
A SCALED, IMMUNOLOGICAL APPROACH
TO ANOMALY COUNTERMEASURES

Combining pH with cfengine

Kyrre M. Begnum
Faculty of Engineering, Oslo University College, Norway
Kyrre.Begnum@iu.hio.no

Mark Burgess
Faculty of Engineering, Oslo University College, Norway
Mark.Burgess@iu.hio.no

Abstract: We discuss the combination of two anomaly detection models, the Linux ker­
nel module pH and cfengine, in order to create a multi-scaled approach to
computer anomaly detection with automated response. By examining the
time-average data from pH, we find the two systems to be conceptually com­
plementary and to have compatible data models. Based on these findings, we
build a simple prototype system and comment on how the same model could
be extended to include other anomaly detection mechanisms.

1. Introduction
Computer Immunology is an approach to integrity management, based on

the notion that computer systems are healthy when their behaviour is free of
anomalous occurrences[16, 3]. The onus falls on researchers to define what
'anomaly free' means, or conversely what is normal for a system. This can be
done in several ways.

Commonly one supposes that systems are normal when they exhibit medium
term stability, i.e. stability on a time scale at which users experience the
system[4]. Health or stability is thus related to ones idea of policy. Long
term changes, such as policy revisions, can occur and short term changes are
occurring all the time. Normality is a statistical concept, which accrues over
time, and computer immunology is a form of computer learning[6, 12]. Unlike
many other methods of artificial intelligence, computer immunology is about
purely mechanistic regulation of behaviour, rather devoid of 'intelligence' in the
normal sense of the word. It concerns prescriptions for recognition of change
with computer systems. In summary, this medium term stability is achieved
with the following strategy:

•

The original version of this chapter was revised: The copyright line was incorrect. This has been

corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35674-7_66

© IFIP International Federation for Information Processing 2003
G. Goldszmidt et al. (eds.), Integrated Network Management VIII

http://dx.doi.org/10.1007/978-0-387-35674-7_66

32 Kyrre M. Begnum and Mark Burgess

Two approaches have emerged for addressing these issues at different scales .

• At the University of New Mexico, the Computer Immunology group has
examined strategies for detecting signatures of abnormal computer be­
haviour at kernel level. Their pH system[10, 14] learns new signatures
over time, but is resistant to doing so. The primary motivation here has
been in deflecting network intrusions, though the method is equally effec­
tive in detecting abnormal local usage, such as attempts to exploit buffer
overflows. The response provoked by anomalies has been in the form of
scheduling delays in processes with unknown call sequences, in order to
urge attackers to lose interest.

• At Oslo University College we have focused on the configuration manage­
ment aspect of policy, using a system of agents (cfengine) that detect and
use their environmental conditions and current configuration to detect
anomalous changes[1]. Again, the policy is partly specified and partly
learned from patterns of usage, and the response to different events is
specified itself as a matter of policy, and the agents ensure that the sys­
tem tends to maintain the same state over time.

This paper describes the process of combining cfengine, a high level config­
uration engine with pH, a kernel patch which enables anomaly detection and
reaction on a per process basis. The project has two independent goals: to pro­
vide a better anomaly detection capability for cfengine, and a better response
engine for pH; to create a versatile framework for the collection of system re­
lated data for further research into anomaly detection. There is thus a security
motivation and a research motivation. The 'science' of anomaly detection is still
in its infancy, thus the latter should not be neglected for the sake of building a
quick fix.

The plan for this paper is as follows. We begin by discussing the requirements
for compatibility between pH and cfengine, as well as what we hope to achieve
by combining them. In sections 3 and 4 we provide some details about these
two systems in order to contextualize their marriage. Finally, we provide a
cooperative model for these systems and discuss further extensions for future
work.

2. Compatibility
On the surface, it would seem that pH and cfengine are two very different

systems, with somewhat different goals. How then are they to be meaningfully
combined?

The common thread between the systems is their long term goal: that of
system regulation, or homeostasis (state regulation)[2, 3,15,6]. When a change
occurs in a system, there are two general ways that it can respond. With
negative feedback, the system responds in such a way as to reverse the direction
of change; this tends to keep things constant and allows us to maintain a
regular state; positive feedback would tend to amplify the change. This has
a de-stabilizing effect, so it does not result in homeostasis. While it can be
useful for rapid responses, it is a dangerous strategy, since the change will tend
to dominate and eventually consume a system. Regulation, or homeostasis, is
thus a self-regulating mechanism that allows a system to avoid paying detailed
attention to its most basic functions thereby helping keep it in a steady state

A scaled immunological approach ... 33

The University of New Mexico's pH kernel modification stands for process
homeostasis. Its goal is to seek a 'steady state' list of tasks that are undertaken
by a computer system (i.e. a normalized list). It detects previously unknown
tasks and offers resistance to their execution. If the new tasks persist, they are
eventually tolerated by the system.

