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Abstract Distributed per-flow admission control is a promising solution for Differ­
entiated Services networks. Its deployment in DiffServ domains requires 
the ability to suitably configure, in each network router, low-Ievel packet 
forwarding mechanisms, such as packet dropping algorithms driven by 
traffic measurements. In this paper we first show that performance ef­
fectiveness is achieved by means of non traditional configuration of the 
forwarding mechanisms. Hence, we propose a modular Application Pro­
gram Interface that alIows to flexibly and adaptively configure the for­
warding/dropping behavior associated to a router's output queue, weIl 
beyond the traditional RED/RIO active queue management schemes. 

1. Introduction 

Market competition requires the co-existence of various ISP types. 
These range from premium ISPs, aimed at providing high quality and 
tight trafik control in change of costly peering agreements, down to 
free--of-charge ISPs aimed at maximizing their link utilization. In such 
a competitive scenario, the Differentiated Services (DiffServ) framework 
[1) provides new directions in the deployment of Quality of Service sce-­
narios. In DiffServ, QoS is provided by the combination of severallow­
level mechanisms such as packet schedulers, droppers, meters. Different 
administrative domains should be made capable of dynamically tuning 
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their DiftServ routers, i.e. they should have available a large set of router 
configuration parameters to achieve the desired QoS provisioning level. 

This paper focuses on the packet control (dropping/forwarding) func­
tion of a DiftServ router, i.e. the set of low-Ievel packet forwarding 
mechanisms devised to exert packet level trafik control, and manage 
congestion situations in the router. Traditional packet dropping mech­
anisms, such as RED (Random Early Discard) or RIO (Random Early 
Discard with IN/OUT packets) have been proposed to improve conges­
tion control in the presence of TCP flows [2]. The idea is that congestion 
can be more effectively controlled by dropping a few packets at routers 
(i.e. by making a few TCP sources react) before the queue becomes 
full. In doing this, TCP mechanisms running at the network border wHl 
seldomly encounter situations of packet 1088 bursts, which are proved to 
be dramatic for the TCP performance [3, 4]. 

Within the DiffServ framework, packet dropping mechanisms find a 
practical application in the Assured Forwarding Per-Rop Behavior (AF­
PRB) specification [5]. Despite the generality of the AF-PHB specifica­
tion, it is frequently asSumed that the AF-PHB will be implemented at 
each co re router as a RIO mechanism. As a consequence, most current 
implementations [6, 7] are based on a monolithic approach. The queue 
is seen as a single entity, where measurement mechanisms (filtering and 
smoothing of the queue occupation status) are tightly integrated with 
packet dropping functions, and both are indivisible entities from the 
pure buffering capabilities of the queue. The only way to marginally 
operate on such an implementation is via the specific RIO configuration 
thresholds and parameters. 

However, the apparently consolidated scenario described above does 
not account for novel ways to use low-Ievel mechanisms. Specifically, it 
has been recently shown [8] that the same forwarding/dropping mecha­
nisms built in the AF-PHB specification allow the support of stateless 
and distributed admission control within a DiffServ domain (see section 
2). This in turns implies that the capability of carefully tuning the con­
figuration of a mere packet forwarding mechanism translates into the 
much more important capability of setting the QoS provisioning level 
for an administrative domain (i.e. by rejecting incoming trafiic when 
the network reaches a predetermined congestion level). 

Unfortunately, when traditional RED/RIO mechanisms are used for 
distributed admission control support, the resulting performance is poor 
[9]. Hence, it emerges the need for more flexible and modular node-level 
Application Program Interfaces (APIs), that allow the deployment of 
non traditional low-level forwarding/dropping mechanisms, specifically 
devised for admission control purposes. Clearly, the same APIs would 
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find application in the deployment of improved Active Queue Manage­
ment schemes (e.g. adaptive RED, etc). 

The rest of the paper is organized as folIows. Section 2 briefly reviews 
how a distributed admission control function can be built upon low-Ievel 
packet forwarding mechanisms implemented at the DiffServ core routers. 
Section 3 introduces novel forwardingjdropping mechanisms, and shows 
their performance effectiveness. Section 4 presents a flexible and mod­
ular architecture and related API that allows to support the considered 
schemes, as well as traditional mechanisms. Finally, condusions and 
further research issues are given in section 5. 

