
Chapter 18 

ON MODELING COMPUTER NETWORKS 
FOR VULNERABILITY ANALYSIS 

C. Campbell, J. Dawkins, B. Pollet, K. Fitch, J. Hale and M. Papa 

Abstract Enterprise security must take into account a holistic view of the network. Cap­
turing security and vulnerability attributes of network services and systems is 
a critical aspect of effective vulnerability analysis and remediation. Unfortu­
nately, this is not always possible due to the overhead associated with tracking 
distributed resources. Conventional tools create topological maps of a network 
and extract a signature of the state of individual components. However, these 
tools require human interpretation to be useful for security. The goal of network 
modeling for vulnerability analysis is to glean and interpret data from a variety 
of resources in order to create an abstract model of the security of a network. A 
sound network model is essential to the analysis of potential threats to a network. 

Keywords: Network modeling, vulnerability analysis, network mapping, host-based agents 

1. Introduction 

A principal shortcoming of current network security practices is their failure 
to consider the entire network. Comprehensive vulnerability analysis requires 
consideration of complex behavior in a composite network. Unfortunately, 
the overhead associated with exploring a universe of combinatorial network 
interactions makes this impossible with conventional tools. While network 
mapping techniques exist, most view the network from a management or per­
formance perspective. Data produced by security tools require a significant 
amount of human interpretation to be useful for network security analysis. 

Existing network modeling tools provide a shallow view of hosts and infor­
mation services. However, Network scanners cannot provide a complete view 
of a host, and often resort to inference to construct a host profile. Key sys­
tem attributes such as application patch level, hardware and platform config­
urations, and network service security settings are routinely ignored. A com-

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 

© IFIP International Federation for Information Processing 2003
E. Gudes et al. (eds.), Research Directions in Data and Applications Security

10.1007/978-0-387-35697-6_26

http://dx.doi.org/10.1007/978-0-387-35697-6_26


234 DATA AND APPLICATIONS SECURITY 

plementary approach harnessed within a modeling methodology is needed for 
comprehensive vulnerability analysis in large-scale infonnation networks. 

This paper presents a network modeling methodology as well as a host­
based profiling technique, which captures critical security and vulnerability 
attributes in an enterprise network. The following section presents four phases 
of network modeling: (i) discovery, (ii) enumeration, (iii) classification and 
(iv) correlation. Section 3 defines discovery and enumeration, focusing first on 
existing network-based techniques for these tasks. Section 3 also explains the 
requirements and design of host-based extensions to these processes. Section 
4 provides background on NetOBJ, a network object model, and its relevance 
to classification and synthesis. In Section 5, a network-centric vulnerability 
analysis system is described. The final sections present related work and con­
clusions. 

2. Network Modeling 

Host Based 
Mobile Agent 

Continued 
Discovery 

Priviledged 
Host Specific 

Data 

Intermediate 
Representation 

Mapping 

SyntheSiS 

SNMP 
Walking 

--------------------------------. -------------: 

____ ________________________________________ .J 

OS Fingerprinting 
Open Ports 

Network Model 

Figure 1. Network modeling. 

Network modeling consists of four phases: (i) discovery, (ii) enumeration, 
(iii) classification and (iv) correlation (Figure 1). Discovery and enumeration 
are techniques for mapping - gathering raw infonnation about networks. These 
techniques collect minimal data from network configurations, produce detailed 
infonnation about network components and topology, and store results for sub­
sequent analysis. Through continuous discovery, this process is repeated and 
incremental updates reflect the evolving network. 

Network mapping encompasses traditional information gathering techniques 
but is only capable of obtaining limited information about system configura­
tions. In contrast, host-based mapping techniques operate locally on each host, 
so they may have privileged access to system configuration details. 