Cfengine, on the other hand, seeks to maintain a 'steady state' configuration
of a system, where configuration means the state of the file system, process
table and service ports. It detects and opposes changes by two strategies:
i) by referring to a descriptive policy about what is considered acceptable,
and ii) by monitoring key system resource usage over days and weeks, and
responding to statistical irregularities. Thus, both pH and cfengine have a
policy of maintaining a 'normal' or 'regular' state, and both are able to learn
about long term changes by adapting their reference state. Their key difference
is the scale at which they operate: pH works at the microscopic, short-term
level of system calls, while cfengine works at medium term user time-scales.

How can these be combined? As we have already stated, an adaptive, learn­
ing system is necessarily a statistical system; we should therefore ask: i) Do
they have compatible data models? ii) What are the tolerances of the systems?
i.e. with what accuracy can they make claims about system normality; hence,
when is it appropriate to activate countermeasures?

iii) Resource utilization is known to be a strongly social phenomenon, with
a marked variation over the working week. Cfengine uses the working week
as a model for measuring its medium-term state. Is the same time reference
appropriate for pH, which deals with short term events?

Combining these seemly disparate mechanisms is thus a scaled approach to
system regulation. PH detects events on short time scale, responds simply and
propagates the data forward as medium term statistics which it uses privately
for future reference. Cfengine measures medium term events and activates
medium to long term response strategies. Our aim here is to see whether
medium term data from pH can be read and utilized by cfengine in order to
bring the knowledge of short term behaviour to bear on longer term strategy.

3. Short introduction to pH
Ph is a patch for the Linux 2.2 kernel. It addresses the anomaly countermea­

sure problem at the level of system call sequences. A lot of security software
today is designed to detect attacks (e.g. Intrusion Detection Systems (IDS))
or to find vulnerabilities in the system; only a few tries to stop attacks as they
occur (e.g. some can delete viruses and even repair damaged files). Although a
response capability exists in some programs, most software only issues a warn­
ing, and waits for a system administrator to react.

The key is the ability to tell the difference between "benign" and "hos­
tile". For pH, like most other IDS, normal is benign, and abnormal is hostile.
By analysing the pattern of system-calls made by each process using pattern­
matching algorithms, pH gains knowledge about what it perceives as normal
behaviour. It also maintains a profile of each binary as to see if each process
produces the expected patterns of system-calls. As long as a process keeps it's
number of strange patterns under a certain level, it is considered normal. If the
number rises above a threshold, pH starts to sabotage the process by delaying
all the system-calls made by it.

34 Kyrre M. Begnum and Mark Burgess

Ph keeps one profile for each binary, but it reacts to individual processes.
Every process has a sequence of system calls, known as a trace. The profile of
each binary is updated and adjusted to the behaviour of the processes. This
means that instances of a specific behaviour will in time be considered normal.
Not all anomalies are real threats to the system, but earlier research by UNM
suggested that "To date, all of the intrusions we have studied produce anoma­
lous sequences in temporally local clusters[lOJj pH is therefore designed to react
regarding the density of anomalous system call patterns.

Strategy
The algorithm used by pH is called "time-delay embedding" j it looks at the

trace of each process' system calls. For each system call, pH notes the calls
preceding this one within a window. This gives a number of system call pairs
for each position in the window. For instance, suppose we have the following
trace of an imagined process:

getpriority, open, write, write,
close, open, pipe, close, exit

We read the trace from the left. While reading, we note which calls come
behind the current one. Just like sliding a window over the trace. The default
window-size for pH is 6 calls. pH does not consider each sequence it encounters
as part of its process profile right away. There is a distinction between the
current profile (called test) for a given binary and the temporary profile of the
running process (called train). The train-array is continuously updated with
new pairs. Should a pair occur, that is not part of the test-array, then it is
considered an anomaly. The test-array can only be updated by replacing it with
the current train-array. This replacement occurs under one of three conditions
(from the documentation): i) The user explicitly signals via special system call
(sys_pH) that a profile's training data is valid. ii) The profile anomaly count
exceeds the parameter anomaly _limi t. iii) A specialized training formula is
satisfied.

