
AN API FOR ADVANCED TRAFFIC
CONTROL IN DIFFSERV ROUTERS*

Giuseppe Bianchi, Vincenzo Mancuso
University 0/ Palermo (!taly)
bianchiClelet.polimi.it; vincenzo.mancusoCltti.unipa.it

Paolo Di Francesco
CRES - Monreale, Palermo (Italy)
difrancescoClcres.it

Abstract Distributed per-flow admission control is a promising solution for Differ­
entiated Services networks. Its deployment in DiffServ domains requires
the ability to suitably configure, in each network router, low-Ievel packet
forwarding mechanisms, such as packet dropping algorithms driven by
traffic measurements. In this paper we first show that performance ef­
fectiveness is achieved by means of non traditional configuration of the
forwarding mechanisms. Hence, we propose a modular Application Pro­
gram Interface that alIows to flexibly and adaptively configure the for­
warding/dropping behavior associated to a router's output queue, weIl
beyond the traditional RED/RIO active queue management schemes.

1. Introduction

Market competition requires the co-existence of various ISP types.
These range from premium ISPs, aimed at providing high quality and
tight trafik control in change of costly peering agreements, down to
free--of-charge ISPs aimed at maximizing their link utilization. In such
a competitive scenario, the Differentiated Services (DiffServ) framework
[1) provides new directions in the deployment of Quality of Service sce-­
narios. In DiffServ, QoS is provided by the combination of severallow­
level mechanisms such as packet schedulers, droppers, meters. Different
administrative domains should be made capable of dynamically tuning

*This research has been supported by the European Community and MIUR, Italy, in the
frame of the POLLENS project (ITEA project ifOOOlla - Platform for Open, Light, Legible
& Efficient Network Services).

©

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35620-4_43

D. Gaïti et al. (eds.), Network Control and Engineering for QoS, Security and Mobility
IFIP International Federation for Information Processing 2003

http://dx.doi.org/10.1007/978-0-387-35620-4_43

370 Guiseppe Bianchi et al.

their DiftServ routers, i.e. they should have available a large set of router
configuration parameters to achieve the desired QoS provisioning level.

This paper focuses on the packet control (dropping/forwarding) func­
tion of a DiftServ router, i.e. the set of low-Ievel packet forwarding
mechanisms devised to exert packet level trafik control, and manage
congestion situations in the router. Traditional packet dropping mech­
anisms, such as RED (Random Early Discard) or RIO (Random Early
Discard with IN/OUT packets) have been proposed to improve conges­
tion control in the presence of TCP flows [2]. The idea is that congestion
can be more effectively controlled by dropping a few packets at routers
(i.e. by making a few TCP sources react) before the queue becomes
full. In doing this, TCP mechanisms running at the network border wHl
seldomly encounter situations of packet 1088 bursts, which are proved to
be dramatic for the TCP performance [3, 4].

Within the DiffServ framework, packet dropping mechanisms find a
practical application in the Assured Forwarding Per-Rop Behavior (AF­
PRB) specification [5]. Despite the generality of the AF-PHB specifica­
tion, it is frequently asSumed that the AF-PHB will be implemented at
each co re router as a RIO mechanism. As a consequence, most current
implementations [6, 7] are based on a monolithic approach. The queue
is seen as a single entity, where measurement mechanisms (filtering and
smoothing of the queue occupation status) are tightly integrated with
packet dropping functions, and both are indivisible entities from the
pure buffering capabilities of the queue. The only way to marginally
operate on such an implementation is via the specific RIO configuration
thresholds and parameters.

However, the apparently consolidated scenario described above does
not account for novel ways to use low-Ievel mechanisms. Specifically, it
has been recently shown [8] that the same forwarding/dropping mecha­
nisms built in the AF-PHB specification allow the support of stateless
and distributed admission control within a DiffServ domain (see section
2). This in turns implies that the capability of carefully tuning the con­
figuration of a mere packet forwarding mechanism translates into the
much more important capability of setting the QoS provisioning level
for an administrative domain (i.e. by rejecting incoming trafiic when
the network reaches a predetermined congestion level).

