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Abstract We study an optimal control problem associated with a nonstationary, 
three dimensional flow of a micropolar fluid. We consider a suitable 
formulation of the control problem which allows us to prove the existence 
of a solution of this problem and to obtain the necessary conditions of 
optimality. 
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1. Introduction 

The flow of micropolar fluids is a problem of physical interest since 
animal blood, liquid crystals, certain polymeric fluids, etc may be repre­
sented by the mathematical model of these fluids. This model was intro­
duced by Eringen in [1]. From the physical point of view, a micropolar 
fluid is characterized by the following property: fluid points contained 
in a small volume element, in addition to its usual rigid motion, can 
rotate about the centroid of the volume element in an average sense, the 
rotation being described by a skew-symmetric gyration tensor, w. 

In this paper we are concerned with the nonstationary, three dimen­
sional incompressible motion of a micropolar fluid. As in the 3-D case 
of Navier-Stokes equations (see [2]), we define weak solutions and strong 
solutions of the system describing the micropolar flow, and it is known 
that in the class of weak solutions we cannot prove the uniqueness, while 
for strong solutions we obtain the uniqueness, but there is no an exis­
tence result. 

The aim of this paper is to study an optimal control problem associ­
ated with the evolution system describing the flow of a micropolar fluid. 
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This type of problems, for two dimensional flows, has been studied by 
Stavre in [3], [4], [5]. For the 3-D case, the study is more complicated, 
since we cannot prove the existence of a strong solution. To overcome 
this difficulty, we consider a suitable formulation of the control problem 
(as in [6], [7]), which allows us to prove the existence of a solution of the 
control problem and to obtain the necessary conditions of optimality. 

The paper is organized as follows: in Section 2 we introduce the sys­
tem of coupled equations which describes the nonstationary, three di­
mensional flow of an incompressible micropolar fluid and its variational 
formulation. We discuss about weak and strong solutions of this system 
and about their existence and uniqueness. By proving a general result, 
we obtain the desired regularity for the unknowns of the problem. In the 
next section we formulate the control problem such that to every optimal 
control we can associate a strong solution. The existence of a solution 
of the considered control problem is investigated. The last section deals 
with the first order optimality conditions. 

2. Analysis of the motion system 

The nonstationary, incompressible, three dimensional motion of a mi­
cropolar fluid with non-homogeneous initial data is described by the 
following coupled system: 

v' + (v· \1)v - (/t + X) L. v + \1p - xcurl w = f in DT , 

jw'+j(v ·\1)w-')'L.w-(a+,8)\1(div w)+2xw-xcurl v=§ in DT , 

div v = 0 in DT , (2.1) 
v = 0, w = ° on uD x (0, T), 
v(x,O) = vo(x), w(x,O) = wo(x) in D, 

where D c m 3 is an open, bounded, connected set, with uD of class C2 , 

T a positive given constant and DT = D x (0, T), x, It, j, 0:, /3, ')' are 
positive given constants associated with the properties of the material, 
[, § are the given external fields, vo, Wo are the initial data and v, W, p 
are the unknown of the system: the velocity, the microrotation and the 
pressure of the micropolar fluid, respectively. 

We shall need the following spaces (for their properties see, e.g. [2]) 

{

V = {it E (HJ(D))3 / div it·= O}, 
H = {it E (L2 (D))3 / div it = 0, it· ii/an = O}, 

2 1 2 I UU u2u 2 . . 
H' (DT)={UEL (DT)/u, UXi' UXiUXj EL (DT); 2,)=1,2}, 
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The following notation will be used throughout the paper: 

(.,.) the scalar product, I . I the norm in L2(0) or (L2(0))3, 
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((', '))0 the scalar product, 11·110 the norm in HJ(O) or (HJ(0))3, 
(', ')x',x the duality pairing between a space X and its dual X', 
b( u, v) = (u· V)v, V u, v E (H6(0))3. 

