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Abstract We prove the convergence and estimate the error of a general algorithm 
for the minimization of non-quadratic functionals over a convex set in 
a reflexive Banach space, provided that the convex set verifies a certain 
assumption. In the case of the Sobolev spaces, our algorithm is exactly 
a variant of the Schwarz domain decomposition method, and we prove 
that the introduced assumption holds if the convex set is defined by 
constraints on the function values almost everywhere in the domain. In 
the end of the paper we give some numerical examples concerning the 
two-obstacle problem of a nonlinear elastic membrane. 
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1. Introduction 

The literature on the domain decomposition methods is very large 
and it is motivated by an increasing need on the solution of large-scale 
problems since these methods provide numerical solvers which are effi­
cient and parallelizable on multi-processor machines. However, to our 
knowledge, very few papers deal with the application of these methods 
to nonlinear problems. 

The main goal of this paper is to give an error estimate for a Schwarz 
domain decomposition method applied to the minimization of the non 
quadratic functionals over a convex set which is not supposed to be de­
composed as a sum of subconvex sets. The convergence of a domain de-
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composition algorithm solving variational inequalities coming from the 
minimization of quadratic functionals over convex sets which are de­
fined by constraints on the function values at the points of the domain 
is proved in [2]. In [9], it is proved that the multiplicative space decom­
position method applied to the minimization without constraints of a 
differentiable and convex functional defined in a reflexive Banach space 
uniformly converges. In [3], it is proved that the method in [2] converges 
for the more general conditions given in [9] in the case of the quadratic 
functional minimization. We generalize in this paper the results in [3] 
and [9] to the minimization of the non quadratic functionals. 

The paper is organized as follows. In Section 2, we state the mul­
tiplicative Schwarz method for nonlinear variational inequalities as a 
subspace correction method in a general reflexive Banach space for the 
minimization of non quadratic functionals, and we prove the convergence 
of this algorithm provided that a certain assumption holds. In Section 3, 
under a little stronger assumption, which essentially introduces a con­
stant depending on the convex set and the space decomposition, we 
estimate the error of the algorithm. Section 4 is devoted to the con­
vergence of the method in Sobolev spaces, proving that the introduced 
assumptions hold. For the Sobolev spaces, the algorithm is exactly a 
variant of the Schwarz method. Finally, in Section 5, we illustrate the 
method by numerical examples concerning the two-obstacle problem of 
a nonlinear elastic membrane. 

2. General convergence result 

Let V be a reflexive Banach space and VI,···, Vm, be some closed 
subspaces of V. Also, we consider a non empty closed convex set K c V, 
and we make the following 

i 

Assumption 1. For any w, v E K and Wi E Vi with W + L Wj E K, 

i = 1,· .. ,m, there exist Vi E Vi, i = 1,· .. ,m, satisfying j=1 

i-I 

W + L Wj + Vi E K for i = 1,···, m, 
j=1 m 

V -w = LVi, 

i=1 

and the application from V x VI X ... X Vm to VI X ••. X Vm 

(1) 

(2) 

(3) 

is bounded, 2. e. it transforms the bounded sets in some bounded sets. 
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This assumption looks to be complicated enough, but, as we shall 
see in Section 4, it holds for problems in which we use the Sobolev 
spaces and the convex set K is defined by constraints of the function 
values at the points of the domain. We consider a Gateaux differentiable 
functional F : K -+ R, which will be assumed to be coercive if K 
is not bounded. We assume that for any real number M > 0, if we 
write LM = sup Ilv-ull, there exist two functions 

IIvll, lIulileM, v, u E K 
aM, f3M : [O,LM]-+ R+, such that 

aM is continuous and strictly increasing, and aM(O) = 0, (4) 

f3M is continuous at ° and f3M(O) = 0, (5) 

and satisfying for any u,v E K with lIull, Ilvll :S M, 

< F' ( v) - F' ( u), v - u > 2: aM (II v - u II), (6) 

f3M(llv - ull) 2: IIF'(v) - F'(u)IIV', (7) 

where F' is the Gateaux derivative of F. 
We know (see [5], Proposition 5.5) that if (6) holds for any M > 0, 

then the functional F is strictly convex. Also, it is evident that if (7) 
holds, then F is continuously differentiable. Reciprocally, we can prove 
in a similar way to that given in [6], Lemma 1.1, for the case of the 
Euclidean spaces, that if the closed unity ball is compact in the strong 
topology of the space Banach V, F' is continuous and F is strictly con­
vex, then the functions aM(T) = inf < F'(v) -