Clinton, Dawkins, Pollet, Fitch, Hale & Papa 235 

As seen in Figure 1, the output of the network mapping phase becomes input 
in the synthesis portion of the network modeling process. Classification, the 
first phase of synthesis, analyzes relevant information about network compo­
nents detailed by the mapping process and outputs a set of entities as a network 
object model. The resulting model is passed to the correlation phase. This fi­
nal phase utilizes network component and topology information to synthesize 
relationships between network objects. 

3. Network Mapping 

Network mapping is a two step process in which descriptive network infor­
mation is gathered. In the discovery phase, individual network elements are 
identified but further information may not be gathered. The enumeration phase 
gleans network configuration data and forms a detailed signature of target ele­
ments. This section describes key concepts of discovery and enumeration, and 
identifies the limitations of each. 

3.1 Discovery and Enumeration 

The initial phase of the network mapping process, discovery, utilizes a vari­
ety of techniques to generically identify each component of a network. Identifi­
cation is completed using techniques such as port scanning and SNMP walking 
[8]. Traceroute probing and DNS zone transfers are more sophisticated tech­
niques that can be used to identify elements and services on a network [15]. 

Enumeration extends the discovery process by filling in informational gaps 
created as new network elements are identified. In the enumeration phase, the 
network modeler seeks to establish a signature of the system configuration for 
each network component. Techniques for the discovery and enumeration of 
networked systems often overlap. For example, NMap detects open ports and 
can predict operating systems running on scanned hosts. However, these tools 
lack the ability to capture many critical security and vulnerability attributes 
of networked systems. This failure is almost inevitable since the information 
gathered is based on statistical and predictive analysis. Thus, techniques al­
lowing for precise and comprehensive analysis of host systems are needed. 

3.2 Host-based Network Mapping 

Host-based mapping reduces uncertainty in discovery and enumeration by 
analyzing systems from within. Exploiting host-based technology makes it 
possible to gather specific configuration information about host systems. While 
network-based scanners provide a statistical guess of services operating on a 
host, a host-based profiler may obtain precise information directly from sys­
tems, e.g., application identity, version and patch level. The following require­
ments support effective host-based network mapping: 



236 DATA AND APPLICATIONS SECURITY 

1 A host-based solution must be dynamic enough to adapt to evolving net­
work environments. 

2 Platform independence is required to support heterogeneous systems in 
both traditional and converged networks. 

3 Continuous discovery, the ability to detect changes in network environ­
ments, is vital due to fluctuating configurations in modem networks. 

4 Host-based mapping tools must maintain confidentiality and integrity 
while gathering information. 

5 Information gathered and synthesized must be stored in a standard for­
mat for analysis and reuse. 

3.2.1 Design. The nature of host-based network mapping is that 
the functionality of a profiling system is distributed across the hosts of a net­
work. A natural implementation strategy for such a system engages mobile 
code. Traditional cross-platform agent architectures meet the first two require­
ments above. Extensions to the agent paradigm offer a complete solution to 
host-based network mapping. Not only do agents move code and informa­
tion between systems, they can accomplish this task securely. In addition, the 
dynamic nature of mobile code makes it adaptable to changing system require­
ments. Agents may be extended to support continuous discovery as they map 
network elements from varying perspectives in their propagation paths. 

To accommodate these requirements in an agent-based architecture, the de­
sign of a host-based network mapping system must consider additional agent 
behavior, including propagation and information retrieval. 

Propagation. The most basic decision in mobile code systems is the 
choice of agent destinations. A number of solutions to this problem exist. 
In the simplest case, a central server provides an agent with an itinerary of 
systems based on initial information gathered during network-based discovery 
[16]. An intelligent extension to this heuristic is to utilize the results of contin­
uous discovery to determine which hosts have not been visited. This technique 
is limited only in that an agent service must be listening on each system. 