For f E L2(O, T; H), gE L2(O, T; (L2(0))3), Vo E V, Wo E (HJ(0))3, the 
variational formulation of the problem (2.1) is given by 

(v'(t), Z)v',v + (b(v(t), v(t)), Z)v',v + (J-L + X)((v(t), z))o 
-X(curl w(t), Z) = (f(t), Z) Vz E V; 

j (W' (t), ifJ (H-l(D))3 ,(HJ (D))3+j (b( v( t), w( t)), ifJ (H-l (D))3 ,(HJ(D))3 (2.2) 
+')'((w(t), if))o+ (a+,B) (div w(t), div if) + 2X(w(t), if) 
-X(curl v(t), if) = (g(t) , if) VifE (HJ(0))3, 
v(O) = vo, w(O) = woo 

The next theorem gives the existence (without the uniqueness) of a weak 
solution and the uniqueness (without the existence) of a strong solution 
of the variational formulation (2.2). 
Theorem 2.1. a) There exists at least a pair (v, w) with the regularity 
v E L2(0, T; V)nUXl(O, T; H), v' E L4/3(O, T; V'), wE L2(O, T; (HJ(0))3)n 
LOO(O, T; (L2(0))3), W' E L4/3(O, T; (H-l(0))3), satisfying (2.2) a. e. in 
(0, T). Such a solution is called a weak one. 

b) There exists at most a pair (v, w) which is a weak solution of 
(2.2) and satisfies v E L8 (0, T; (L4(0))3). This solution is called a strong 
solution of (2.2). 
Proof. The main steps in obtaining the results of point a) are similar 
to those for Navier-Stokes equations (see [2]). For proving the second 
assertion, we need further regularity of the the function W, (i. e. w E 

L8 (O, T; (L4(0))3)). This regularity will be obtained in Corollary 2.3, 
proved below and will allow us to obtain the uniqueness of the strong 
solution. 

In the sequel, we shall prove a general result, which will give the 
regularity of the solutions throughout the paper. 
Theorem 2.2. Let f E L2(O, T; H), gE L2(O, T; (L2(0))3), vo E V, wo E 
(H6(0))3, U E L8 (0, T; (L4(0))3), yE LOO(O, T; V) nL3/2(0, T; (H2(0))3), 
and p E (H2,1(OT ))3 n C([O, TJ; (HJ(0))3). Then there exists an unique 
pair (v, w) E (H2,1(OT ))3nC([0, TJ; V) x (H2,1(OT ))3nC([0, TJ; (HJ(0))3) 
satisfying, together with a function p E L2(0, T; Hl(O)), unique up to the 
addition of a function of t, the following system: 
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v'+b(v, iJ)+b(u, v)-(tt+X) 6 v+Vp - xcurl W = f in DT , 

jw'+jb(v, p)+jb(u, w)-1'6w-(o+j3)V(div w)+ 
+2xw- xcurl v=§ in DT , 

div v= ° in DT , 

v = 0, W = ° on 8D x (0, T), 
v(x,O) = vo(x), W(x, 0) = wo(x) in D, 

(2.3) 

Proof. For proving the existence and the regularity, we approximate 
the functions v, w with 

m m 

vm = Lgim(t)Ui, wm = L him(t)cpi, (2.4) 
i=l i=l 

where {uih is a base of V and {cpih a base of (HJ(D))3. We consider 
the variational formulation of (2.3) corresponding to (vm' wm): 

(v:n (t), Uj) + (b( vm(t), iJ(t)) , Uj) + (b( u(t), vm( t)), Uj) 
+(tt + X)((vm(t), Uj))o - X(curl wm(t), Uj) = (((t) , Uj), 

(t), cPj) + j(b( vm(t), p(t)), cPj) + j(b( u(t), wm(t)), cPj) 
+I'((wm(t) , CPj))O+(O+,B) (div wm(t), div cPj) 
+2X(wm(t), CPj)-X(curlVm(t) , CPj)=(§(t), cPj) Vj = 1, ... , m, 
vm(O) = vOm, wm(O) = WOm' 

(2.5) 

with VOm ----7 Vo in V and WOm ----7 Wo in (HJ(D))3. If we introduce (2.4) 
into (2.5) we obtain a linear system of ordinary differential equations 
with the unique solution gim, him, i = 1, ... , m. For obtaining the exis­
tence of (if, w) we establish some a priori estimates. The estimates in 
LOO(O, T; H) xLOO(O, T; (L2(D))3) and in L2(0, T; V) xL2(0, T; (HJ(D))3) 
are obtained in the classical way (see e.g. [2]). We establish next the esti­
mates in LOO(O, T; V)xLOO(O, T; (HJ(D))3) and in (L2(0, T; (H2(D))3)? 
For this purpose, we define the linear operator L:(HJ(D))3 f-7 (H- 1(D))3, 

Lw = -I' 6 W - (a + ,B)V(divw), Vw E (HJ(D))3. (2.6) 

The linear operators -6 and L being compact and self adjoint, they 
have an orthonormal sequence of eigenfunctions, which can be taken as 
a base in V and in (HJ(D))3, respectively. We take in (2.4)1 the sequence 
of eigenfunctions of -6 and in (2.4)2 the sequence of eigenfunctions of 
L. Hence Ui and CPi satisfy: 