Unfortunately, when traditional RED/RIO mechanisms are used for
distributed admission control support, the resulting performance is poor
[9]. Hence, it emerges the need for more flexible and modular node-level
Application Program Interfaces (APIs), that allow the deployment of
non traditional low-level forwarding/dropping mechanisms, specifically
devised for admission control purposes. Clearly, the same APIs would

An API for Advanced Traffic Control in DiffServ Routers 371

find application in the deployment of improved Active Queue Manage­
ment schemes (e.g. adaptive RED, etc).

The rest of the paper is organized as folIows. Section 2 briefly reviews
how a distributed admission control function can be built upon low-Ievel
packet forwarding mechanisms implemented at the DiffServ core routers.
Section 3 introduces novel forwardingjdropping mechanisms, and shows
their performance effectiveness. Section 4 presents a flexible and mod­
ular architecture and related API that allows to support the considered
schemes, as well as traditional mechanisms. Finally, condusions and
further research issues are given in section 5.

2. Packet dropping mechanisms for distributed
admission control support

In the last few years, there has been quite a large amount of literature
on distributed admission control in DiffServ [10, 11, 12]. An approach
which allows the deployment of an effective - and tunable - distributed
admission control scheme over a fully conforming DiffServ network has
been presented in [8] under the name GRIP (Gauge&Gate Reservation
with Independent Probing).

The basic idea of GRIP is elementary. When a new flow is offered to a
domain, the end-point sends in the network a suitably labelled "probing"
packet. The flow is admitted only if the probing packet is received at the
destination node and relayed back to the sender. Similarly to TCP, failed
reception of probing packets is interpreted as congestion in the network.
GRIP becomes effective as long as two conditions jointly occur. First,
each DiffServ router along the path must distinguish a probe from an
information packet. This is achieved by marking probe packets with
a different DiffServ label than data packet. Second, the performance
of GRIP is related to the capability of routers to locally take decisions
about the degree of congestion, and suitably block probing packets when
congestion conditions are detected. To this purpose, the congestion level
can be computed via local trafik measurements on the accepted traffk.

What makes GRIP compatible with DiffServ is the use of probe drop­
pingjforwarding (Le. implicit signalling, rather than explicit signalling},
to convey a rejectjaccept information at the sender node. Specifically,
GRIP can be deployed over the AF-PHB specification as follows. We
recall that AF-PHB specifies four aggregate trafik dasses. Within each
dass, three drop levels are considered. Let AFxi be the drop level i of
AF dass x. The relation among the drop levels is such that, within a
class x, if i < j, the dropping probability of packets labeled AFxi is
lower than that of packets labeled AFxj. Let us now assurne that one

372 Guiseppe Bianchi et al.

AF dass, say dass x, is reserved for admission controlIed trafik (indeed
note that more than one dass may be used to manage different flow
aggregates, with different target QoS settings). To support GRIP, it is
sufficient to i) mark information packets as AFxlj ii) mark probe packets
as AFx2j iii) set the drop level for AFx2 packets on the basis of run-time
measurements taken on the AFxl aggregate flow [8].

The described operation translates the problem of provisioning a given
QoSlevel within a domain, into the much more simple problem of suit­
ably configuring a packet forwarding/dropping mechanism within each
domain's router. Specifically, the definition of a suitable dropping rule
is fundamental in terms of provisioned QoS. For example, a domain can
configure its routers so that all AFx2 packets are dropped (i.e. all in­
coming calls are blocked) when the average AFxl traffic exceeds a given
threshold. The higher the threshold, the worse the QoS performance
provisioned.

In the following section, we evaluate the performance of a more general
RED-like dropping profile enforced on the AFx2 packet dass. Specif­
ically, when the load is below amin threshold, all the AFx2 packets
are forwarded, while they are all dropped if the load is above a max
threshold. Between these two thresholds, a linear dropping prob ability
is enforced, Le., being B E (min,max) the measured load, the dropping
probability on the AFx2 packets is set to (B - min)/(max - min). Bis
conveniently obtained as a smoothed version of the instantaneous load.
In particular, in the numerical results, we have adopted a discrete time
scale, with sam pie time T = 100 ms, and, at each time step k, we have
evaluated B(k) as:

B(k) = aB(k - 1) + (1- a)M(k)

where M(k) is the traffic load, in bits/sec, attempting to enter the link
buffer during the time slot k. We chose a = 0.99, corresponding to
about 10 s time constant in the filter memory.