Ilv-ull=T,llvll,llullS:M,v,UEK 
F'(u), v - u > and f3M(T) = sup IIF'(v) - F'(u)llvl, 

Ilv-ull=T,llvll,lIullS:M,v,uEK 

exist for any M > 0, and they satisfy (4), (6), and (5), (7), respectively. 
It is evident that if (6) and (7) hold, then for any u, vEK, lIull, Ilvll:SM, 

we have 

aM(llv - ull) :S< F'(v) - F'(u), v - u >:S f3M(llv - ull)llv - ull. (8) 

Following the way in [6] (Lemmas 1.1 and 1.2), we can prove that for 
any u, v E K, lIull, Ilvll :S M, we have 

where 

< F'(u), v - u > +AM(llv - ull) :S F(v) - F(u) :S 
< F'(u), v - u > +/-tM(llv - ull), (9) 

(10) 
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Now, we consider the minimization problem 

u E K : F(u) :S F(v), for any v E K. (11) 

It is well known (see [5]) that if V is a reflexive Banach space and F 
is strictly convex, differentiable, and coercive if K is not bounded, then 
the above problem has a unique solution, and this is also the unique 
solution of the problem 

uEK: foranyvEK. (12) 

l,From (9) we see that, for a given M > 0 such that the solution u of 
(12) satisfies Ilull :S M, we have 

AM(llv - ull) :S F(v) - F(u), for any v E K, Ilvll :S M. (13) 

The proposed algorithm corresponding to the subspaces VI,···, Vm 
and the convex set K is written as follows 

Algorithm 2.1. We start the algorithm with an arbitrary uO E K. At 
iteration n + 1, having un E K, n 0, we compute sequentially for 
i = 1, ... , m, wr+1 E Vi satisfying 

= arg min G(v·) 
2 i-I 2 , 

un+rn +viEK, viEV; 
(14) 

with G(Vi) = F(Un+i::nl + Vi), and then we update un+* = Un+i::n1 + 
2 • 

This algorithm does not assume a decomposition of the convex set 
K depending on the subspaces Vi. As for problem (11), since the sub­
spaces Vi are reflexive Banach spaces, problem (14) has a unique solu-

tion, wr+1 E Vi, un+ i::n1 + wr+1 E K, and it also satisfies the variational 
inequality 

< F'(Un+i::n1 + V· - »0 
2 ,2 2 -, 

+i-l 
for any Vi E Vi, un -m + Vi E K. 

(15) 

We have the following general convergence result. 

Theorem 1 We consider that V is a reflexive Banach, VI,···, Vm are 
some closed subspaces of V, K is a non empty closed convex subset of 
V, and F is Gateaux differentiable functional on K which is assumed to 
be coercive if K is not bounded. If Assumption 2.1 holds, and for any 
M > 0 there exist two functions aM and (3M satisfying (4)-(7), then, for 

any i = 1,··· ,m, un+* --+ u, in V, as n --+ 00, where u is the 
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solution of problem (11) and un+* are given by Algorithm 2.1 starting 
from an arbitrary given uD• 

Proof. From (15) and (9), we have for any n 2: 0 and i = 1"", m, 

F(un+i
;,/) - F(un+*) 2: AM(llwi+111), (16) 

and therefore, using (11), we get for any n 2: 0 and i = 1"" ,m, that 

(17) 

Taking into account the boundedness of K or the coerciveness of F, it 
follows that there exists a real constant M > 0 such that 