Information Retrieval. The primary information retrieval technique 
used by mapping agents is host interrogation. Host interrogation makes use 
of host-resident libraries to gather detailed information from the hosting sys­
tem; therefore, the appropriate libraries must be maintained on each system. 
Host interrogation uses operating system specific features to gather this infor­
mation. For example, on Microsoft Windows machines, the system registry 



Clinton, Dawkins, Pollet, Fitch, Hale 8 Papa 237 

is examined to determine the version of installed applications, patch level of 
the system and domain configuration options. Additionally, system level calls 
allow agents to correlate listening ports to running services without the uncer­
tainty and incompleteness associated with network-based enumeration. 

Continuous Discovery. Continuous discovery enables agents to gather 
information where host-based agent services are not, or cannot, be deployed. 
Continuous discovery merely extends traditional discovery and enumeration 
techniques by exploiting the ability of mobile code to "see" the network from 
all perspectives because of changing propagation paths. 

The quality and quantity of information gathered via continuous discov­
ery is a function of the complexity of agent code. A traditional port scan­
ning approach is limited to identifying systems listening for connections and 
enumerating well-known services running on these systems. Superior tech­
niques allow agents to make intelligent use of common network services. For 
example, DHCP servers and router tables contain valuable information about 
network topology that can be obtained by mobile code [15]. Microsoft Win­
dows networks simplify this task by providing NetBIOS services. These ser­
vices can be enumerated to discover shared drives, user logins, and a wealth 
of machine-specific information. Passive monitoring of Address Resolution 
Protocol (ARP) traffic exploits mobile code to identify active hosts, including 
those that are blocking incoming connections, from multiple perspectives. 

4. Network Synthesis 
In large networks, mapping generates a considerable amount of informa­

tion. Network synthesis converts this information into representative network 
models. Synthesis inputs raw network mapping data and instantiates a network 
model against a given network object model. Network object models provide 
a standard means to identify and describe security and vulnerability attributes 
of a network. Therefore, a viable object model must meet specific criteria: 

1 Network models must capture security and vulnerability attributes. 

2 Systematic and efficient analysis require that physical properties of net­
works be abstracted. 

3 Network models should allow for the extension and reuse of network 
components to accommodate future technologies and vulnerabilities. 

4 Network models should be extensible to other domains, including con­
verged environments, e.g. telecommunications and wireless networks. 



238 DATA AND APPLICATIONS SECURITY 

4.1 NetOBJ: A Network Object Model 

NetOBJ is a relational object model designed to capture critical network at­
tributes in object hierarchies. As a high-level model, NetOBJ is distinguished 
from other low-level network modeling tools such as OPNET [5, 8, 12]. The 
building blocks of a NetOBJ model include three core network objects, Com­
ponent, Host and Trust, explained below. This section also introduces the Net­
work Modeling Language (NetML), a language designed to construct NetOBJ 
objects. 

Object n 

q H Hoot H I 

Figure 2. Basic NetOBJ objects. 

4.1.1 Defining Components. Components represent the aggre­
gate pieces of network entities. While components do not exist independently 
on networks, they represent exploitable elements critical to the operation of 
systems. Such elements include operating systems, services, applications, and 
protocols, represented by the OperatingSystem, Service, Application, and Pro­
tocol NetOBJ types as seen in Figure 4. 

Figure 3. Host NetOBJ object. 

4.1.2 Defining Host Objects. Using individual Component 
objects, it is possible to describe complex host systems. A Host is defined as 
an entity capable of communication on the network. This definition is quite 
generic, and thus it is necessary to extend the host type based on the function­
ality of the target systems. The basic NetOBJ hierarchy includes three such 
SUbtypes, Server, Management and Workstation. 

A Server is a host that provides a service, such as HTTP, FTP or POP, to 
other network elements. Similarly, Management objects control the actual op­
eration of a network. For example, the Router subtype abstracts the class of 



Clinton, Dawkins, Pollet, Fitch, Hale fj Papa 239 

network components that regulate the flow of packets from source to destina­
tion within the network. Management objects are further classified as Man­
aged, such as an intelligent switch, or Static, as in the case of a simple un­
managed hub. Finally, the Workstation subtype is a representation of a typical 
networked computer. 

