
SEAMLESS INTEGRATION OF
INQUIRY AND TRANSACTIONAL TASKS
IN WEB APPLICATIONS*

Juan J. Rodriguez, Oscar Diaz
The EKIN team
Dpto. de Len9uajes y Sistemas Inlormaticos
University 01 the Basque Country
Apdo. 649 - 20080 San Sebastin (Spain)
jibrojij@si.ehu.es. jipdigao@si.ehu.es

Abstract Most conceptual Web design methods proposed so far focus on browsing
(i.e. inquiry tasks) but it is not clear how to integrate them with trans­
actional tasks which have a lasting effect. Moreover, tasks are commonly
integrated into higher-order behavioural units: the processes. For in­
stance, the process of a purchase includes "browsing the catalog", "adding
to the trolley", ''filling up billing data" and other tasks that end up in
the fulfillment of the order. We claim that these distinct task types
(i.e. inquiry and transactional tasks) impose different demands and re­
quire distinct skills from the designer. On these grounds, we envisage a
bottom-up approach to web application construction. First, inquiry and
transactional task design is conducted by two separate teams each with
expertise in one area. Second, processes are realised through inter-task
dependencies. Declarative and separate description of tasks and depen­
dencies accounts for maintenability of the whole solution. This paper
presents how this approach has been realised in AtariX, a tool envi­
ronment for the specification and support of web applications. Trans­
actional tasks reside in the middle-tier implemented as Enterprise Jav­
aBeans whereas both inquiry tasks and inter-tasks dependencies are
regulated at the Web server.

-This research was partially supported by the Secretaria de Estado de Politica Cientffica
y Tecnol6gica of the Spanish Goverment under contract TIC 1999-1048-C02-02. Juan J.
Rodriguez enjoys a pre-doctoral grant by the Basque Goverment.

©

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35658-7_21
R. Meersman et al. (eds.), Semantic Issues in E-Commerce Systems

IFIP International Federation for Information Processing 2003

http://dx.doi.org/10.1007/978-0-387-35658-7_21

106

1. Introduction
An organization's e-commerce service could be a mix of plain infor­

mation access, online consultation with the organization's representa­
tives, and access to complex backend operations normally supported by
an ERP[10][1l]. As an interactive means, a web site, offers support
for three distinct types of interaction: inquiry-based, transactional and
consultive. An inquiry interaction aims to recover some data for infor­
mative purposes only. E-catalogs and e-brochures but also support for
OLAP applications fall within this realm. On the other hand, transac­
tional interactions frequently involve committing database state changes.
An employee entering orders or a customer making an order are exam­
ples of transactional interactions. Finally, consultive interactions involve
groupware such as the joined preparation of documents or support for
agreement negotiations. This paper focuses on inquiry and transactional
interactions.

Most conceptual Web design methods proposed so far do not address
explicitly the integration of interactions of distinct nature (Le. inquiry­
based, transactional and consultive). Work described in [7],[5] or [12]
come from the hypertext area. Their main focus is on inquiry interactions
by providing powerful built-in navigation primitives. For data-intensive
web sites (i.e. sites displaying mainly database data) the WebML system
stands out [3]. Similarly to our approach, WebML is model-driven and
it also contemplates the integration of transactional interactions in the
navigation space [2]. However, these transactions are conceived as inde­
pendent, isolated units where the role of the Web site is restricted to be
a front-end for invoking operations. By contrast, we promote the view
of the web site as a task integration space. For this purpose, we pro­
pose the concept of "workview" as a basic construct for the declarative
specification of the restrictions and dataflows that tie up a set of inter­
related tasks. The task itself should be unaware of those dependencies.
Briefly stated, a workview is a set of tasks plus a set of dependencies.
Both tasks and dependencies can be easily added or removed and in so
doing, changing the site behaviour. This allows for maintainable and
evolvable web sites, which have an increasing demand in the competitive
e-commerce field. This idea of workview resembles the notion of activ­
ity found in object-oriented database systems [8] as well as in business
process modeling [6].

Therefore, we promote a bottom-up approach to web application con­
struction: (1) task (either inquiry or transactional) construction, (2) task
integration. In so doing, we aim at enhancing the cohesiveness of the user
experience.

