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1. Introduction 

In this paper we describe and develop a method first proposed by 
Angel and Bellman ([1]) to factorize a second order elliptic boundary 
value problem in the product of two first order decoupled initial value 
problems by invariant embeding. For the sake of simplicity we consider 
a domain 0 of IRn which is a cylinder ]0, l[xO and the Laplacian as 
elliptic operator. We denote x the coordinate along the first axis which 
is also the axis of the cylinder and y the n - 1 other coordinates. The 
section 0 C IRn - 1 is bounded and has a smooth boundary. We denote 
L: =] 0, 1 [ x ao the lateral boundary of the cylinder and r 0 = {O} x 0, 
r 1 = {I} x 0 the two faces of the cylinder. We consider the problem 

(Po) au { 
= f in 0, 

= 0, - ax Ira = uo, ulrl = Ul· 

The case of a Dirichlet boundary condition on ro will also be considered 
in section 5. The problem is embedded in a family of similar problems in 
the sub cylinders ]0, s[xO. Let Q(s) be the Dirichlet-to-Neumann map 
on the section x = s. We prove that the boundary value problem for the 
Poisson equation can be factorized as: 

each of the first order problem having an initial value given at x = 0 or 
x = 1. Furthermore the operator Q satisfies the Riccati equation 

- Q2 = Q(O) = O. 
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where b.y is the Laplacian on the section O. A control problem equi­
valent to the Poisson problem whose time variable is the x-coordinate 
is presented. The previous Riccati equation yields the optimal feedback 
for this control problem. 

The previous factorization of the Poisson problem can be viewed as an 
infinite dimensional extension of the Gauss LU block factorization. We 
also present a similar extension of the Q R factorization. It first uses a 
factorization of the normal equation from which the orthogonal operator 
can be derived. The triangular part takes the form of a second order in 
x initial value problem. 

Finally we present an optimal control problem with an elliptic state 
equation. We show that the factorization and uncoulping of both the 
state and adjoint state can be achieved together. 

2. Factorization of the state equation 

We briefly recall the factorization of the state equation from [2J. Using 
the technique of invariant embedding introduced by R. Bellman (see [1 J), 
we embed problem (Po) in a family of similar problems (Ps,h) defined 
on Ds =JO, s[xO for s EJO, IJ. For each problem we impose the Dirichlet 
boundary condition uk s = h, where r s = {s} x O. 

(Psh) au { 
-b.u = f in Ds , 

, = 0, - ox 1ro = uo, ulrs = h. 

For every s IJ we define the Dirichlet-to-Neumann (DtN) map Q(s) 
by Q(s)h = with f and Uo set to zero. By linearity of (Ps,h) we 
have = Q(s)h + w(s). 

Furthermore, the solution u of (Po) restricted to JO, s[ satisfies (Ps,ulr s ) 

for s EJO, 1[ so that 

au 
ox (x, y) = (Q(x)ulrx)(Y) + (w(x))(y). (1) 

Then, by formally taking the derivative with respect to x of this formula, 
. 02u dQ au ow 

we obtam !':l 2 = -b.yu - f = -u + Q-;:} + !;l' where b.y is the 
uX dx uX uX 

(n - 1) -dimensional Laplacian on O. Therefore substituting from 
equation (1) 

( dQ 2 ) ow ° = dx + Q + b.y u + ox + Qw + f, 

and then, since u is arbitrary, we obtain the decoupled system 
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dQ 2 
+ Q + = 0, 

-d +Qw= -j, 

- dx +Qu= -w, 

Q(O) = 0, 

w(O) = -Uo, 

u(l) = Ul. 

(2) 

The initial conditions for Q and w at x = 0 are obtained from the 
boundary conditions for u at ro and from (1) and similarly for the initial 
conditions for u at x = 1. Let us stress that Q is an operator on functions 
in y depending on x which satisfies a Riccati equation. The system (2) 
is decoupled because one can integrate the first two equations in x from 
o to 1 giving Q and w, then u is obtained by the integration backwards 
of the third equation. Formally, we have factorized = j as 

(3) 

Since Q is self adjoint (see [2]), it is clear that the two factors are adjoint 
of each other. Also, as Q is coercive, the equations for wand u are 
of parabolic type. In the particular case of the Poisson equation in a 
cylinder it can be shown that Q and commute. 