Ilull S M, IluD11 s M, Ilun+*11 s M \in 2: 0, i = 1,"" m. (18) 

l.From (16) we also get 
m 

F(un) - F(un+1) 2: L AM(llwi+1II), for any n 2: O. (19) 
i=l 

Consequently, from (17), the series AM(llwi+111) is convergent for 
any i = 1"" ,m, and therefore 

Ilwi+111 --t 0, as n --t 00, for any i = 1,," ,m. (20) 

Applying Assumption 2.1 for w = un, V = u, and Wi = wi+l, we 
get a decomposition U1,"', Um of u - un. From (1), we can replace 

Vi by Ui in (15), and we have < F'(un+*) - F'(un+1), Ui - wi+1 > 
+ < F'(un+1), Ui - wi+1 2: O. Using (2) we have 2:::1 < F'(un+*) -
F'(un+1), Ui - wi+1 > + < F'(un+1), u - un+1 >2: O. Using this inequa­
lity, from (18), (9) and (7) we obtain 

F(un+1) - F(u) + AM(llu - un+111) s< F'(un+1),un+1 - u > 
m 

S L < F'(un+*) - F'(Un+1),Ui - wi+1 > 
i=l 
m m 

·1· 

= L L < - F'(un+.;r;),Ui - wi+1 > (21) 

i=l j=i+1 
m m 

i=l i=l 

l.From (20) and (3) we get that the sequence n=:l Ilui - wi+111}n is 
bounded. Also, from (20) and (5) we have 2:::1,BM(llwi+1ll) --t 0 as 
n --t 00. Consequently, F(un+1) - F(u) --t 0 and AM(llu - un+1ll) --t 0 
as n --t 00. Now, from (4) and (10) it is clear that un --t u as n --t 00 .• 
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3. Error estimate 

The error estimate essentially stands on the convergence order of the 
functions aM(T) and f3M(T) to zero as T -+ 0. In the following we take 
these functions of polynomial form 

aM(T) = AMTP, f3M(T) = BMTQ-1, (22) 

where AM > 0, BM > 0, p > 1 and q > 1 are some real constants. We 
have marked here that the constants AM and BM depend on M, and 
we see from (8) that we must take p ;::: q. Now, from (10) we get 

(23) 

Naturally, the convergence rate will depend on the spaces VI,"', Vm , 

and we shall consider the following form of Assumption 2.1 having con­
dition (3) slightly modified 

Assumption 3.1. There exists a constant Co such that for any w, v E K 
and Wi E Vi with W + Wj E K, i = 1"" ,m, there exist Vi E Vi, 
i = 1"" ,m, satisfying (1), (2) and 

Ilvill' S C& (IIV - wll' + IIWill') . (24) 

In the case of the minimization of quadratic functionals in [3J, the 
above assumption has been introduced for p = 2. The following theorem 
is a generalization for nonlinear inequalities of the result in [9] concerning 
the convergence of the method for nonlinear equations. 

Theorem 2 On the conditions of Theorem 1 we consider the functions 
aM and 13M defined in (22) and we make Assumption 3.1. If u is the 
solution of problem (11) and un, n;::: 0, are its approximations obtained 
from Algorithm 2.1, then we have the following error estimations: 

(i) ifp = q we have 

F(un) - F(u) n [F(uO) - F(u)] , 

Ilun - uilP Ct1 [F(uO) - F(u)]. 

(ii) if p > q we have 

F(un) - F(u) F(uO)-F(u) cl , 

[1+nC(F(UO)-F(U)) f-:!] p-q 

II - nilP < Q. 
U U _ C (q_l)2 • 

[1+(n-1)C(F(UO)-F(U)) f-:!] (p l)(p q) 

(25) 

(26) 
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The constants 6, C and C are given in (28), (31) and (33), respectively. 