Should an anomaly occur, then a number of the following system-calls will
be delayed. After a certain number of anomalies, the train-profile will switch to
the test-profile. This is called acquired tolerance, meaning the profile adapts to
the behaviour of the process. But should the anomalies occur too close to each
other, then pH will react in the opposite manner and reset the train-profile.

Implementation
It is possible to control pH at runtime with a system call interface: sys_pH (),

and pH-admin which is basically a front-end to the system call. This tool can,
amongst other things:

• Turn the monitoring on/off

• Write profiles to disk

• Adjust pH-variables (i.e delay _factor)

• Force the train profile to be copied to the test profile.

A scaled immunological approach ... 35

pH saves information about each running process from the /proc directory.
Each folder belonging to a process has a file called pH, which contains informa­
tion about delay, system call count, if the profile is considered normal and if
the process is currently frozen.

All the messages created by pH are logged in the log file /var /log/ syslog.
The profiles for all the binaries are located in the folder /var/lib/pH/profiles
where they are sorted in a hierarchy which mirrors the actual file-system. Each
binary is therefore identifiable by it's path. For example, the program less,
which has the path /usr/bin/less, will have it's profile at

/var/lib/pH/profiles/usr/bin/less.

4. Short introduction to cfengine
Cfengine is a well-known policy based configuration management system

written at Oslo University College[l], which is comprised of a number of com­
ponents (see fig 1). An agent component is responsible for enforcing specified
policy by comparing a description of the permissable states of a host's config­
uration with the host's actual state. There are also file-server and scheduler
components for deploying cooperative management schemes. The cfenvd en­
vironment daemon is a component that measures system resource usage, in­
dependently of the other parts and records it in a database [5] , which becomes
the definition of 'normal'. This tool is intended both for regulative feedback
and for gathering research data. It classifies the current state of resource usage

,
1- .. - - - - - -I

: d encd : L _______ _ _ ,

.--- -- -- ---,
: :
L _ _ _______ I ..

" ... copy ,- - - - - - - - - -,
... : c:rC[l\'d :

" L. __ _ _ _ __ _ _ I

1-1
Local system Other syslem

Figure 1 A schematic rep­
resentation of cfengine com­
ponents. The environment
daemon communicates with
the agent on each host, by
providing it with classified
state information.

in relation to what has been learned previously, using units of the statistical
uncertainty (standard deviation) for each time of week. It then publishes its re­
suIts for other programs to use, notably cfagent . Cfagent receives the data as
a 'classified event' which can be used to predicate countermeasures or follow-up
responses for the state concerned. Some examples of classes which can become
active in the cfagent:

RootProcs_low_dev2
netbiosssn_in_low_dev2
smtp_out_high_anomalous
www_in_high_dev3

The first of these classes tells us that the number of root processes is two
standard deviations below the average for past behaviour. This might be for­
tuitous, or might signify a problem, such as a crashed server; we do not know

36 Kyrre M. Begnum and Mark Burgess

the reason, only that an anomaly has occurred. The WWW item tells us that
the number of incoming connections is three standard deviations above aver­
age. The SMTP item tells us that the number of outgoing SMTP connections is
more than three standard deviations (this is the defined meaning of anomalous)
above average, perhaps signifying a mail flood. The setting of these classes is
transparent to the user, but the additional information is only visible to the
privileged owner of the cfengine work-directory, where the data are cached.

Countermeasures or follow-up actions can be attached to events in order to
automate a policy decision to the occurrence. For example, one might decide
to shut down an offending service temporarily, and then follow up with a file
audit:

processes:

c'sendmail" signal=kill

files:

lusr recurse=inf checksum=md5

time (hrs)

5. A cooperative model

Figwre 2 Cfengine measures
patterns of resource usage
over the working week. This
example shows how measure­
ments of Samba file sharing
lead to an average picture of
behaviour at different times
of the week. The solid line is
the average value over many
weeks and error bars indicate
the standard deviation.

We wish to combine these two systems in order to create a better and com­
prehensible high level system that can react to the systems state. This is a
topic which was not clear from the available research; therefore wish to find
a framework for collecting, storing and analyzing data on their properties. A
combined system has to be both reliable and secure if it is to be used on sys­
tems that do actual work. Creating a isolated system for testing makes sense
for keeping the system clear from uncontrollable noise (users, network traffic
and so on). But if noise is normal, and normal is what you're looking for, then
the only way to test it, will be real-life.