Seamless integration of inquiry and transactional tasks 107

ORGANIZlNGJXM.tmE I..a... .. MEMBER ,-... 'name
TOPICS 'header 'addren

·head. PROORAM_CCCHAIRS 'e-mail
·topic + 'Position J 'header

ifECHNICAL)v1EJl.rSER. I .. -name
·univ.sity
'country

CONFERENCE I ACCEPTED PAPERS
.. ACCEPTJ!D _PAPER.

I 'beader+ 'aulbcr+
otit1. ·till.
·organizer -area
'place I I .. EVENT ·.Iectronic edition
'date , 'header

'presentalion_ date
·outline • aspect ·time_slm
'aulbcrlnstruction ·dete ·room.

I - TUTORIAL

HOTEL 'aulbcr +
'heaa 'code 'We
'eadyDete 'lIIJI\e 'goal +
• eadyDisccoum ·cetegtny -area

-addLess ·pr .. ematiof\....date

·telephone 'lime_slot
'webURL 'room

Figure 1. The content diagram for the conference example.

These ideas have been borne out by AtariX, a tool environment for
the specification and support of web applications. The IFIP conference
web site is used as a running example throughout the article. The result
can be found at http://sip168.si.ehu.es/atarix/iJipExample.

The rest of the paper is structured as follows. Section 2 is concerned
with the notion of task. Section 3 discusses task integration and presents
the notion of workview. The paper concludes with section 4 containing
final remarks and a discussion about future work.

2. Task construction
For the purpose of this paper, a task is defined as the resalisation of a

purposeful unit of interaction with the user. What makes an interaction
purposeful? Here we are faced with the issue of interaction granularity:
is providing the user name a "purposeful unit of interaction"? or is it any
keystroke? To correctly identify meaningful units of interaction without
going too deep into the refinement process, a task aim can be ascertained
by the following question: is it sensible for a user to leave the applica­
tion at this point? Whereas leaving the application after "entering your
name" does not appear very meaningful, the user can have a break once

108

a "customer has been registered". Of course, registering a new customer
will imply distinct interactions, too, for example, to collect data from
the user, but every low-level interaction is aimed at achieving a common
goal: the user registration. Therefore, "purposeful units of interaction"
are ascertained from the goals of the stakeholders in using the web site.

According to its associated goal, a task can be classified as:

• an inquiry task; an interaction unit for inquiry purposes only.
Browsing through the activities of a conference can be regarded
as an inquiry task whose aim is for the user to become aware of
the conference's events. These tasks are supported through HTML
page navigation.

• a transactional task; an interaction unit which can lead to a change
in the state of the domain. Both registering for a conference or hotel
booking, are examples of transactional tasks which end up having
an effect on the storage backend. Transactional tasks are commonly
within the realm of ERP packages and lie in the application server
layer. In our implementation, these tasks are realised as component
services, more specifically, as EJB services.

• a session task; an interaction unit whose change lifespan is re­
stricted to the current session. Adding a product to the trolley
is the most common example of a session task. Its effects are re­
stricted to the session without any persistence implications. Hence,
we decided to support these tasks as JavaBeans where the session
state is kept.

The following subsections look at each task type in detail.

2.1. Inquiry task definition
The purpose of inquiry tasks is to make the user aware of some data.

Rendering a new chunk of data is seen as an inquiry task. The system
realises that an inquiry task occurrence happens by means of navigation.
That is, inquiry task occurrences arise when the user browses the content
document (see section 3.1). Therefore, the inquiry task definition has (1)
to establish "the content space", and (2) has to specify the potential paths
along which the navigation can proceed.

In AtariX, "the content space" is realised through an XML docu­
ment. Figure 1 shows the structure of the content for the conference
example. The CONFERENCE node represents the root element of
the XML document which has as sub-elements SET_OF_TOPICS, AC­
CEPTED_PAPERS and so on. ACCEPTED_PAPERS in turn consists

Seamless integration of inquiry and transactional tasks 109

of a set of ACCEPTED_PAPER sub-elements. This diagram is realised
by a content document!. The elements can be defined locally or exter­
nally. For instance, the ACCEPTED_PAPERS elements are defined by
the following SQL query: select * from PAPERS where status= 'accepted'.
At execution time this query returns a set of ACCEPTED_PAPER ele­
ments.