Figure 4. Component NetOBJ object. 

4.1.3 Defining Trust Relationships. A network is essentially 
a set of related systems; however, Component and Host objects are limited to 
expressing independent entities within a network. The Trust type is one solu­
tion to this shortcoming. Trust relationships represent the intentions, integrity 
and nature of interactions between Host objects. Trust relationships offer sub­
stantial expressive power to the NetOBJ model since they can represent any 
number of relationships between systems, including a simple physical connec­
tion on a network, sharing of cryptographic keys or access privileges between 
clients and servers. 

4.1.4 NetML. Just as components, hosts, and trust relationships are 
the building blocks of network object models, NetML is a language tool for 
constructing NetOBJ objects, based on traditional object-oriented languages. 
NetML expressions are parsed into representative NetOBJ object models stored 
in a relational database for further analysis. 



240 DATA AND APPLICATIONS SECURITY 

Types and Elements. NetML programs consist of types and elements. 
Types are the equivalent of classes in modem object-oriented languages, while 
elements are instantiations of these types (Example 1). NetML types are com­
posed of attributes cast as other NetML types or as primitive data types: string, 
boolean, integer, version or date. In addition, sets can be used to define multi­
plicity constraints, such as patch level or running services. 

type Apache extends Service { 
ApacheMod set mod; 

element ApacheHTTP_1.3 as ApacheHTTP { 
id = 1234; \\ inherited from Object 
name = "Apache HTTP Server"; \ \ inherited from Component 
currentVersion = v1.3.11; \\ inherited from Service 
patches = {ApacheSec12_14_01, \\ inherited from Service 

ApacheSec3_1S_02}; 
port = {SO, 443}; \\ inherited from Service 
mod = {mod_ssl, mod-php4, mod_ldap} 

Example 1: Type definition and element. 

4.2 Classification 

Using the NetOBJ object model, synthesis creates abstract models of target 
networks. Classification is the first step of this process. Classification uses sim­
ple algorithms to map network elements to corresponding NetOBJ elements via 
an intermediate representation language (NetML). 

4.2.1 Correlation. Correlation combines the output of classifica­
tion with network topology data, to create a complete network model abstract­
ing relationships between systems. The correlation process must be limited 
since large networks contain indefinite numbers of relationships. The key to 
the process is to identify and express trust relationships critical to vulnerability 
analysis within the network. 

The correlation engine is functionally similar to its classification counter­
part. NetOBJ Trust objects are built from independent Host objects based on 
cues extracted from XML tags. As in classification, correlation associates Trust 
objects to the original XML data structure by including a key attribute. 

Trust relationships make it possible to represent most kinds of network asso­
ciations. For example, a group of systems that provide unauthenticated access 
through rlogin are grouped into a RHostTrust based on information obtained 
from host-based network mapping. In addition, a vulnerability analysis system 
may determine the members of a network subnet by examining a SubnetTrust 
object. Trust can be extended to represent nearly any communicative relation­
ship, no matter how primitive or advanced. Moreover, the ability to model such 
relationships is critical to vulnerability analysis systems. 



Clinton, Dawkins, Pollet, Fitch, Hale fj Papa 

VulnerabilitY Maty., 
Engine 

Figure 5. Vulnerability analysis architecture. 

5. Vulnerability Analysis 

Attack 
Specification 

241 

With more recent advances in the dissemination of security related informa­
tion, potential vulnerabilities and threats are more easily obtained by security 
personnel. The ability to identify relevant information given the onslaught of 
new vulnerabilities is critical for effective security administration. In addi­
tion, tracking the evolution of network topologies and system configurations is 
extremely important for vulnerability analysis, particularly in converged envi­
ronments where heterogeneity, and therefore complexity, are intrinsic features. 