A scaled immunological approach ... 37

Various models might be used for establishing a connection between cfengine
and pH. The first alternative is a plug-in architecture, where pH is considered to
be a cfengine plug-in module. This would facilitate a close working relationship,
but it requires permanent structural modifications to both.

A second alternative, would be a model where a higher level system invokes
and controls smaller components. The process monitoring would be done by
a detached participant. The higher level system would act on the information
delivered by the component. This information could be gathered via a spacial
interface or by parsing log files.

The model we have chosen is a feedback model that preserves the domain
of each software system, but allows a passive communications channel between
them (see fig. 4), using files and databases. Thus pH will be able to adjust
it's monitoring level depending on instruction from cfengine, and cfengine can
adjust its behaviour based on results from pH. pH has it's own engine for data­
analysis and cfengine analyzes the data further.

pH already has an interface that cfengine can use to control it in the form of
shell commands. We could also go directly to the system call sys_pH instead
of going via the pH-admin command. pH stores its information in several
places: /proc, /var/log/syslog and /var/lib/pH/profiles. The profiles
are in a self-defined binary format and will be printed to the terminal by the
command pH-print-profile. The same holds for the sequence files, with the
corresponding command pH-print-sequences.

In order to collect the data from pH, we use cfengine's cfenvd daemon and
database, which in turn provides information to the agent when it activates.

In fig. 3, a number of identical trials was performed in order to simulate a
long term variation of the form measured by cfenvd (see fig. 2). An apache
web server was used as the pH monitored process. It was loaded by a number of
clients in an identical pattern of variation. Repeating the same changing load
five times, a pH process counted the total number of system calls. The average
of the five identical trials with standard deviation shown as error-bars is plotted
in the figure. Each trial measured 120 values, recorded each 30 seconds over
the space of an hour. This figure is sufficient to make two points:

• The statistical model of average behaviour with certain tolerance is com­
patible with that currently used by cfenvd.

• The error bars are not zero, thus there is a natural uncertainty in the
results, even with close to identical trials.

The latter point is interesting, since these additional system calls cannot be
explained by other processes. Ph measures only system calls related to a specific
binary. No other binaries could be responsible for this error.

The fact that there is a statistical uncertainty is very important. It means
that the purely digital approach to anomaly detection is not sufficient to yield
exact repeatability. Thus if one is looking for repeat-ably identifiable signatures,
one must allow a margin for error. This is clearly significant for intrusion
detection systems, which normally recognize only exactly learned patterns. The
source of the uncertainty could lie both on the side of the server, or on the side
of the clients loading the server. It could be a result of scheduling differences,
since measurements are cumulative values over a 30 second period. Differences
due to network traffic load can be ruled out, since the trials were performed in
isolation.

38 Kyrre M. Begnum and Mark Burgess

1500 ,----------,--------,--------,

!!1
1000

i
'0

j
2 500

Time (minutes)

(.. I cfenglne

+ r r-, P""H--p-:"rln+t--•• -cu-.-nco'""l

o ·

Figure 3 Repeated trials on
a simulated load, showing
how the average number of
system calls varies in propor­
tion to applied load, within
measured tolerances. This
shows that the basic cfengine
statistical model applies to
pH also.

Figure 4 Information Flow
Diagram: how cfengine and
pH exchange information
and management intructions.
Communication makes use
of existing operating system
abstractions, like the /proc
filesystem for kernel tables.
Similarly, cfengine uses the
standard pH API, maintain­
ing the independence of the
two systems.

Using pH to measure process load shows us one other thing, that is inter­
esting for future work: the simple measurements show a clear pattern, i.e. the
input pattern is reflected linearly, up to a standard error, in the output graph.
Monitoring the number of system calls for a process over time, we can deter­
mine when it has been used, and how much. We could also build up a statistic
here to gather a trend of how much a program is used, and how much we can
expect it to be used. By measuring individual sequences separately, it would
be possible to perform a code analysis of software, indicating how much users
used different parts of the software. This is very interesting for future research.

Modifications to pH
The most important modification to pH, is having the ability to specify

what processes to delay. The monitoring will still be done on all profiles, but
a variable describing if this process is subject to delaying must exist for every
binary. In addition, we must be able to choose if this variable should be set to
delay or ignore by default on the creation of a new profile. If the default value
is delay, then pH will work as before. The administration of these variables can
be handled from cfengine. This enables us to achieve the following: i)Delayall
but these binaries (Default on). ii) Ignore all but these binaries (Default off).
Note, that the default value could be changed in runtime too.