The second aspect addresses path definition. Following the approach
described in hypermedia applications, a link construct is introduced. In
AtariX, the link's origin and destination are elements of the XML content
document. Elements within the XML content document are addressed
using the W3C standard XPath notation [13]. For instance, the link that
traverses from the CONFERENCE element to the CALL_FORJ>APERS
element is described as follows:

<LINK title = "Call For Papers" !rom="/CONFERENCE" to="CALL_FOR_PAPERS">
<CONTENT order="l" couplingMode="embedOneOnRequest"j>

<jLlNK>

LINK is an element of the AtariX vocabulary. This element has a set
of attributes which describe (1) the label of the link when rendered on
the screen (the title attribute); the origin of the link (the from attribute)
denoted by an XPath expression that indicates when the link is available
(in this case the link is available when the CONFERENCE element is
rendered); and the destination of the link (the to attribute) which states
the element to be rendered when this path is followed. Additional aspects
of the AtariX navigation specification can be found in [4].

Therefore, the content and navigation document implicitly define the
potential set of inquiry tasks. The rendering of any chunk of content (e.g.
displaying data about a tutorial) as a result of path traversal is seen as
a potential occurrence of an inquiry task. Hence, every content element
referenced by the navigation specification is a potential inquiry task.
The decision of what inquiry tasks are truly relevant for the workflow, is
postponed until the workview design time (see section 3.1).

2.2. Transactional task definition
The purpose of a transactional task is to achieve some meaningful do­

main state change. Transactional tasks resemble database transactions.
A database transaction is an atomic set of database changes. As such,
it can affect distinct objects in the domain. The essence of transactions

1 About XML data model limitations or other issues concerning the content model (e.g.
heterogeneous data sources or data obsolescence) see (4).

110

<?etarlx_cDq)OneR_documenl herf."illpComponenls.xmI" type="extlxmr?>
<TASKS-

<TASK lI)a"accomodetionBookingT,a">

, <T ASKj'ARAMETER 1D-",egislrllllonllMnber" type-"Long'"
(II <TASKj'ARAMETER 1D-''lKte!Code" type-"strlng""

<T ASKj'ARAMETER Type" type-"strlng""

<AL TERNA TIVES>
<AL TERNA TIVE ID-"accepted">

cl-Reglsl,lIIion Is OK end Room is Ayailable--.
<!CONTEXT>
<ACTIONS>

<ACTION D-"book" component-"Boo'dngManagemenl" serYice="booklngRoom">
<PARAMETER neme-"cocIe">

<FROMj'ARAMETER perameter/DREf-"ho!elCQde""
(c) <,pARAMETER,>

<PARAMETER namea",oomType">
<FROMj'ARAMETER perameterIDREF-",oomType""

<,pARAMETER>
<fACTION.

<fACTIONS>
<RESULTS>

<T ASK_RESUI.. T name-"BoklngNlWIIber">
<FROM_SERVICE_RESUL T aciionIDREF"'book" se,ylceResuR-"bookingNumbe,""

(d <!TASK_RESULT>
d ASKftSULT name-"message".

</lESSAGE>Booking pe,formed successfu/yc.c.tESSAGE>
</T ASK..RESUL T.

<JRESULTS>
<fAL TERNA TIVE>
cAL TERNA TIVE ID=",eJecled">

<CONTEXT>
<1-- Reglst'lIIlon Is not OK or No Room Available -->

<!CONTEXT>

<fAL TERNA TIVE>
<fAL TERNA TIVES>

</TASK>

</TASKS>

Figure 2. The transactional task document for the conference example.

is to guarantee atomicity, i.e. no partial execution of the transaction is
allowed.

However, a database transaction is an implementation mechanism to
support transactional tasks. Quite often, this is realised as a poten­
tially disjoint set of database transactions. For example consider the
borrowBookRequest. This task encompasses all the interactions involved
in handling the request of borrowing a book. Its fulfillment does not
necessarily end up in lending the book to the student (which would be
realised by the invocation of the borrowBook database transaction). If
the book is not currently available the following alternatives are possible:
(1) handling the request, (2) rejecting the request, (3) buying the book
or (4) opting for an inter-library loan.