(2.7) 
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Since 0 is of class C2 , we can apply the regularity results for elliptic equa­
tions and it follows that Ui E V n (H2(O))3, lj5i E (HJ(O))3 n (H2(O))3 
and 

(2.8) 

We multiply now (2.5h with Aj9jm(t) and we add the equalities. It 
follows: 

Ilvm(t)116 + (p, + x)l- ,6vm(tW = (/(t), -,6 vm(t)) 
+X( curl wm(t) - ,6vm(t)) - (b( vm(t), iJ(t)), - ,6 vm(t)) (2.9) 
-(b(u(t), vm(t)), - ,6 vm(t)). 

For the right-hand side of (2.9) we use the following inequalities (taking 
into account the regularity of the functions iJ, U, (2.8)1 and the properties 
of b): 

-(b(vm(t), iJ(t)), -,6vm(t)):S Ilvm( t) II (L4(0))31I V iJ( t) II(L4(0))91 - ,6vm(t) I 

:S c(O) Ilvm (t) II (L4(0))31IiJ( t) t) - ,6vm (t) I 

:S p,; X 1- ,6vm(t) 12 + IIvm(t)116 

-(b( u(t), vm(t)), -,6 vm(t)):S lIu(t) II (L4(0))3I1Vvm(t) II (L4(0))91 - ,6vm (t) I 

:S p,; X 1- ,6vm(t) 12 + 

:S p,: X l _ ,6vm(t) 12 + cllu(t)lIfL4(0))3I1vm(t)1I6 

With these inequalities, (2.9) becomes 

:t IIVm(t)116 + (p, + x)l- ,6vm(tW :S c(l/(t)12 + IIwm(t)1I6) 

+A(t) IlVm(t) 116, 
(2.10) 

where A(t) = + lIu(t)lIfL4(0))3)' Using the 
regularity of the given functions U, iJ it follows the integrabily of A on 
(0, T). We can then integrate (2.10) with respect to t and the bounded­
ness of {wm}m in L2(0, T; (HJ(O))3) and of {VOm}m in V lead us to the 
estimates of vm in LOO(O, T; V) and in L2(0, T; (H2(O))3). With similar 
computations we get the corresponding estimates for wm . 

The last step of the proof is to obtain the estimates of (v:n, in 
L2(0, T; (L2(O))3)2. The inclusion (H2,1(OT ))3 C L2(0, T; (L2(O))3) be­
ing compact, the existence of (v, w) follows passing to the limit, on a 
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subsequence, in (2.5). The uniqueness of the pair (v, 0) is proved as 
usual. 
Corollary 2.3. Let (v, 0) be a strong solution of (2.2). Then v E 
(H2,1(DT))3 n C([O, T]; V), 0E(H2,1(DT))3 n C([O, T]; (HJ(D))3). More-
over, we have: 

(2.11) 

where the constant c depends on D, the constants of the problem, the 
given fields,!, g, vo, 0 0 and on I/vIIL8(0,T;(L4(rl))3). 

Proof. We take in (2.3) iJ = 0, U = v, jJ = ° and we apply Theorem 
2.2. The regularity 0 E L8 (0, T;(L4 (D))3) follows from the inclusions 
C([O, T];(HJ(D))3) c Lq(O, T;(HJ(D))3) C Lq(O, T;(L4 (D))3), Vq. 

3. Study of the control problem 

In the theory of micropolar fluids a special case appears when the 
microrotation is constrained by: 

0= curl v. (3.1) 

Indeed, if we introduce (3.1) in (2.1h, the micropolar fluid becomes a 
N avier-Stokes one. The aim of this paper is to control the properties 
of the fluid by acting on the exterior field g. The difficulty is that the 
correspondence 9 1--+ (v, 0) is multivalued in the three dimensional case. 

For this reason, we formulate the control problem such that to every 
optimal control we can associate a strong solution. Since we cannot 
prove the existence of a strong solution, we have to choose a suitable 
functional. 

We define 

J: L2(0, T; (L2(D))3) X L2(0, T; V) X L2(0, T; (HJ(D))3) 1--+ fR 

J(g,v,0) = rT(10(t) - curl v(t)I)6dt, 
6 Jo 

with (v, 0) a solution of (2.2) corresponding to g. 