As illustrated in the following section, the additional AFx3 drop level
available in the AF-PHB specification may be optionally used (with an
associated additional dropping profile) instead of AFx2 when a more
congestion-sensitive probing is needed, i.e. when a connection requires
a greater amount of resources.

3. Performance Evaluation

The simulation results presented in this section consider a single 2
Mbps bottleneck link. Two different traflk scenarios have been consid­
ered. In the first scenario, flows are homogeneous. Each traffic source
is modelled as VBR source, alternating heavy-tailed ON/OFF periods.

An APlfor Advanced Traffic Control in DiffServ Routers 373

While in the ON state, a source transmits at a Peak Constant Rate
(PCR) randomly generated in the small interval 31 to 33 Kbps. Con­
versely, while in the OFF state, it remains idle.

The same ON/OFF profile has been considered in the second scenario,
but the PCR of the sources has been uniformly generated in the range 20
to 80 Kbps. In this second scenario, we have additionally considered the
possibility to adopt, as PROBE label, the AFx3 packet marking for flows
whose PCR was greater than 40 Kbps. Conformingly, we have set a more
restrictive drop profile for the AFx3 drop level. The rationale behind
this choice is that a flow with higher PCR is more critical, in terms
of resource consumption, than a flow with small PCR. However, the
described GRIP operation is not able to distinguish, during flow set-up,
flows with different PCRs (signalling is implicit - no trafik specification
parameters are notified to the router). By using an additional AFx drop
level, we are able to differentiate flows during their probing phase. In
particular, the router has been configured so that a (high PCR) flow
that probes the network via an AFx3 packet will be blocked in advance
with respect to a low peR flow.

Since we used an infinite buffer size QoS is characterized by the delay
experienced by data packets rather than packet loss as in [13]. The
throughput/delay performance of the adopted admission control scheme
is evaluated in figures 1 to 5, for various packet dropping algorithm
configurations. 99-th delay percentiles have been considered as delay
performance metric.

Figure 1 shows the sensibility of the admission control scheme as the
dropping profile changes. The max threshold is fixed to 95%, while the
min ranges from 50% to 95%. For each threshold configuration, differ­
ent points are obtained by tuning the offered load from 20% to 90%.
Better delay performance are achieved when the minimum and maxi­
mum thresholds are distant from each other. As a reference comparison,
the figure re ports also results obtained by assuming that a standard -
parameter based1 - admission control mechanism is adopted. The fact
that parameter-based admission control performs worse than a mecha­
nism based on run-time measures, when trafik is long range dependent,
has been thoroughly discussed and motivated in [14].

The performance of different threshold settings has been evaluated
also in figure 2. This figure differs from the previous one in two funda-

1 In a parameter-based admission control scheme, the admission control decision is computed
on the basis of the link status (in the homogeneous case, number of already admitted calls)
as weil as the known - or signalled -traflic source characteristics (peak, average, burst size,
etc)

374

Figure 1. Offered load: 20% to 90%j
source peR: '" 32 Kbps

"
{I'

t· ...
i
I'

Figure 9. Offered load: 30% to
130%j source peR: 20 to 80 Kbpsj
sources with peR greater than 40
Kbps use AFx3 probes

10000

"='::.10 = TIPI .. ::::t:S=- ,

t
... ' IIC"I

i
I 10

Figure 2. Offered load: 650%j
source peR: '" 32 Kbps

i
§ I.

Figure 4. Offered load: 650%j
source peR: 20 to 80 Kbpsj sources
with peR greater than 40 Kbps use
AFx3 probes

mental aspects: firstly, the offered load has been set very high (650%);
secondly, different throughput values have been obtained by suitably
traslating the thresholds, while maintaining their relative distance con­
stant. Clearly a given setting performs better when, for a same carried
load, the delay is lower.