Seamless integration of inquiry and transactional tasks 111

Figure 2 shows the definition of the accomodationBookingTra task in
AtariX. This task supports hotel booking for the conference attendees.
The definition of a transactional task includes: a selector (e.g. acco­
modationBookingTra), a set of parameters (e.g the attendee registration
number, the hotel identification and the type of room requested by the
attendee) (see figure 2a), and a set of the different execution alternatives
for the task. In this case, the fulfillment of the task results either, in the
successful booking of the accommodation, or in the rejection of the book­
ing request due to a shortage of rooms. Each alternative is described by
tree tags: CONTEXT, A CTIONS and RESULTS.

CONTEXT (see figure 2b) holds the conditions that lead to the exe­
cution of this alternative. ACTIONS contains the services to be invoked
when the alternative is taken (in our example, the invocation of the book­
ingRoom service on the BookingManagement component, see figure 2c).
Each of these services is supported by an Enterprise JavaBean component
[9]. Finally, RESULTS holds the outcomes of the alternative execution.
The results from the different actions are collected and summarized in
this section. In our example, it returns a booking identifier as its main
result (see figure 2d).

2.3. Session task definition

The purpose of a session task is to achieve some session state change.
Its definition is similar to the transactional task definition. Its only
difference is that it is supported through client-side components (such as
JavaBeans). Adding to the trolley some of the conference ''products'' (i.e.
the conference itself, a tutorial or a workshop). Then, ''trolleyAddingSes''
is a session task. The attendee can register for distinct events and then
perform a single "conferenceRegTra" task.

3. Task integration: the notion of workview

Previous section introduced different types of tasks. This section ad­
dresses the integration of these tasks.

If the functionality supported by a web site were reduced to a single
goal, the notion of task would be sufficient. However, this is rarely the
case as most sites allow the user to accomplish a set of tasks rather than
just a single task. Thus, a site comprises a set of services that potentially
proceed from different sources. However, the site appears to function as
a single whole via the web site that represents the workview.

The definition of the workview has to do with at least three issues:
(1) identifying the tasks to be integrated, (2) specifying control depen­
dencies and, (3) defining navigation dependencies. Task identification

112

addresses how to select a cohesive group of tasks that provide the appro­
priate workview. The other two issues are concerned with how tasks are
harnessed into a single workview by specifying and enforcing inter-task
dependencies to manage the flow of data and control between the tasks.
In back-end systems (such as workflow management systems) this aspect
involves specifying and enforcing inter-task dependencies to manage the
flow of data and control between the tasks (we refer to them as control de­
pendencies). However, in a front-end context such as the Web, inter-task
dependencies not only include control dependencies but also navigation
dependencies. These dependencies state how tasks are "anchored" in the
hypermedia space defined by the navigation space. Navigation depen­
dencies address where tasks can be invoked or where to return to if the
task fails.

3.1. Establishing the boundaries of the
"workview"

During this stage the designer has to identify which are the tasks to be
accomplished through the web application. The criterium to be used can
be object-centric, process-centric or role-centric. It depens on whether
the included tasks correspond to those affecting a given type of object,
fulfill the set of steps conforming a given process, or are issued by users
belonging to a certain role. Of course, a Web designer does not need
to stick to a single criterium. Most Web sites use different criteria for
distinct parts of the site.

For our conference example, the following tasks are included:

• inquiry tasks: rendering the conference outline ("outlinelnq"), ren­
dering conference tutorials ("tutorialslnq"), rendering the associ­
ated workshops ("workshoplnq") or rendering available accommo­
dation ("hotellnq") illustrate this task type. It should be pointed
out that at this stage, the designer focus on ascertaining which
inquiry tasks are required (Le. the information needs) but no how
these tasks are realised. This aspect is postponed until the defini­
tion of the navigation dependencies (see section 3.3).

• transactional tasks: registering for the conference ("conferenceReg­
booking accommodation ("accomodationBookingTra") or

registering for a push service that keeps the user updated with
the latest news via e-mail ("pushServiceRegTra"), are examples of
this task type.