A scaled immunological approach ...

Cfengine

_____ __

not implemented

__J

'------"""

Data storage

39

Figure 5 Architectural view
of cfengine and pH's col­
laborative scheme. Both
systems are independent of
one another and communi­
cate only minimally through
profiles held in the kernel.

The new pH-related data need to be stored, e.g. the number of abnormal pro­
cesses, number of system calls for selected processes. The size of the database
will vary depending on the number of profiles we wish to monitor and how long
we wish to keep the data. Cfenvd stores only one week's worth of data, and
merges the data together with a average from all other preceding weeks, by a
geometric series. This approach would also be useful for data like the number
of system calls for a process. It would give us enough to generate the expected
usage throughout the week for a given application.

For other data, like the sum of anomalies at any given moment, this vari­
able is a bit more tricky. This variable will be influenced by the use of new
applications and has to be monitored over a longer period. Clearly, not all
anomalies are genuine and the system must learn to tolerate those that are not
dangerous. A one-week local average can be useful as soon as the variable is
stable or else the first encounter with all applications will influence the average
and deviation so much that small and potentially interesting deviations later
on will be unrecognizable.

Cfengine is designed to work independently. An anomaly in the data will
trigger an event in cfengine, but we are not always interested in anomalies. We
need an option for getting the datasets so that we can view them in plots or
analyze them statistically (see fig 5).

6. Example regulation strategy
We envisage automated responses to anomalous behaviour. Such responses

have been considered before in other contexts (see refs [11, 9]). A simple ex­
ample of a cfagent response in visualizing the interplay between the two
anomaly systems. A special cfagent class is made to activate on the presence
of a recent anomaly. This class persists until it has been expedited by an agent.

Note that pH does not try to start cfagent immediately. For one thing, pH
is in kernel space, and the agent must run in user space. However, it leaves a

40 Kyrre M. Begnum and Mark Burgess

semaphore to the cfengine scheduler to activate the agent with a special class,
on its next scheduled run.

If the agent were started immediately as a direct result of the anomaly, it
would be trivial to use this in a denial of service attack. Our strategy here is
a scaled approach: using cfengine with its normal 'policy' level of statistical
uncertainty, and leave pH itself to deter potential attacks with its delaying
tactics.

Two classes can become active: a sequence anomaly semaphore, indicating
that a potentially dangerous sequence of system calls was identified, and a load
anomaly, indicating that cfenvd has found the total load being processed by
pH is anomalous. We therefore cover qualitative and quantitative anomalies.

control:

actionsequence = (files processes)

files: II ph_sequence_anomaly::

Do MD6 integrity check on system files, in case of intrusion
lusr owner=root,bin checksum-md6 recurse=inf action=warnall

Kill the processes causing anomalous load, if it still exists
CC." signal=kill filter=ph_load_filter

pH communicates its variables (the list of offending processes) to cfagent
using one of cfengine's filter interfaces for selecting processes. pH has no func­
tionality for killing a process itself, so this is a natural task for cfagent to per­
form, assuming the offending process is persistent over the cfagent scheduling
interval.

7. Conclusions
We have measured the behaviour of pH and cfengine and found that they

have compatible goals and data models. Cfengine's statistical tools for state
analysis complement the powerful pH data-microscope. We have implemented
a pilot scheme for combining them into a multi-scaled approach to anomaly
detection. Our interest has been two-fold: we were keen to devise a fully auto­
nomic response to anomalous behaviour in computer systems, and were driven
to learn more about the meaning of 'normal' and 'anomalous' in the context of
the human-computer interaction. We feel that we have made headway towards
both of these goals in part, by showing how two such disparate mechanisms
can cooperate in a scaled information model. In future work, we hope to study
the behaviour of the combined system in a production setting.

How many processes have anomalies? This number would be an indicator
of the stability and predictability of a host.

Analysing the behaviour of a binary over time. A comparison of profiles
across different hosts could also indicate how similar the different applications

A scaled immunological approach ... 41

are being used on the different hosts. This has Human-Computer-Interaction
ramifications, and is especially interesting for complex programs, such as com­
puter games or office applications, where perhaps only a small part of the
program is actually ever used. The relevance here is thus not only system
administration, but also software engineering. We could also use these data
in a work-routine experiment. When are certain applications being used? Do
people use more complex programs at the end of their work-day? The benefit
of having the monitoring system separated from the application, is that we can
gather these data for every program on the host. Eventually such data can also
lead to better management policies.