In figures 3 and 4, the same performance investigation is carried out
considering sources with PCR in the range from 20 to 80 Kbps. The
AFx3 PROBE marking has been adopted for sources whose PCR is
greater than 40 kbps. Figure 3 reports results for various AFx2 drop­
ping profiles configured with the min and max thresholds indicated in
the label. The AFx3 dropping profile has been kept fixed with param­
eters min = 50%, max = 95%. In figure 4 the AFx3 dropping profile

An API tor Advanced Trafiic Control in DiffServ Routers 375

__ __ ____ 1>h2_"""_
2000 •

X2 • AF.:J pmbWag

t
f

Figure 5. Compatison between AFx2 probing atld AFx3+AFx3 probil1g with
spreaded PCR distlibutiol1 (20-80 Kbps) a.t1d very high offered load (650%)

is obtained from the one of AFx2, by shifting back the min and max
thresholds of 10%. Results are very different from the corresponding
figure 2, and show that it is preferable to set the minimum threshold
equal to the maximum one. The reason stays in the augmented trafik
variance, due to the PCR variability, which wastes the improved accu­
racy of the measurement-based operation when separate thresholds are
adopted. Instead, by setting tight thresholds, in very high load (650%
in figure 4), the probability that a source with high peR gets accepted
dramatically reduces, and thus the system achieves better performance.

Finally, the benefical effects coming from the use of a double level
of probing, AFx2 and AFx3, is highlighted in figure 5. In this figure
we consider a very high offered load and sources emitting at a peR in
the range from 20 to 80 Kbps. The leftmost curve in figure 5 considers
a scenario in which AFx2 packets are used for every probing attempt.
Conversely, the rightmost curve has been obtained by using AFx3 probe­
packets for flows with peR greater than 40 Kbps. Results show the deal'
superiority of this second approach.

4. The packet forwardingj dropping API

The discussion carried out in the previous sections has shown that,
in the context of admission control support, new low-Ievel packet for­
wardingjdropping mechanisms should be implemented at the network
routers. Hence, there is the need for node-level programming interfaces
that allow to build these mechanisms on top of the hardware router
im plementation.

To this purpose, we have developed a modular architecture, devised to
allow the implementation of different packet-level droppingjforwarding

376 Guiseppe Bianchi et al.

__ queue __

Figure 6. Architecture implementation. Three basic elements and their intercon-
nection are shown: droppers, data processors, queues

mechanisms. Our architecture is composed of the following basic build­
ing blocks (figure 6): queue; data-processor, and dropper. Each module
exposes an API that provides supplementary services. For reasons of
space, in what follows we'll omit details about the specific commands
supported by each API (additional documentation is available at the
POLLENS project site, http://www.itea-pollens.org), while we'll focus
our description on the module capabilities.

Queue module. Other than buffering packets, the queue provides
asynchronous signals, Le. events, that notify the arrival/departure of
packets. These signals are generated in response to the corresponding
en-queue (de-queue) packet request of the router operating system. A
system module may register to the en-queue (de-queue) entry point, and,
at each packet arrival (departure), obtain for each event, supplementary
information (such as packet size, specific header fields, up to the whole
packet payload).

Dropper. The dropper module provides dropping/forwarding deci­
sions for arrivingjdeparting packets. The architecture of the dropper
is iIlustrated in figure 7. A dropper is bound to the en-queue (or de­
queue) entry point of a queue. When an en-queue (de-queue) signal is
generated, this signal is passed to the dropper, which responds with an
"action list". This can be as simple as a packet droppingjforwarding
decision, or a complex list of actions (e.g. "forward the current packet,
and drop the one at the head of the queue"). An action list is selected
based on:

An APl tor Advanced Traffic Control in DiJfServ Routers 377

Userspace
c

.. "'1------,
g ! 1-------'
-(1)

"(1) KemelSpace

Dropper
.E!!i Decision

P(.E!!i)

Figure 7. Dropper architecture

m

I
Userspace

i;j
'0
'0

I ID
0
! reset signal
"8 KemelSpace

'----

-signal+ data processor

I (collects data and/or
computes the Phi vector)

Figure 8. Data Processor architec-
ture

• the default available action lists - every dropper has a built-in
default action list. The minimal set of action lists is drop-packet
and forward-packet;

• the user selected action list. At module instantiation, or at run
time, the user can select a different set of actions for the dropping
and/or forwarding decisionj

• state information based on measurements taken on the system, and
provided by a data processor bound to the dropper - since the state
information is, in general, multidimensional, such an information
will be passed via a vector Phi, where Phi = phi l , phi2 , phi3, ., phin ,

with n arbitrary;

• reference parameters - such as thresholds, probabilities, etc.