• session tasks: a common example is adding to the trolley some of
the conference "products"

Seamless integration of inquiry and transactional tasks

<?Ellarix_task_document hretm"lfipTasks.xml" type="textlxml"?>
cV\fORKVICVIIID·"conterence">

<TASK tasklD-''tulorlalslnq'' Ilfespan-"lnIra-session"f>.
<TASK taskID-"oullinelnq" Ilfespan-"Intra-sesslon"f>.
<TASK tasklD-''hotennq'' Iitespan-"lntra-sesslon"f>.
<TASK taskID .. ''troNeyAddlngSes'' Utespan-"lnIra-sesslon"f>.
<TASK taskID=''con1erenceRegTra'' li1espan="lnter-sesslon"f>.
<TASK taskID-"accommodEIIlonBooklngTra" Ilfespan="inter-sesslon"f>.
<TASK tasklD-"pushServlceRegTra" lifespan-"lnter-sesslon"l>
<CONTROL_DEPENDENCIES>

<CONSTRAINT taskIDREF="hotellnq">
<ENABLED_WHEN>

<EXISTS task-"conferenceRegTra"f>.
</ENABLED _WHEN>
<HSTORV_MANAGEMENT>

<IN task-"con1erenceRegTra"l>
<OUT on="con1erenceRegTra">

<ACTION type="clear _mostJecent" task="con1erenceRegTra"l>
<JOUT>

<,oHISTORV _MANAGEMENT>
</CONSTRAINT>
<CONSTRAINT taskIDREF="accommodEllionBookingTra">

<ENABLED_WHEN>
<AND>

<EXISTS task="con1erenceRegTra">
<OCCURRENCE.}'REDICA TE>

(a) <!-- Where alternEIIlve property equal to successfull -->
<JOCCURRENCE_PREDICA TE>

</EXISTS>
<EXISTS task="hotellnq"l>

<lAND>
<II:NABLED_WHEN>
<DATAFLOW>

<PARAMETER name="reglstrEIIlonNumber" 1Ixed=''true''>
<FROM_OCCURRENCE task-"con1erenceRegTra" occurrence="newest">

<FROM.}'ROPERTV name .. "regNumber"f>.

(b) </PARAMETER>
<PARAMETER name-''hotelCode'' flxed=''true''>

<FROM_OCCURRENCE task-"hotellnq" occurrence-"newest">
<FROM.}'ROPERTV name="hoteICode"l>

</PARAMETER>
<IDATAFLOW>
<HISTORY_MANAGEMENT>

<IN task="con1erenceRegTra"f>.
<IN task-"hotellnq"f>.

(c) <IN task="accommodEllionBooklngTra"l>
<OUT on-"hotellnq">

<ACTION type-"clear _mostJecent" task="hotellnq"l>
<JOUT>

</HISTORY
</CONSTRAINT>

</cONTROL_DEPENDENCIES>

<NVORKVIEVV>

Figure 9. The workview document for the conference example (part 1).

113

114

3.2. Specifying control dependencies
Control dependencies determine how tasks are interwoven. The de­

scription of the execution can be either procedural or declarative. In
the first case, constructs like those found in programming languages are
used to specify execution control. By contrast, a declarative descrip­
tion constrains the space of possible interactions through both tempo­
ral and existence conditions [1]. The algorithmic-like approach fits a
process-centric site but it is counter-intuitive for object-centric as well
as role-centric sites. On the other hand, declarative descriptions of ex­
ecution control accounts for flexibility and maintainability at the price
of complex debugging. Whereas an algorithm-like description provides
a clear picture of the event flow at compile time, this is not the case for
constraint-based descriptions. Usually, a global scheduler is responsible
for the correct execution of the workflows according to all dependencies
stated.