(3.2) 

Since we cannot expect that we will be able to prove the coercivity of 
J, we take the exterior field 9 E B T , with 

We formulate the control problem in the following way: 

(CP) { Minimize J(g, v, 0) when 9 E BT and the pair 
(v, 0) verifies (2.2). 
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We establish next the following important result: 
Proposition 3.1. Let (g,v,W)EBrxL2(0,TjV)xL2(0,Tj(H6(D))3) with 
the properties: 

a) J(g, v, w) < 00, 

b) (v,w) is a solution of (2.2), corresponding to g. 
Then (v, w) is the unique strong solution of (2.2). 
Proof. Since v is divergence free it follows that 

IIvllo = Icurl vi· 

Using (3.3) we get the following inequality 

J(g,v,w) ::::: foT(llv(t) 116 - 211V(t)1101W(t)1 + lW(t)12)3dt. 

(3.3) 

The hypothesis a) of the proposition together with the above inequality 
implies that v E L6 (0, Tj V). On the other hand, from the known in-

equality IluIIL4(O) :; E HJ(D) and from the regularity 
v E LOO(O, Tj H) given by Theorem 2.1, it follows 

Il v IIL8(0,T;(L4(O))3) :; (3.4) 

Remark 3.2. The hypothesis a) from the previous proposition means 
that for fixed 1, vo, wo, we can find a function 9 E Br so that the system 
(2.2) has a strong solution. 
Theorem 3.3. If J =!= 00, then (CP) has at least a solution. 
Proof. We denote 

m = inf{ J(g, v, w) / 9 E B r , (v, w) solution for (2.2)}. 

Let {(gn, vn, wn)}n be a minimizing sequence. From Proposition 3.1. 
we obtain that (vn, wn) is the unique strong solution of (2.2) corre­
sponding to gn. It follows, from Corollary 2.3, that {vnh and {wn}n 
are bounded in (H2,1(DT))3 by a constant depending on the fixed data 
and on Ilvn IIL8(0,T;(L4(O))3), which is bounded, from (3.4), by a constant 
not depending on n. Since the embedding H 2,1(DT) C L2(DT) is com­
pact, we can pass to the limit in (2.2) corresponding to gn and we obtain 
that (v, w) is the unique strong solution of (2.2) corresponding to g, a 
weak limit point of {gn}n in (L2(0, Tj (L2(D))3). It follows that J is 
weakly lower semicontinuous, and, hence, the proof is achieved. 

4. The optimality system 

For obtaining the conditions of optimality, we define 

A = {g E L2(0, Tj (L2(D))3) / (2.2) corresponding to 9 
has a strong solution} 

( 4.1) 
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and 1 : A I---> ill, 
1(g) = J(g, F(g)) \lg E A, (4.2) 

where F(g) = (Vg, wg), (Vg, wg) is the unique strong solution of (2.2) 
corresponding to g. 
Theorem 4.1. Let fj* be an element of A. Then there exists a neigh­
bourhood U of fj* with U c A. 
Proof. We shall use the implicit function theorem. For this purpose we 
introduce the notation: 

and we define the operator $ : M x Y I---> Z with 

iPI (g, (v, w)) = v/ + b( V, v) - (11 + X) 6 v - xcurl w -
iP2(g, (v, w)) = jW'+jb(v, w)-,,0,w-(o+,6)\7(div w) 

+2xw-xcurl v-g (4.3) 
iP3(g, (v,w)) = v(O) - vo, 
iP4(g, (v, w)) = w(O) - woo 

It is obvious that $ (fj*, (iJ*, w*)) = O. The boundedness and the uni­

form continuity of the operators $ and : Y I---> Z being 

easy to obtain, it remains to prove the inversability of the operator 
8$ (fj*) (iJ*, w*) ) .. 

8( v, w) . The computatIOns gIVe 

(8iPi (fj*, (iJ*,w*)) (- -)) E -*) (- -))' 1 4 8( v, w) , v, W = iV, W , v, W ,z = , ... , 

where 

l EI (( w*), (v, w)) = v/ + b( v, iJ*) + b( iJ*, v) - (11 + x) 6 v - xcurl w, 
E2((iJ*,W*), (v,w)) = jw/ + jb(v,w*) + jb(iJ*,w) -,6 w 
-(a + ,6)\7 (div w) + 2xw - xcurl v, (4.4) 
E3((iJ*,W*), (v,w)) = v(O), 
E4((iJ*,w*), (v,w)) = w(O). 