Data processor. We have called data processor the module that man­
ages measurements and system states. A data processor uses the en­
queue and/or de-queue signals to collect a number of statistics: offered
load (packets/seconds, bytes/second)j carried load; queue occupation.
A supplementary task of the data processor is to filter the collected run­
ning statistics, where the filter parameters can be eventually modified
during run-time operation. As shown in figure 6, note that more than
one data processors can be instantiated on the same queue (for example,
to provide measures at different time scales). Similarly, it can be use­
ful to connect one data processor to more than one queue, to correlate
events coming from them, as weIl as relate measures.

The architecture of the data processor is shown in figure 8. While the
role of the dropper is completely realized into the kernel space, i.e. it is
a pure element that have been moved out by the modularization process

378

D . dafa processor

tt j
dropper u

0.111
en-queue .
dropplng
decision '5

G>

) cB da-queua
an·queue d I

signal ropp, ng I declSlOn

I paCkaV queue I

Figure 9. A simple grip implemen-
tation

Guiseppe Bianchi et al.

Figure 10. A closer look at the
data processor and dropper implemen­
tations

of the queue, the data processor provides the capability of exposing the
collected and processed data up to the user space. In particular, it may
be essential to expose suitable trafik measurements and filtered queue
congestion state to external applications applications, man­
agement applications, etc). This can be done easily by binding a data
processor to the en-queue/de-queue event, without connecting it to any
dropper . In this case we distinguish this dass of data processors as the
"passive" ones (since they do not take part into the decision process).

4.1. Examples of traffie eontrol sehemes
implementations

Trafik management mechanisms can be implemented by suitably bind­
ing the described modules together2•

A mechanism is implemented by first instantiating a mandatory queue
module, and then binding eventual data processors and droppers. The
dropping decision can be taken only fetching the dropper decision accu­
mulator, in case one dropper is bound to the en-queue (de-queue) event.
In particular the event sequence is: i) the en-queue (de-queue) packet
request has been received by the queue; ii) the packet is notified to the
en-queue (de-queue) registered data processors; iii) the data processors
elaborate the state vector Phi, and send it to the registered droppers
(for each data processor); iv) the dropping decision is taken and enforced
on the corresponding packet (i.e. the dropper is responsible to respond

2While modularity allows reusing already developed modules, as weil as changing the forward­
ing behavior by simply composing modules in a different manner, the introduced flexibility
has a price in terms of code optimization. A goal of the ongoing research activity is to
understand the scalability limits of the proposed software platform.

An API for Advanced Traffic Control in DiffServ Routers 379

to the fetch_decision request generated by the queue, which then takes
the specific dropping/forwarding action).

In order to illustrate the described operation, we now show how to
implement the GRIP router described in section 2 with one data proces­
sor and two droppers (two instantiations of the same dropper template).
We recall that the router measures AFx1 trafik, and drops AFx2 and
AFx3 packets according to a piece wise linear dropping profile. Figure
9 shows the proposed GRIP architecture. The data processor has the
task of measuring the incoming trafik, before it is actually offered to
the queue (part of this trafik might be lost during congestion). The
dropping actions are taken by the en-queue/de-queue droppers accord­
ing to the Phi status information provided them. During congestion,
they drop both AFx2 and AFx3 packets entering the queue, as weIl as
AFx2 and AFx3 packets exiting the queue.

The role of the Phi vector, in this specific case, is to select the right
dropping function via the color parameter, and refresh the decision
stored in the decision accumulator. As shown in figure 10, the trafik
data collected and filtered by the data processor are sent to the dropping
functions via the vector parameters, phi2 and phi3. We set phi3=phi2
due to the simple fact that we want to discard the probe packets simply
setting a more aggressive threshold in the AFx3 case (see section 3).
FinaIly, note that AFx1 packets should never be dropped, and thus the
dropper is fed with a constant state parameter fictitiously meaning that
no congestion is encountered (e.g. phil=O).

