the affected_items list.

After all the transactions in the same tuft are scanned, the subsequent tufts
are scanned to look for malicious and affected transactions. If a malicious
transaction is present in the subsequent tuft, the write set of the malicious trans­
action is added into the affected_items list. The affected_items list is intersected
with the read_items list of the corresponding tuft. If the result is not a null set,
it means that the tuft is affected and one or more of the transactions in that
tuft has read data item(s) written by a malicious transaction. All the trans­
actions in that tuft are scanned to determine which of the transactions have
read an affected data item. This is done by intersecting the affected_items list
and the read set of each of the transactions in that tuft. If the result is not a
null set, it means that the transaction is affected. The transaction's write set
is appended to the affected_items list and the transaction number is added to
the affected_transactions list. This process is done until the process is through
with all the tufts.

Ragothaman f3 Panda

Algorithm 4:
1. Let the first attacking transaction be Ti ;

2. Set affected_items = {};
3. Using the tuft table, determine the tuft number, say k,

where transaction Ti is stored;
3.1. Append the write set of transaction Ti into the

affected_items list;
3.2. For each transaction (say Tj) appearing after Ti in f k ;

3.2.1. If Tj is a malicious transaction then
append the write set of transaction Tj to the
affected_items list;

3.2.2. Else;
3.2.2.1. Call procedure assess_damage(Tj);

3.3. For each tuft 1 where 1 >= k + 1;
3.3.1. if(read_items(1) n affected_items != ¢);

3.3.1.1. Call procedure assess_damage(Tj) on
every transaction, say Tj, from the beginning of the tuft;

3.3.2. For each malicious transaction appearing in rl;

97

3.3.2.1. Append the write set of the next malicious transaction,
say T m, to the affected_items list;

3.3.2.2. For each transaction, say Tn, appearing after
Tm in tuft fl

3.3.2.3. Call procedure assess_damage(Tn);
3.3.3. Increment l;

Procedure assess_damage(Tj)
1. Obtain the read set and the write set of the transaction Tj ;

1.2. If Tj is not a malicious transaction;
1.2.1. If(read_set (Tj) n affected_items != ¢);

1.2.1.1. Enter the write-set of the transaction Tj
into the affected_items list;

1.2.1.2. Enter the transaction number in the
affected_transactions list;

1.3. Else;
Append the write set of transaction Tj to the affected_items list;

In case of multiple attacks, we assume that all malicious transactions have
been detected through one of the intrusion detection techniques. These ma­
licious transactions may be present in many tufts. While scanning the tufts
for dependencies (Step 3.3.2 of Algorithm 4), we also determine if there are
any malicious transactions present in that tuft using the tufuable. If there are
malicious transactions present, we perform the same steps as we did with the

98 DATA AND APPLICATIONS SECURITY

first malicious transaction. While doing so, there are chances that some of the
good transactions have read data items written by multiple malicious trans­
actions and those good transactions may have already been appended to the
affected_transactions list. We check to see if they are already present in the list
and add them only if they are not present.

4. Performance Analysis using Simulation

We simulated the scenario using the C programming language. A sample
log was generated in accordance to the rigorous two-phase locking protocol.
Inter-leaving of transactions was allowed. Segmentation of the log based on
time requires that the time of commit of the transaction be stored too. Pro­
grams were written to segment the log based on each of the three methods
described before. A program to assess damage assuming an attacker id was
also written and affected transactions were obtained. The results of the sim­
ulation are shown in the following graphs and the explanation accompanies
them.

As depicted in Figure 1, the space accessed by the damage assessment pro­
cess increases as the number of committed transactions in the tuft increases.
Table 1 shows the values of the various parameters that were considered to
generate the graph. As more transactions are stored in one tuft, we have to
scan the entire tuft if it is affected. Hence we see a decline in performance as
the number of transactions in a tuft increases. Nevertheless, this is still bet­
ter than the performance of the traditional damage assessment process with a
non-segmented log as we shall see later.

Segmenatlon based on number otcommltted
transactions

250000
!.r 200000

it 150000

t. t 100000
50000

o
o HI 20 30 40 50

Nurmor or conmitted tre ..action. In .Iuft

60

Figure 1. Behaviour of algorithm on a log segmented by number of committed transactions.

Figure 2 shows the performance of the damage assessment process on a log
segmented based on the size of the tufts. As before, the performance declines
as the size of the tufts increases. When the tuft size increases, more transac­
tions can fit into the tuft and we have to scan one large tuft if we find that tuft
affected. The values to construct the chart in Figure 2 are the same as the ones

Ragothaman & Panda 99

Table 1. Values of parameters for chart shown in Figure 1.

Total number of Transactions 500
Total number of data items 5000
Maximum data items accessed by a transaction 40
Attacker id 250
Number of committed transactions in a tuft varying with increments of 5 20-50

given in Table 1 except that the size of the tuft varies from 20000 to 50000
bytes with increments of 10000 bytes.

Segmentation bHed on size of the lutts

e J 1:0000

iii'::
! 0

o 10000 20000 30000 moo &JOOO aJOOO

Figure 2. Behaviour of algorithm on a log segmented based on size of tufts.