Network modeling provides the foundation for a vulnerability analysis sys­
tem capable of identifying and predicting attack scenarios based on a holistic 
view of the network. The system in this section uses attack models in con­
junction with a network object model to identify and analyze potential vulner­
abilities within a network [3]. Attack models are represented as attack trees, 
which express goal-oriented attack plans as hierarchical data structures [14]. 
The result is a set of scenarios useful for identifying threats to a given network. 

A network model is used to enhance attack trees to provide a context sensi­
tive attack model. Network types are used to identify potential vulnerabilities 
and their specific attributes. Network elements are used to identify a system 
specific vulnerability. Because system vulnerabilities exploit specific versions 
or builds of software and hardware, a vulnerability analysis system must have 
access to these properties. By incorporating such properties in a network model 
and making them accessible through attack models, false positive rates can 
be significantly reduced. A simple dataflow diagram illustrating vulnerability 
analysis in the distributed architecture is shown in Figure 5. 

Network mapping (step 3) is obtained by data collected over enterprise net­
works through discovery and enumeration (steps 1 and 2). As seen here, these 



242 DATA AND APPLICATIONS SECURITY 

initial steps are repeated indefinitely through the process of continuous discov­
ery. The network data collected is Synthesized against known NetOBJ objects 
to create a specific network model (step 4). While the generated expressions 
may contain partial information, humans can augment incomplete specifica­
tions with salient details and attributes. Additionally, individual network el­
ements are grouped into pertinent trust relationships through the process of 
correlation. Finally, the resulting object model is used by a vulnerability anal­
ysis engine in conjunction with a set of attack models to yield comprehensive 
vulnerability analysis. 

By overlaying network and attack models users can issue queries such as 
"Find all vulnerabilities associated with host x" (step 5). By issuing such a 
query, the Vulnerability Analysis Engine binds network element arguments 
to parameters within matching attack templates. Recursive queries produce 
vulnerability trees identifying potential multi-stage attacks directed at system 
targets. 

6. Related Work 

Most modem techniques for network discovery and enumeration concen­
trate on topology visualization to provide users with a graphical representation 
of network operations [5, 6, 8]. Products such as Microsoft Visio's Network 
AutoDiscovery, use the Simple Network Management Protocol (SNMP) to in­
ventory routers, switches, hubs, and workstations [8]. AutoDiscovery reports 
this information back to a server, which generates a visual representation of 
the network. Other tools, such as the CAIDA suite were developed to han­
dle visualization for a wide variety properties of the Internet backbone, such as 
topology, workload, performance, and routing [5,6]. Though they provide use­
ful management and visualization tools, these applications lack the necessary 
information to discern vulnerabilities within networks. 

Recent advances in security have inspired more sophisticated network enu­
meration tools. Retina is designed to scan machines of a network to identify 
existing vulnerabilities, and check adherence to established security policies 
[13]. This is accomplished by an "artificial intelligence" engine that simulates 
the thought process of a hacker. While Retina is a valuable tool for identifying 
vulnerabilities, our model provides a network-centric framework for develop­
ing more powerful vulnerability systems. 

Mobile management applications provide an "intelligent network model" 
utilizing mobile Java agents [16]. Such systems are designed for use as a cen­
tralized management and visualization system. Furthermore, they typically 
rely on vendor-provided "properties sites," in which network element proper­
ties can be retrieved to build a network model. In contrast, our system focuses 
on security relevant network information. 



Clinton, Dawkins, Pollet, Fitch, Hale & Papa 243 

7. Conclusions 

The ability to precisely identify security related attributes of network re­
sources is crucial to their protection. Network modeling systems must be ca­
pable of expressing security relevant information in a comprehensive network 
object model. To this end, we describe a modeling framework that adopts 
mapping and synthesis as core processes. Host-based network mapping moves 
beyond traditional network scanning by providing a comprehensive profile of 
networked systems from within. An agent-based prototype under develop­
ment in Java targets system-wide host profiling. Synthesis encompasses net­
work element classification and correlation. NetOBJ and NetML provide an 
object-oriented foundation for modeling network components, hosts, and trust 
relationships. These tools are designed to support comprehensive network vul­
nerability analysis in converged and evolving environments. Only by engaging 
more detailed network representations in analytical tools can system adminis­
trators defend their information enterprises from cyber attack. 