AtariX follows a declarative approach to inter-task dependency spec­
ification. We think this approach naturally fits the event-driven nature
that characterises GUI applications. A dependency reflects a necessary
condition for a task to be invoked. Our approach is to describe those
conditions as predicates on the flow of task occurrences which have hap­
pened during the session. This flow of ordered task occurrences is known
as the history. In this way, the designer can state that the accommo­
dationBookingTra task can only be selected if a hotelInq is already kept
on the history (Le. it has been previously executed). Notice that this
does not imply that accommodationBookingTra must follow hotelInq but
that the execution of hotelInq is a necessary condition for the invocation
of accommodationBookingTra. However, the task itself should be un­
aware of those dependencies. For this purpose, we propose the concept
of workview as a basic construct for declaratively specifying the restric­
tions and dataflows that tie up a set of inter-related tasks. Briefly stated,
a workview is a set of tasks plus a set of dependencies.

Figure 3 shows the workview document for the conference example.
All the involved tasks are identified trough the TASK tag whereas the
set of dependencies that tie these tasks together are reflected by the
CONSTRAINT tag. A constraint is in turn described by a triple <en­
abledWhen, dataFlow, historyManagement> .

The "enabled When" tag holds a condition on the history. A history
repository is kept locally for each task. This repository records those task
occurrences of interest for enabling/disabling the hosted task. When a
task occurrence is generated, the system stores a copy in each reposi­
tory associated with those tasks that can be potentially affected by this

Seamless integration of inquiry and transactional tasks 115

occurrence. Each task occurrence contains information about the input
parameters, the result and the alternative chosen during the execution
of the task. All these aspects can be checked by the condition.

For example, on the conference web site the following three tasks can
be issued: conferenceRegTra, hotelInq, accommodationBookingTra. We
can think of a situation where booking the accommodation should be
preceded by both conference registration and hotel inquiring. This can
be described as:

3 conferenceReg Tra(alternative and 3hotelInq
which states that before accommodationBookingTra is available, the

history should contain both a successful conferenceRegTra and a hotelInq
task occurrences (the description in XML is shown in figure 3a).

The "dataFlow" tag indicates the possible data flow between the
tasks which compose the workview. A task parameter can be obtained
by directly querying the user. Other alternative is to take it from param­
eters of previous task occurrences kept in the history. As an example,
consider the conferenceRegTra task. It has three parameters: the reg­
istrationNumber, the hotelCode and the room Type. Instead of directly
prompting the user, the registrationNumber and the hotelCode can be
obtained from previous occurrences of conferenceRegTra and hotellnq,
respectively. As for roomType, this is directly provided by the user. The
specification of this data flow can be found in 3b.

The "historyManagement" tag. Specifying how data flows between
tasks is not enough. As a motivating example, consider that accommo­
dationBookingTra takes its hotelCode parameter from the hotelInq task.
The user issues distinct hotel inquiries before choosing a particular one:
first hotelInq(hotell} , then hotelInq(hotel2}, and finally, hotellnq(hotelS}.
At this time, the accommodationBookingTra's history could have the
following entries: {hotelInq(hotel1}, hotelInq(hote12}, hotelInq(hotelS)}
where hotel1, hotel2 and hotelS are the codes of the different hotels that
have been consulted. If now the accommodationBookingTra task is is­
sued, which of the available hotellnq occurrences should be used to obtain
the hotelCode parameter? If next, the user selects the accommodation­
BookingTra again, should the system use the same hotelCode? These
questions pose the need for a selection policy and a consumption
policy. The former tackles the situation where several task occurrences
of the same type are in the history (as in our previous example with
hotellnq). In this case, which is the task occurrence to be used to ex­
tract the parameter? Two selection policies are defined to prevent any
ambiguities: ''newest'' which selects the last est occurrence, and "oldest"
which takes the occurrence that appears first in the history. In our ex­
ample, defining a ''newest'' selection policy would instruct the system to

116

book the room at the hotel3 whereas the "oldest" alternative would select
hotell.

The consumption mode indicates whether the task occurrence "con­
sumed" (e.g. hotelInq(hote13)) when invoking a task (e.g. accommoda­
tionBookingTra) should be removed from the history log or not. For
instance, accommodationBookingTra takes the value of the parameters
registrationNumber and hotelCode from previous occurrences of confer­
enceRegTra and hotelInq, respectively. Whereas the conferenceRegTra
occurrence is never removed from the history (the registration number
is obtained once and again from the very same conferenceRegTra occur­
rence, regardless on how many accommodationBookingTra are issued),
hotelInq occurrences are removed from the local history once consumed
(i.e. every accommodationBookingTra takes the hotel from a different
hotelInq occurrence). Once all the hotellnq occurrences have been con­
sumed, the accommodationBookingTra is disabled. In figure 3c, the tags
"in" and "out" specify the history management policy. Since this be­
haviour (Le. what should be kept in the history and the management of
the history) depends on the task type, the history is defined locally for
each type of task.