!C:l.:r.:(-='* -*)) . . .. . U'I' g , V ,W . . 
It IS now ObVIOUS that the mversabIhty of 8( v, w) IS eqUIvalent 

with the existence and the uniqueness of the solution of the system 
(2.3) with if = i1 = iJ*, if = w*. Since the functions iJ*, w* have the 
regularity required by Theorem 2.2, we can apply this theorem and the 
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inversability is obtained. Therefore we can use the implicit function 
theorem and we find a neighbourhood U of!J* and a function F : U f---+ Y 
so that $(§, F(§)) = 0, V§ E U. If we denote F(§) = (vg , wg ), it follows 
that (vg , wg ) is the strong solution of (2.2) corresponding to § and the 
proof is achieved. 

The problem (CP) can be written in the form: 

{ Find !J* E A n Br such that 
I(!J*) = min{I(§) / § E An B r }. 

(4.5) 

Since we have proved that A is an open set, it follows that for every 
§l, § E An Br there exists 60 E (0,1) so that §l + 6(§ - §I) E An Br, 
V6 ::; 60. We are now in a position to prove the differentiability of the 
functional I. 
Proposition 4.2. The functional I is G-differentiable on A n Br and 
V §, §l 

f r(I'(§l), § - §lh2(0,T;(L2(O))3) = 

Vo curl ( iJ* (t)-Vl (t) )-(w* (t)-Wl (t) ),curlvl (t)-Wl (t) )dt, (4.6) 

where Eo(t) = I curlvl(t) - wl(t)12, (VI, WI) is the unique strong solution 
of (2.2) corresponding to §l and (iJ*, w*) E (H2,1(DT))3nC([0,T];V) x 
(H2,1(DT))3 n C([O, TJ; (HJ(D))3) is the unique solution for the system: 

(iJ*'(t), Z) + (b(iJ*(t), Vl(t)), Z) + (b(Vl(t), iJ*(t) - Vl(t)), Z) 
+(/-L + X)((iJ*(t), i))o - X(curl w*(t), Z) = (f(t), Z) Vi E V, 
j(w*' (t), fj)+j(b( iJ*(t), WI (t)), fj)+j(b( VI (t), w*(t) - WI (t)), if) 
+1((W*(t), if))o+ (o+t1) (div w*(t), div if) + 2X(W*(t), if) (4.7) 
-X(curl iJ*(t),fj) = (§(t),if) VfjE (HJ(D))3, 
iJ*(0) = vo, w*(O) = Woo 

Proof. The existence, the uniqueness and the regularity of (iJ*, w*) 
follow from Theorem 2.2. The formula (4.6) is obtained with standard 
computations, so we shall skip the proof. 
Corollary 4.3. If §l is a solution for the control problem (4.5)) then 

curl(iJ* (t)-Vl (t) )-(w* (t)-Wl (t) ),curlVl (t)-Wl (t) )dt O. (4.8) 

The last result of the paper states the optimality conditions satisfied by 
an optimal control. 
Theorem 4.4. Let §l be an optimal control. Then) there exist the 
unique pairs: (VI, WI)' the strong solution of (2.2) corresponding to §l, 
(ih, PI) E (H2,1(DT ))3 n C([O, TJ; V) x (H2,1(DT ))3 n C([O, TJ; (HJ(D))3), 
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the unique solution of the adjoint system (4.9), writtem below which 
satisfy the following optimality system: 

the system (2.2) written for iII, 

-(uHt), i) + (b(i, ih(t)), 711 (t)) - (b(ih(t), Ul(t)), Z) 
+j(b(i,Wl(t)), PI (t)) + (p, + X)((Ul(t), i))o 
-X(curlPl(t),Z) = E5(t) (curlih (t) -wl(t),curli) \:liE V, 
-j(p{ (t), ij) - j(b( VI (t), PI (t)), if) + ,( (PI (t), if))o 
+(a + ,B) (div Pl(t), div if) + 2X(Pl(t), if) - X(curl 711 (t), if) 
= -E5(t)(curl Vl(t) -wl(t),if) \:lifE (HJ(O))3, 
ul(T) = 0, Pl(T) = 0, 

r Pl' (§ - §I)dxdt ? 0 \:I§ E An Br . JnT 

(4.9) 

( 4.10) 

Proof. The variational formulation of the adjoint system (4.9) being 
of the same type with the variational formulation of (2.3) we can ap­
ply Theorem 2.2. and we obtain the existence, the uniqueness and the 
regularity of (711, PI)' The inequality (4.10) is derived from (4.8), taking 
(i, if) = (iJ*(t) - Vl(t), w*(t) - Wl(t)) in (4.9) and (i, if) = (Ul(t), Pl(t)) 
in (4.7)-(2.2) corresponding to §l' Standard computations complete the 
proof. 
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