3. Properties of Q 

The precise properties of the DtN map Q and the meaning of the 
Riccati equation (2) are studied in [2J as continuous operator and in [3J in 
a Hilbert-Schmidt framework. Here we just briefly recall the functional 
framework used and the main results. We denote X 

X = {u E Hl(O) I = O} == L2(0, 1; HJ(O)) n Hl(O, 1; L2(0)). 

From [5], we introduce the 1/2 interpolate between L2(0) and H6(O) 

= [L2(0),HJ(0)h/2. 

Then from [5], we have X c e([O, 1], HU2(0)), which allows to de­

fine the trace of u E X, on r s , ul s E HU2(0). Assuming for the 
sake of simplicity Ul = 0 (otherwise j and u are translated), we defin 
X 0 = {u E X I U 11 = O}, and the variational formulation of (Po) reads 

k Vu.V<pdxdy = kj<pdxdy+ < uo,<plo 

for all <p E Xo. Then Q E LOO(O, 1; £(HJ(O), L2(0))) satisfies the Riccati 
equation(2) in the following sense 

ddx (Q(x)h, h)+(Q(x)h, Q(x)h)=(Vyh, Vyh) in 1)/(JO, 1[), Vh, hEHJ(O). 
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We also get the properties a.e. 
Q(x) E C(H3/2(0) n Ht£2(0) , Ht£2(0)) and 

Q E C(Htb2(0) , Ht£2(0)') nC(L2(0), H-1(0)); Q(x) is self-adjoint and 

coercive on Ht£2 (0) for x > O. Then wand U are defined in Xo by 

' h) + (Qw, h) = -(f, h), Vh E L2(0), w(O) = -Uo, 

( - , h) + (Qu, h) = -(w, h), Vh E L2(0) u(a) = O. 

dw 2 2 du 2 2 . 
Hence dx E L (0,1; L (0)), dx E L (0,1; L (0)). These are vana-

tional formulation of parabolic type problems. 

4. Optimal control problem associated 
to the boundary value problem. 

In this section we show the relation with Riccati equations appearing 
in optimal control theory (see for instance [4]). In fact we show that 
problem (Po) can be formulated as an optimal control problem. We use 
the operator Q and the function w defined in Section 2, with Uo = 0 (for 
the sake of simplicity). Let us consider the control space U = L2(0). 
For every v E U the state u(v) E Hl(O, 1; L2(0)) is solution of 

{ = v in 0, 
u(l) = Ul. 

(4) 

We also denote Uad = {v E U: u( v) E XU!} the space of admissible con­
trols, where XU! = {h E L2(0, 1; HJ(O)) n Hl(O, 1; L2(0)) : h(l) = uI}. 
The desired state Ud is given almost everywhere in x by the solution of 
the family of (n-1) dimensional problems 

{ -flyUd(X) = f(x) in 0 
udlao = O. 

(5) 

Then Ud belongs to L2(0, 1; H6(O)). Now we look for U E Uad such that 
J(u) = infvEuad J(v), where, for every v E Uad, 

At this point we have the problem that Uad is not a closed subset of 
L2(0) and therefore we cannot use directly the classic techniques (see, 
for instance, [4]) in order to solve this problem. Nevertheless, since 
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Uad = : h E XuJ, J(u) = infvEuad J(v) = infhExul J(h) = J(u), 

where = u and 

(7) 

Now, X Ul is a closed convex set in the Hilbert space L2(0, 1; HJ(O)) n 
Hl(O, 1; L2(0)) and J(h)I/2 is a norm of that space. Then (see Theorem 
1.3 of chapter I of [4]) there exists a unique u E X Ul satisfying J(u) = 
infhExul J(h), which is uniquely determined by 

J'(u)(h) = ° V h E Xo. (8) 

Let us show that u is solution of (Po). Developping (7), one gets 

J(u) = lJ'vu I2 dx-2 k VyuVyuddx+ klVyUdl2dx. 

But from (5), Ud satisfies almost everywhere in x 

10 VyUd(X)VyU(x) dy = 10 j(x)u(x) dy, 

Then 

J(u) = k IVul2 dx - 2 k judx + k IVyUdl 2 dx. 