A final issue is the task occurrence lifespan which addresses whether
a task occurrence survives among different sessions. For example, an
attendee that had registered for the conference at the first session con­
nects again to the conference site to find accommodation. Of course, she
should not be forced to register again. The former registration occurrence
should be kept within the workview history so that the tasks hotelInq
and accomodationBooking Tra are readily available. Hence, the lifespan
of the registration occurrence should be "inter-session". By contrast, in­
quiry tasks are more likely to have an "intra-session" lifespan. You could
be interested in forcing the user to visit again some data before under­
taking a transactional task. Finally, session tasks by their very nature
have an "intra-session" lifespan. Notice, that the lifespan of a task can
vary among the workviews the task participates in. Hence, the lifespan
is specified in the workview as an attribute of the participating tasks.

3.3. Specifying navigation dependencies
Navigation dependencies state the binding between browsing and task

enactment. This binding implies different things for distinct task types.
For an inquiry task, this binding determines the chunk of content

whose browsing causes the occurrence of the task. Notice that, it is at this
very moment when content rendering becomes an inquiry task. As an ex­
ample, consider that a task ocurrence should be generated when browsing

Seamless integration of inquiry and transactional tasks

cTRANSACTION_ANCHOR
<ENTRY_NODE node,,"K:ONFERENCE/ACCOMMODATION.ttOTEL" tlle-"regisiralion"l>
<CANCEL_NODE node-"$InvoCSIonCOn\ext" tlle-"cancel"l>
«EXIT_NODE node-"K:ONFERENCE" tftle-'1oConference" leskResuIID-"booklng",,"
<EXIT _NODE node""$lnvocetioncontext" Iftle-'10H0ter leskResullD-"rejected",,"

(e </TRANSACTION_ANCHOR>

<SESSION_ANCHOR
cENTRY ..NODE node-"K:ONFERENCEITUTORJAL" lIIIe="acldToTroley"l>
cCANCEL..NODE node-"$hvocationConext" tRIe-"cancer,,"
<EXIT_NODE node=''$lnvocetlonContext'' 11IIe-'oConference" leskResullID="lIdded",,"

c/SESSlON_ANCHOR>

j <INQUIRY_ANCHOR laskto-"hoIeUnq''>
<NQUIRED NODE node-"K:ONFERENCE/ACCOMODATIONlHOTEL",,"

(b <TASK_PARAMETER name-''hoIeiCalegory'' source-"$lnvocalionCortextl@category"1>
<TASK_PARAMETER neme="hoteiCode" source·"$lnvocallonContextl@code"1>

<I1IIQUlRJNO _ANCHOR>

<INAVIGA nON_DEPENDENCIES>
"MIORKVlE'oN>

Figure 4. The workview document for the conference example (part 2).

117

HOTEL information (i.e. the hotelInq task). Figure 4b indicates how this
is specified for the hotelInq task. The INQUIRED_NODE tag holds an
XPath expression (e.g. CONFERENCE/ACCOMMODATION/HOTEL)
which locates the element of the content document whose rendering
causes the hotelInq occurrence. The occurrence parameters are obtained
from the HOTEL node instance at run-time.

As for transactional and session tasks, navigation dependencies indi­
cate the ENTRY..NODE, the CANCEL_NODE and distinct EXIT_NODEs
nodes from where a task can be invoked, cancelled or exited, respectively.
For example, the accommodationBookingTra (see figure 4a) task can be
invoked when hotel information is being displayed (the ENTRY_NODE
tag). Afterwards, the system prompts for the task parameters. If can­
celled, the browser goes back to the entry node (kept in the system
variable $invocationContext) as specified by the CANCEL-NODE tag.
Finally, the EXIT_NODE depends on the task alternative obtained at
run-time. In this case, two alternatives are possible. Either the book­
ing is successfully made (i.e. taskResultID=''booking'') in which case the
browser returns to the CONFERENCE node, or the booking is rejected
(i.e taskResultID="rejected") which causes the browser to return to the
entry node.