Proof. From (21), using AM in (23), 13M in (22), and (24) in which 
we take Vi = Ui, V = u, W = un and Wi = w?+l, we have F(un+1 ) -

F(u) + - un+1 11P BM - w?+111 
2 '1. 'l.=.! 1 1 

BMm p BM 
2 q 'l.=.! 1 

m p There-
fore, using (13) with v = un, (19), and AM given in (23), we have 

A q 2 9.. q-l 
F(un+1 )-F(u)+ : Ilu-un+1 11P B M (lM ) pm - p (F(un)-F(un+1 )) p 

[(1 + Co)(F(un) - F(un+1 + Co(F(un) - BM(--k );m2-; 

(F(un) - + 2Co)(F(un) - + Co (F(un+1 )-
1 1 

F(u)p]. But, for some given", > 0 and ( > 0, we have (x p - "'x 
1 

for any x 2: O. Consequently, for a 0 < '" < 1, subtracting 
",(F(un+1 ) - F(u)) from both sides of the last inequality, we get 

where 

F(un+1 ) - F(u) + Ilu - un+1
11 P 

6 [F(un) - F(un+1)] p-l , 

A 9.. 2 9.. [ (0 C = BM(lM )pm -p (1 + 2Co) F(u ) - F(u) p(p-l) + 

(BM(lM );m2-;) P':l Cr /W':l ] /(1 - "'), 

(27) 

(28) 

and we have used (17) to write F(un) - F(un+1 ) F(uO) - F(u). From 
(27) we have 

9..=l 
[F(un+1) - F(u)] 6 [F(un) - F(un+1)] p-l . (29) 

Using again (17) we have F(un) - F(un+1) F(un) - F(u), and from 
(13) and (23) we get ApM Ilun+1 - ullP F(un+1 ) - F(u). From these 
two last inequalities and (27) we get 

(30) 

where 

(31) 

Now, if p = q, we can easily find (25) from (29) and (30). If p i= q, 

we get from (29) that F(un+1 ) - F(u) + A [F(un+1 ) - F(u)] q-l 

Cq=r 
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F(un) - F(u), and applying Lemma 3.2 in [9] we get F(un+1) - F(u) 

[0 + (F(un) - q-p, or 

F(un+1) - F(u) [(n + 1)0 + (F(uo) - q-p , (32) 

where 
- p-q 

C = '£=!1. A p-l . (33) 
(p - 1) (F(uO) - F(u)) q-l + (q - 1)C q - 1 

Equation (32) is another form of the first estimate in (26), and the 
second one can be obtained using (32) and (30). The value of '17 in the 
the expression of 6 and C can be arbitrary in (0,1). On the other hand, 
we see that the constants in the error estimations of F(un)-F(u) in (25) 
and (26) are some increasing functions of 6, and there is an '170 E (0,1) 
such that 0('170) 0('17) for any '17 E (0,1). This value '170 can be found 
by solving a nonlinear algebraic equation. • 

4. The multiplicative Schwarz method 
as a subspace correction method 

We shall prove in the following that for the problems in which we 
seek for the solution in a Sobolev space, Assumption 3.1 holds, and 
consequently, the convergence and error estimation theorems hold, too. 

Let n be an open bounded domain in Rd with Lipschitz continuous 
boundary an. We take V = 1 < S < 00, and a convex closed 
set K c V satisfying 

Property 4.1. If V,w E K, and if () E C1(n) with ° () 1, then 
()v + (1 - ())w E K. 

We consider an overlapping decomposition of the domain n, 

(34) 

in which ni are open sub domains with Lipschitz continuous boundary. 
We associate to the domain decomposition (34) the subspaces 
Vi = i = 1"" ,m. In this case, Algorithm 2.1 represents 
a multiplicative Schwarz method. 

Remark 4.1 The above spaces V and Vi correspond to Dirichlet boun­
dary conditions. Similar results can be obtained if we consider mixed 
boundary conditions. We take an = f\ U T'2, fl n f2 = 0 a partition of 
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the boundary such that meas(fd > 0, and we consider the Sobolev space 
V = {v E WI,S(O) : v = 0 on f l }. The subspaces Vi will be defined in 
this case as Vi = {Vi E WI,S(O) : Vi = 0 in 0 - n i, Vi = 0 in aOi n f l }, 

i = 1,···,m. 
Also, we have considered problems having the solution in WI,S(O), but 
all the obtained results hold with [WI,s(O)]N, N 2, in the place of 
W1,S(O). 