On the issue of intrusion detection, there are numerous possibilities to ex­
plore. Should a host experience a high anomaly on one process it could try to
warn other machines on the network about it, by sending inter-host semaphores.
In addition, different hosts could interchange profiles. This, off course, implies
a secure channel and a protocol for the communication. Today, cfengine of­
fers a framework for the communication, and there is also research going on to
define a standard format for intrusion detection (Intrusion Detection Message
Exchange Format - IDMEF)[7].

Cfengine and pH alone might not be able to document intrusions on all fronts
of the system. They should therefore be able to spawn other intrusion detection
and forensic systems on demand if they are present, e.g. packet based detectors
like SNORT[13], or Network Flight Recorder[8], that are perhaps too demand­
ing to run all the time. In that way, the combination of pH and cfengine could
act as a front-line defense against network intrusion, and vcooperate to switch
on forensic capture software and perform backup checks on system integrity.
Alternatively they could simply collaborate to identify the appropriate forensic
data for human examination. We hope to return to some of these problems in
future work.

8. Availability
GNU Cfengine may be obtained from http://www.cfengine.org. pH may be

obtained from http://www.cs.unm.edu/soma/pH

References
[1) M. Burgess. A site configuration engine. Computing systems (MIT Press: Cambridge

MA), 8:309, 1995.

[2) M. Burgess. Automated system administration with feedback regulation. Software
pmctice and experience, 28:1519, 1998.

[3) M. Burgess. Computer immunology. Proceedings of the Twelth Systems Administmtion
Conference (LISA XII) (USENIX Association: Berkeley, CA), page 283, 1998.

[4) M. Burgess. On the theory of system administration. Submitted to J. ACM., 2000.

[5) M. Burgess. Two dimensional time-series for anomaly detection and regulation in adap­
tive systems. 13th International Workshop on Distributed Systems: Opemtions and
Management (DSOM 2002), page 293, 2001.

[6) M. Burgess, H. Haugerud, T. Reitan, and S. Straumsnes. Measuring host normality.
ACM Transactions on Computing Systems, 20:125-160, 200l.

[7) J. Arvidsson et al. Terena's incident object description and exchange format require­
ments. RFC3067, 2001.

42 Kyrre M. Begnum and Mark Burgess

[8) M.J. Ranum et al. Implementing a generalized tool for network monitoring. Proceedings
of the Eleventh Systems Administration Conference (LISA XI) (USENIX Association:
Berkeley, CAl, page 1, 1997.

[9) J.L. Hellerstein, F. Zhang, and P. Shahabuddin. An approach to predictive detection
for service management. Proceedings of IFIP/IEEE INM VI, page 309, 1999.

[10) S. A. Hofmeyr, A. Somayaji, and S.Forrest. Intrusion detection using sequences of
system calls. Journal of Computer Security, 6:151-180, 1998.

[11) P. Hoogenboom and J. Lepreau. Computer system performance problem detection
using time series models. Proceedings of the USENIX Technical Conference, (USENIX
Association: Berkeley, CAl, page 15, 1993.

[12) P.D'haeseleer, Forrest, and P. Helman. An immunological approach to change detection:
algorithms, analysis, and implications. In Proceedings of the 1996 IEEE Symposium
on Computer Security and Privacy (1996).

[13) Snort. Intrusion detection system. http://www.snort.ory.
[14) A. Somayaji and S. Forrest. Automated reponse using system-call delays. Proceedings

of the 9th USENIX Security Symposium, page 185, 2000.

[15) A. Somayaji and S. Forrest. Automated response using system-call delays. Proceedings
of the 9th USENIX Security Symposium (USENIX Association; Berkeley, CAl, page
185,2000.

[16) A. Somayaji, S. Hofmeyr, and S. Forrest. Principles of a computer immune system.
New Security Paradigms Workshop, ACM, September 1997:75-82.

	3
A SCALED, IMMUNOLOGICAL APPROACHTO ANOMALY COUNTERMEASURES
	1. Introduction
	2. Compatibility
	3. Short introduction to pH
	Strategy
	Implementation
	4. Short introduction to cfengine
	5. A cooperative model
	Modifications to pH
	Data storage
	6. Example regulation strategy
	7. Conclusions
	8. Availability
	References