Now it is clear that J(u) is the energy functional associated to (Po) up 
to a constant term. We introduce the adjoint state p by 

{ 
ap = -.6. u - j 
ax y 

p(O) = 0. 

in 0" 

Then, since -.6.yu- j E L2(0, 1; H-1(0)), we know (see Theorem 1.2 of 
chapter III of [4]) that p E Hl(O, 1; H-l(O)). Furthermore, since u E Y, 
we also deduce that E H- 1 (0, 1; L2(0)) and therefore, p E L2(n). 
Now for every h E X o, we know that 

101< -.6.yu - j, h > H-l(O)xH{j(O) dx= 101< h > H-l(O)xH{j(O) dx 

= _ r1r p ah dxdy. 
lolo ax 

Therefore, from optimality condition (8) we deduce that 

rl< -.6.yu - j, h > H-l(O)xHl(O) dx + r1r aau aah dx dy = lo 0 lolo x x 

fok(-p+ 0, VUEUad· (9) 
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Then we have obtained the optimality system 

{ 
_ au = _p u(l) = UI, atx ' 
ax = -flyu - J, p(O) = 0, 

which has the same associated Riccati equation (see Section 4 of chapter 
III of [4]) that the system of equations for Q and w of Section 2. 

5. Representation formula for the solution 
of the Riccati equation 

Let X(X)E£(Ht6\O), Ht62 (O)'), Y(X)E£(Ht6 2 (O), Ht6 2 (O)) denote 

X(x): u(l) ---t 

Y(x): u(l) ---t u(x), 

where U is solution of (Po) assuming J = 0 and Uo = o. They satisfy 
(' = 

with Y(l) I and X(O) = o. Furhtermore Q such that Q(x) = 
X(x)Y(x)-1 satisfies the differential Riccati equation Q' + Q2 = -fly. 

Let Po be the positive solution of the algebraic Riccati equation 

-PoflyPo = I, Po = (_fly )-1/2 

By the change of variable 

equations for X and Yare diagonalized in 

( <;[>' ) = ( Po- l 0 ) ( <;[> ) 
\][' 0 -POl \][ 

satisfies the linear equation 

W' = PO-IW + WPO- l 

with W(O) = H(Q(O)) = H(O) = POl 

Q(O) ---t 

IH 
W(O) ---t 

Q(x) 
i H-I 

W(x) 
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0:::; W:::; PO- I =? Q = (W - PO-I)(J + POW)-I 

is well defined. 

5.1. Dirichlet boundary condition at x = 0 

It corresponds to a singularity of 

Q(O) = rCI(W(O)) = (W(O) - PO-I) (I + PoW(O))-1 

i.e. W(O) = -PO-I. 

0> W> -PO- I for 0 < x:::; 1 =? Q = (W - POI)(J + POW)-I 

is well defined for 0 < x :::; 1. 

6. The QR factorization 

As the factorization (3) is viewed as an infinite dimensional general­
ization of the LU block triangular factorization, we now turn to the Q R 
factorization, i.e. as the product of an orthogonal operator Q and an 
upper triangular part R. We begin by writing the normal equation for 
(Po). We assume that f is regular enough and is null in a neighbourhood 
of L: in order to avoid non-homogeneous boundary conditions. 

(10) 

Of course (Po) and (10) have the same solution. Similarly to section 
2 we embed (10) in a family defined on Ds with additional boundary 
condition on r s : 

ulrs = h, ,6.ulrs = k, 

and we set 
ou ox Irs = Q(s)h+P(s)k+r(s). (11) 

If we choose k = - f, u is the solution of (Ps,h), then Q (which should 
not be confused with the orthogonal part of the factorization) is the 
same operator as the one defined in section 2 and it satisfies (2). We 
also deduce that r - P f = w satisfies (2). Furthermore, from (10), ,6.u 
can be viewed as satisfying (Ps,h) with right hand side ,6.f. Hence it 
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admits the following factorization 

{ 
dt - + Qt = -b.f, 
dxdb.u 
- dx + Qb.u = -t, 

t(O) = 

u(1) = - f(1). 
(12) 

Deriving (11) along a trajectory u(x) and by identification we get for Q 
and P 

+ Q2 + b.y = 0, Q(O) = 0, 

dP 
dx + PQ + QP = I, P(O) = O. 

(13) 

(14) 

Both operators P and Q are self-adjoint and positive for x > O. For that 
particular problem they commute with b.y . The term independent of u 

and b.u yields 
dr 

Pt + dx + Qr = O. 