Concerning the decomposition (34), we assume that there are some 
functions e} E CI(n), i = 1,···, m, j = i,···, m such that for any 
i = 1, ... ,m we have 

m m 

supp(e}) c (nj), 0 e} 1, j = i,···, m, L e} == 1 in U OJ. (35) 
j=i j=i 

This is a easy enough constraint on the domain decomposition (34). In 
[8] or [1], for instance, some conditions in which a domain decomposition 
satisfies (35) are given. 

Proposition 4.1 If the domain decomposition (34) satisfies (35), then 
Assumption 3.1 holds for any convex set K having Property 4.1. 

Proof. The proof is similar to that given in [2] and we only outline 
it. Let us consider W E K, Wi E Vi such that W + Wj E K, 
i = 1,·· . ,m, and let V be another element in K. First we define VI = 
ei{v - w) + (1 - ef)wI and we prove that: VI E VI, W + VI E K, 
V - VI + WI E K, v - W - VI E Oi), and V - W - VI = 0 in 

For 2 i m-1, taking Vi = el(v-w- Vj)+(l-eI)Wi 

we recursively prove that: ViEVi, Vi + W + WjEK, V - Vj + 

WjEK, v-w- Vj E OJ), and v-w- Vj = 0 

in 0 - Uj=i+ I OJ. Finally, defining Vm = V - W - Lj:::t I V j, we get that (1) 
and (2) hold. Also, (24) in Assumption 3.1 holds, in which Co depends 
on the unity partitions (35), but it is independent of w, V, Wi and Vi .• 

5. Numerical example 

For a domain 0 C Rd and an 1 < s < 00, let K C V == be 
a closed and convex set. Given an f E V' == W-I,s' (0), l/s + l/s' = 1, 
we consider the problem 

u E K: !n1V'u ls - 2V'uV'(v"':' u) f(v - u), for any V E K. (36) 
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The solution u E K of the above inequality is also the solution of the 
minimization problem F(u) = minvEK F(v), where F(v) = In l\lvlS -
f(v). We know (see [7]) that if 1 < s :::; 2, then there exist two positive 

constants a and,B such that < F'(v)-F'(u), v-u s, 

IIF'(v) -F'(u)lIvl, for any v,u E wci-,S(O). Consequently, 

the functions introduced in (22) can be written as aM (r) = (2M)2 s r2, 

,BM(r) = ,Brs-I, and therefore, AM = (2M)2 s, BM = ,B, p = 2 and 
q = s in (22). If s 2, then there exist two positive constants a 
and ,B such that (see [4] ) < F'(v) - F'(u), v - u allv - ullI,s' 
,B(lIvlh,s + lIulll,s)s-2I1v - Ulll,s 11F'(v) - F'(u)lIv' , for any v, u E 

wci-,S(O). Therefore, for a given M > 0, we have aM(r) = ars, ,BM(r) = 
,B(2M)S-2r , and therefore, AM = a, BM = ,B(2M)S-2, P = sand q = 2 
in (22). We can conclude from the above comments that Algorithm 2.1 
can be applied for the solving of problem (36) if the convex set K has 
Property 4.1. Naturally, the error estimation in Section 3 hold . . , 

Figure 5.1. Solution for: (a) s=1.5, (b) s=2., (c) s=3. 

If 0 C R2 and the convex set is of the form K = [a, b], where a, b E 

wci-,S(O), a:::; b, then (36) is the problem of a nonlinear elastic membrane 
stretched over the obstacle a and under obstacle b. We have plotted in 
Figure 5.1 three computed solutions, corresponding to s = 1.5, s = 2.0 
and s = 3.0, of such a problem having a rectangular domain. In this 
example, the exterior forces f are zero. In a subsequent paper we shall 
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present an analysis of the one and two-level Schwarz method in the 
finite element spaces, where the introduced assumption hold, too. In 
these cases, we are able to explicit ely write the constant Co introduced 
in Assumption 3.1, as well as the constants in the error estimations 
of Theorem 2, as a function of the mesh and domain decomposition 
parameters. 
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