Acknowledgments 

This research was supported by the Department of Justice through the In­
stitute for Security Technology Studies at Dartmouth College and by National 
Science Foundation Cooperative Agreement No. HDR-945-0355. 

References 

[1] A. Bieszczad, T. White, and B. Pagurek, Mobile agents for network man­
agement, IEEE Communications Surveys, Vol. 1(1), 4th Quarter, 1999. 

[2] c. Bryce and J. Vitek, The JavaSeal mobile agent kernel, Proceedings 
of the First International Symposium on Agent Systems and Applica­
tionslFhird International Symposium on Mobile Agents, Palm Springs, 
California, 1999. 

[3] J. Dawkins, C. Campbell, R. Larson, K. Fitch, T. Tidwell and J. Hale, Mod­
eling network attacks: Extending the attack tree paradigm, Proceedings 
of Third Annual International Systems Security Engineering Association 
Conference, Orlando, Florida, 2002. 

[4] A. Hayzelden and J. Bigham, Software agents in communications network 
management: An overview, Intelligent Systems Application Group, Tech­
nical Report, University of London, London, u.K., 1998. 

[5] B. Huffaker, E. Nemeth and K. Claffy, Otter: A general-purpose network 
visualization tool, Proceedings of the Internet Global Summit, San Jose, 
California, 1999. 



244 DATA AND APPLICATIONS SECURITY 

[6] B. Huffaker, E. Nemeth, D. Moore and K. Claffy, Topology discovery by 
active probing, Symposium on Applications and the Internet, Nara, Japan, 
2002. 

[7] J. Humphries, C. Carver and V. Pooch, Secure mobile agents for network 
vulnerability scanning, Proceedings of the 2000 IEEE SMC Workshop 
on Information Assurance and Security, United States Military Academy, 
West Point, New York, 2000. 

[8] J. Lemke, Discover, diagram and report on your network, Technical Re­
port, Microsoft Corporation, Redmond, Washington, 2001. 

[9] S. Liang, The Java Native Interface, Addison-Wesley, Reading, Mas­
sachusetts, 1999. 

[10] N. Minar, K. Kramer and P. Maes, Cooperating mobile agents for map­
ping networks, Proceedings of the First Hungarian National Conference 
on Agent Based Computation, 1999. 

[11] N. Minar, K. Kramer and P. Maes, Software Agentsfor Future Communi­
cations Systems, Springer-Verlag, Heidelberg, Germany, 1999. 

[12] Optimum Network Performance, http://www.opnet.com. Bethesda, Mary­
land, 2001. 

[13] Retina, Eeye Digital Security, http://www.eeye.coml.Aliso Viejo, Cali­
fornia, 2002. 

[14] B. Schneier, Secrets and Lies, John Wiley, New York, 2000. 

[15] R. Siamwalla, R. Sharma and S. Keshav, Discovering Internet topology, 
Proceedings of the IEEE INFOCOM Conference, New York, 1999. 

[16] T. White, B. Pagurek and A. Bieszczad, Network modeling For manage­
ment applications using intelligent mobile agents, Journal of Network and 
Systems Management, Vol. 7(3), 1999. 


	Chapter 18 ON MODELING COMPUTER NETWORKS FOR VULNERABILITY ANALYSIS
	1. Introduction
	2. Network Modeling
	3. Network Mapping
	3.1 Discovery and Enumeration
	3.2 Host-based Network Mapping

	4. Network Synthesis
	4.1 NetOBJ: A Network Object Model
	4.2 Classification

	5. Vulnerability Analysis
	6. Related Work
	7. Conclusions
	Acknowledgments
	References