Then, using (12), we get the decoupled form of (10) as 

p-1 d2r _ (p-2 _ 2P-1Q _ 2QP-1) dr 
dx2 dx 

(15) 

- (p-2 _ 2QP-1Q + p-1 b.y ) r = b.f, 

or 
r(O) = -Uo, ax (0) = 0, (16) 

where the initial conditions are derived from (11) and its derivative writ­
ten on ro and 

d2u -1 du (-1 ) -1 
dx2 - P dx + P Q + b.y u = - P r, 

du 
u(1) = U1, dx (1) = Q(1)U1 - P(1)f(1) + P(1)r(1). 

(17) 

(18) 

Let us denote Q the mapping f p-1r defined by (15) from Y = 
{u E L2(D)Ib.u E L2(D)} into itself, and r = p-1r. Then r satisfies 

d2 - d-
--.!... + p-1-.!.. + (2QP- 1 + p-lQ _ p-2 + b. ) r = b.f. (19) 

y 

Now it can be checked using (13) that the differential operators applied 
to rand u in (19), (17) respectively are adjoint of each other. Then 

Q*Q : f -b.u, 
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and Q is orthogonal. Denoting R the operator defined by the Cauchy 
problem (17) (Ru = f), we have obtained the factorization of (Po) as 
Q*R. It can be checked that p-lQ + b..y is positive and (17) is an 
hyperbolic problem with damping. 

7. J oint factorization for a control problem 

7.1. Statement of the control problem 
and optimality system 

Now we consider a control problem for an elliptic state equation. The 
state equation is 

( 'n ) { -b..u = f + Bv in 0, 
rc au au 

= 0, ax Ira = -uo, ax Irl = 0, 
where the control v lies in a Hilbert space V identified to its dual and 
BE £(V; L2(0)). Define the cost function 

J(v) = r lulrl - udl 2 dy + 1/ Jrl 
Then defining the adjoint state p by 

{ 
-b..p = ° in 0, 

ap 
= 0, ax Ira = 0, 

the minimum of J is characterized by v = 

7.2. Factorization of the optimality system 

The factorization via dynamic programming applied to the state equa­
tion in the previous section can be applied to the coupled system of state 
and adjoint state equations. Setting ulr s = cp and plr s = 'lj; we define a 
family of problems depending on s, cp, 'lj; by 

-b..u = f -l..BB*p in Os, 

= 0, 

-b..p = ° 
=0, 

ax Ira = 0, ulrs = cp, 
in Os, 
ap ax Ira = 0, plrs = 'lj;. 

(20) 

Then the mapping (cp, 'lj;) -7 (u, p) is affine but p depends linearly on 
'lj; and not on cpo Furthermore the mapping 'lj; -7 Ir s as well as the 
mapping cp -7 Irs if'lj; = ° are. exactly the DtN mapping Q satisfying 
(2). So there exists a linear mapping P(s) such that 
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8u -Irs = P(s)'lj; + Q(s)<p + w(s), 

8x Irs = Q(s)'lj;. 
(21) 

The equation satisfied by P is obtained in a similar fashion. Let us 
derive the first equation (21) along a solution of (20) and substituting 
the derivatives of u and p from (21) 

[Pu dP - dQ - dw 1 * 
8x2 = dx P+ PQp+ dx u+Q(Pp+Qu+w)+ dx = -b..yu-f+-;,BB p. 

Using the equation for Q from (2) and the fact that p is arbitrary we 
obtain the equation for P 

ddP + PQ + QP = P(O) = o. (22) 
x l/ 

dw 
dx + Qw = - f, w(O) = -Uo (23) 

Knowing Q from (2), equation (22) is linear. One can show that it is 
well posed and its solution is self-adjoint. 

Now, equations for Q, P and w being integrated once for all, for any 
new measurement Ud the optimal control v is obtained in the following 
way 

• find an initial condition for p at x = 1 from the system 

P(1)p(1) + Q(1)u(1) + w(1) = 0, 

Q(1)p(1) = u(1) - Ud, 

which gives p(1) = -(P(1) + Q(1)2)-1(Q(1)Ud + w(1)). 

• integrate the equation for p backwards from r 1 to ro - Qp = 0 

• the optimal control v is then given by v = 
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