5. Conclusions
In this paper, we have shown that the problem of provisioning a Diff­

Serv domain can be transformed into the problem of configuring packet
discarding algorithms in core routers, in conjunction with the support of
a distributed admission control function based on probing (GRIP). We
have evaluated the performance of such an admission control function for
various router configurations. An important result is the understanding
that, when probes originating from different flows are mapped on differ­
ent drop levels, significant performance enhancements can be achieved.

The application of packet dropping mechanisms to the new context
of admission control requires the deployment of new packet-level trafik
control functions, very different from the traditional approaches based
on RED/RIO queues. To this purpose, we have proposed a packet for­
warding/dropping API, based on three components: queue, droppers,
and data processors.

380 Guiseppe Bianchi et al.

Further research issues include the understanding whether the over­
head, given by the introduction of the modularization process, will lead
to scalability problems in the routers. Also, the integration of the de­
scribed functionalities in areal-time video-conference test-bed is object
of work in progress, in the frame of the European project POLLENS.

References

[1] S. Blade, D. Black, M. Carlson, E. Davies, Z. Wang, W. Weiss, "An Architecture
for Differentiated Services", RFC2475, December 1998.

[2] S. Floyd and V. Jacobson. "Random Early Detection Gateways for Congestion
Avoidance", IEEE/ ACM Transactions on Networking, vol. I, no. 4, pp. 397-413,
August 1993.

[3] S. H. Low and D. E. Lapsley, "Optimization Flow Control, I: Basic Algorithm
and Convergence", IEEE/ACM Transactions on Networking, 7(6):861-75, Dec.
1999

[4] S. Floyd, T. Henderson, "The NewReno Modification to TCP's Fast Recovery
Algorithm" , RFC2582, April 1999

[5] J. Heinanen, F. Baker, W. Weiss, J. Wroclavski "Assured Forwarding PHB
Group", RFC 2597, June 1999.

[6] Kenjira Cho, "The Design and Implementation of the ALTQ Traffk Manage­
ment System.", dissertation, Keio University. January 2001

[7] http://diffserv.sourceforge.net, Differentiated Services on Linux

[8] G. Bianchi, N. Blefari-Melazzi, "Admission contral over assured forwarding
PHBs: a way to provide service accuracy in a DiffServ framework", IEEE
Global Telecommunications Conference (GLOBECOM) 2001, San Antonio,
Texas, November 2001, pp. 2561-2565.

[9] G. Bianchi, N. Blefari-Melazzi, V. Mancuso: "Endpoint Admission Controlover
Assured Forwarding PHBs and its performance over RED implementations",
LCNS 2170 - "Evolutionary trends of the internet", Proc. of IWDC 2001 Con­
ference, Taormina,Italy,September 2001

[10] W. Almesberger, T. Ferrari, J.Y.Le Boudec: "SRP: a Scalable Resource Reser­
vation Protocol for the Internet", IWQoS98, Napa (California), May 1998.

[11] L. Breslau, E. W. Knightly, S. Schenker, I. Stoica, H. Zhang: "Endpoint Admis­
sion Control: Architectural Issues and Performance", ACM SIGCOMM 2000,
Stockholm, Sweden, August 2000.

[12] F.P. Kelly, P.B. Key, S. Zachary: "Distributed Admission Control", IEEE Jour­
nalon Selected Areas in Communications, Vo1.18, No.12, December 2000.

[13] S.Jamin, P.B.Danzig, S.Shenker, L.A.Zhang, "A measurement-based admission
contral algorithm for integrated services packet networks" , Trans. on Networking
Vol. 5, No. I, Feb 1997, pp. 56-70.

[14] G. Bianchi, V. Mancuso, G. Neglia: "Is Admission-Controlled Traffic Self­
Similar?" , Networking2002 Conference, May 2002, Pisa, Italy.

	32
AN API FOR ADVANCED TRAFFICCONTROL IN DIFFSERV ROUTERS*
	1. Introduction
	2. Packet dropping mechanisms for distributedadmission control support
	3. Performance Evaluation
	4. The packet forwardingj dropping API
	4.1. Examples of traffie eontrol sehemesimplementations

	5. Conclusions
	References