Figure 3 illustrates performance of time window based segmented log. It has
to be observed that the initial part of the curve fluctuates randomly and not so
much later on. As the time window for each tuft increases, the space that has to
be read during damage assessment also varies uniformly. The commit time of
transactions entirely depends on the system resources. For the same seed, the
commit time will vary rapidly though the commit sequence remains the same.
It is possible that the attacking transactions, and thus the affected transactions,
may appear in any of the tufts in the segmented log and not necessarily in the
same tuft every time, given the same seed. In consequence, the result varies
randomly when the window is smaller. But as the time window increases,
things even out and the chances of a transaction occurring in the same tuft also
increases. Hence, we see the uniform variation with the increase in the tuft
window size. The values to construct the graph shown in Figure 3 is the same
as the ones shown in Table 1 except that the time window for each tuft varies
from 20000 to 500000 microseconds with increments of 5000 microseconds.

Comparison analysis of damage assessment using unsegmented log and that
using a segmented log is shown in Figure 4, which confirms that having a
segmented log greatly improves performance. In that, significantly less number
of bytes are read during damage assessment. The values to construct the graph
shown in the above figure are the same as in Table 1 except that the attacker
id was varied from 50 to 450 with increments of 100. The values of number
of committed transactions, time window and space occupied by the committed

100

j' 200000

... i 1&JOOO Ii 100000 D 9JOOO
J:.
'" 0

DATA AND APPLICATIONS SECURITY

o 100000 200000 :IlOOIlJ 400000 9lOOOO 6!0000
TI.,..,\Mndow

Figure 3. Behaviour of algorithm on a log segmented based on time window.

Traditional damage assessment \IS damage
assessment using" segmented log

SO 1 SO 250 350 450

Maeler lD

Figure 4. Comparison of traditional approach and approach using a segmented log.

transactions were the same as the ones that were considered to generate the
previous graphs.

5. Conclusions

In this paper, we focused on how to segment the log for faster damage as­
sessment in case of an information attack. In the process, we also ensured
that the size of each segment was under control and did not grow to humon­
gous proportions. We achieved this by enforcing constraints on the size of the
segment such as number of committed transactions, space occupied by com­
mitted transactions and a fixed time window for transactions to commit and
form a segment. We have provided necessary damage assessment algorithm,
which can be used on the log file that was segmented using any of the three
approaches described. The result of the damage assessment process is a list of
all the malicious and affected transactions. Using this information, we can use
any of the previously proposed approaches to carry out the recovery process.
We also provided the results of the simulation that was performed to verify
efficiency of our methods. The results conclusively proved that damage as­
sessment using a segmented log reads far less disk space than when damage
assessment is done with an unsegmented log. We also provided results of dam­
age assessment for varying parameters for log creation. It can be concluded

Ragothaman & Panda 101

that damage assessment based on the space occupied by committed transac­
tions is quicker than the other two approaches. It does not read as many bytes
of the log file as damage assessment based on number of committed transac­
tions nor does it display the random behavior of the segmented log based on
time.

Acknowledgment

We are thankful to Dr. Robert L. Herklotz for his support which made this
work possible. This work was partially funded by US AFOSR grant F49620-
99-1-0235.

References

[1] P. Amman, S. Jajodia, C.D. McCollum and B. Blaustein, Surviving infor­
mation warfare attacks on databases, Proceedings of the 1997 IEEE Sym­
posium on Security and Privacy, 1997.

[2] P.A. Bernstein, V. Hadzilacos and N. Goodman, Concurrency Control and
Recovery in Database Systems, Addison-Wesley, 1987.

[3] R. Elmasri and S.B. Navathe, Fundamentals of Database Systems (Third
Edition), Addison-Wesley, 2000.

[4] S. Forrest, S. Hofmeyr and A. Somayaji, Computer immunology, Commu­
nications of the ACM, vol. 40(10), pp. 88-96, 1997.

[5] S. Forrest, S. Hofmeyr, A. Somayaji and T. Longstaff, A sense of self for
UNIX processes, Proceedings of the 1996 IEEE Symposium on Security
and Privacy, 1996.

[6] H. F. Korth, A. Silberschatz and S. Sudarshan, Database System Concepts
(Third Edition), McGraw-Hill International, 1997.

[7] B. Panda and J. Giordano, Reconstructing the database after electronic at­
tacks, in Database Security, XII: Status and Prospects, S. Jajodia (ed.),
Kluwer, 1999.

[8] B. Panda and S. Patnaik, A recovery model for defensive information war­
fare, Proceedings of the Ninth International Conference on the Manage­
ment of Data, pp. 359-368, 1998.

[9] B. Panda and S. Tripathy, Data dependency logging for defensive informa­
tion warfare, Proceedings of the ACM Symposium on Applied Computing,
pp. 361-365, 2000.

[10] S. Stolfo et aI., JAM: Java agents for meta-learning over distributed data­
bases, Proceedings of the AAAI Workshop on Al Methods in Fraud and
Risk Management, 1997.

	Chapter 8 ANALYZING TRANSACTION LOGS FOREFFECTIVE DAMAGE ASSESSMENT
	1. Introduction
	2. Log Segmentation Model
	2.1 Log Segmentation Based on Number of Committed Transactions
	2.2 Log Segmentation Based on a Time Window
	2.3 Log Segmentation Based on Fixed Size Tuft

	3. Damage Assessment Model
	4. Performance Analysis using Simulation
	5. Conclusions
	Acknowledgment
	References