Summing it up, a workview supports a cohesive view of the set of
tasks which can be accomplished through a web site. "Cohesiveness" is

118

achieved by means of control and navigation dependencies. The specifi­
cation of these inter-task dependencies follows a declarative approach.

4. Conclusions
This work presents how both inquiry and transactional tasks have

been integrated in AtariX, a tool environment for the specification and
support of web applications, AtariX currently runs on Explorer 5.0 or
higher with the Microsoft XML parser 3.0. The following aspects are
regarded as the main contributions of this work:

• the notion of workview. AtariX promotes the view of a web site
as a task integration space. To this end, a workview is a main
construct to integrate a set of tasks into a single whole.

• a history-based description for the specification of control-flow de­
pendencies. This no-prescriptive approach is akin to the event­
driven nature of the browser and accounts for a loose coupling
among tasks.

• the notion of navigation dependencies. This aspect tackles how
tasks are anchored in the hypermedia space. These dependencies
can have an important impact in the usability of the system.

Our future plans include: (1) making AtariX available for other plat­
forms, (2) enhancing the expressiveness of the dependency vocabulary to
fit the requirements imposed bye-commerce applications.

References
[IJ P. Attie, M. Singh, A. Sheth, and M. Rusinkiewicz. Specifying and enforcing

intertask dependencies. In Conf. on Very Large Data Bases (VLDB), pages
134-145, 1993.

[2] A. Bongio, S. Ceri, P. Fraternali, and A. Maurino. Modeling data entry and
operations in WebML. In WebDB (Informal Procedings), pages 87-92, 2000.

[3] S. Ceri, P. Fraternali, and A. Bongio. Web modeling language (WebML): a
modeling language for designing Web sites. Computer Networks, 33(1-6):137-
157, 2000.

[4] O. Diaz, F. Ibanez, and J. Iturrioz. A model-based approach to portal develop­
ment. In This Volume {9th IFIP 2.6 Working Conference on Database Semantics
(DS-9)), 2001.

[5] M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. Overview of strudel:
A web-site management system. Networking and Information Systems Journal,
1(1):115-140, 1998.

[6] P. Hartel and R. Jungclaus. Modeling business processes over object. Interna­
tional Journal of Cooperative Information System, 4(2):165-188, 1995.

Seamless integration of inquiry and transactional tasks 119

[7) T. Isakowitz, E.A. Stohr, and P. Balasubramanian. RMM: A methodology for
structured hypermedia design. Communications of the ACM, 38(8):34-43, 1995.

[8) L. Liu and R. Meersman. The building blocks for specifying communication
behavior of complex objects: An activity-driven approach. ACM 7ransactions
on Database Systems, 21(2):157-207, June 1996.

[9) Sun Microsystems. Enterprise JavaBeans Technology.
http://java.sun.com/ products/ ejb /index.html.

[10) W. Rajput. E-Commerce Systems Architecture and Applications. Artech House
Publishers, 2000.

[11) R. Kalakota M. Robinson. e-Business: Roadmap for Success. Addison-Wesley,
1999.

[12) G. Rossi, D. Schwabe, and F. Lyardet. Web application models are more than
conceptual models. In P.P. Chen, D.W. Embley, and S.W. Liddle, editors, World
Wide Web and Conceptual Modeling, pages 193-208, October 1999.

[13) W3c. XML Path Language (XPath) Version 1.0 at
http://www.w3.org/tr/xpath.html, 1999.

	SEAMLESS INTEGRATION OF INQUIRY AND TRANSACTIONAL TASKS IN WEB APPLICATIONS*

	1. Introduction
	2. Task construction
	2.1. Inquiry task definition
	2.2. Transactional task definition
	2.3. Session task definition

	3. Task integration: the notion of workview
	3.1. Establishing the boundaries of the"workview"
	3.2. Specifying control dependencies
	3.3. Specifying navigation dependencies

	4. Conclusions
	References