2. Packet dropping mechanisms for distributed 
admission control support 

In the last few years, there has been quite a large amount of literature 
on distributed admission control in DiffServ [10, 11, 12]. An approach 
which allows the deployment of an effective - and tunable - distributed 
admission control scheme over a fully conforming DiffServ network has 
been presented in [8] under the name GRIP (Gauge&Gate Reservation 
with Independent Probing). 

The basic idea of GRIP is elementary. When a new flow is offered to a 
domain, the end-point sends in the network a suitably labelled "probing" 
packet. The flow is admitted only if the probing packet is received at the 
destination node and relayed back to the sender. Similarly to TCP, failed 
reception of probing packets is interpreted as congestion in the network. 
GRIP becomes effective as long as two conditions jointly occur. First, 
each DiffServ router along the path must distinguish a probe from an 
information packet. This is achieved by marking probe packets with 
a different DiffServ label than data packet. Second, the performance 
of GRIP is related to the capability of routers to locally take decisions 
about the degree of congestion, and suitably block probing packets when 
congestion conditions are detected. To this purpose, the congestion level 
can be computed via local trafik measurements on the accepted traffk. 

What makes GRIP compatible with DiffServ is the use of probe drop­
pingjforwarding (Le. implicit signalling, rather than explicit signalling}, 
to convey a rejectjaccept information at the sender node. Specifically, 
GRIP can be deployed over the AF-PHB specification as follows. We 
recall that AF-PHB specifies four aggregate trafik dasses. Within each 
dass, three drop levels are considered. Let AFxi be the drop level i of 
AF dass x. The relation among the drop levels is such that, within a 
class x, if i < j, the dropping probability of packets labeled AFxi is 
lower than that of packets labeled AFxj. Let us now assurne that one 
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AF dass, say dass x, is reserved for admission controlIed trafik (indeed 
note that more than one dass may be used to manage different flow 
aggregates, with different target QoS settings). To support GRIP, it is 
sufficient to i) mark information packets as AFxlj ii) mark probe packets 
as AFx2j iii) set the drop level for AFx2 packets on the basis of run-time 
measurements taken on the AFxl aggregate flow [8]. 

The described operation translates the problem of provisioning a given 
QoSlevel within a domain, into the much more simple problem of suit­
ably configuring a packet forwarding/dropping mechanism within each 
domain's router. Specifically, the definition of a suitable dropping rule 
is fundamental in terms of provisioned QoS. For example, a domain can 
configure its routers so that all AFx2 packets are dropped (i.e. all in­
coming calls are blocked) when the average AFxl traffic exceeds a given 
threshold. The higher the threshold, the worse the QoS performance 
provisioned. 

In the following section, we evaluate the performance of a more general 
RED-like dropping profile enforced on the AFx2 packet dass. Specif­
ically, when the load is below amin threshold, all the AFx2 packets 
are forwarded, while they are all dropped if the load is above a max 
threshold. Between these two thresholds, a linear dropping prob ability 
is enforced, Le., being B E (min,max) the measured load, the dropping 
probability on the AFx2 packets is set to (B - min)/(max - min). Bis 
conveniently obtained as a smoothed version of the instantaneous load. 
In particular, in the numerical results, we have adopted a discrete time 
scale, with sam pie time T = 100 ms, and, at each time step k, we have 
evaluated B(k) as: 

B(k) = aB(k - 1) + (1- a)M(k) 

where M(k) is the traffic load, in bits/sec, attempting to enter the link 
buffer during the time slot k. We chose a = 0.99, corresponding to 
about 10 s time constant in the filter memory. 

As illustrated in the following section, the additional AFx3 drop level 
available in the AF-PHB specification may be optionally used (with an 
associated additional dropping profile) instead of AFx2 when a more 
congestion-sensitive probing is needed, i.e. when a connection requires 
a greater amount of resources. 

3. Performance Evaluation 

The simulation results presented in this section consider a single 2 
Mbps bottleneck link. Two different traflk scenarios have been consid­
ered. In the first scenario, flows are homogeneous. Each traffic source 
is modelled as VBR source, alternating heavy-tailed ON/OFF periods. 
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While in the ON state, a source transmits at a Peak Constant Rate 
(PCR) randomly generated in the small interval 31 to 33 Kbps. Con­
versely, while in the OFF state, it remains idle. 

The same ON/OFF profile has been considered in the second scenario, 
but the PCR of the sources has been uniformly generated in the range 20 
to 80 Kbps. In this second scenario, we have additionally considered the 
possibility to adopt, as PROBE label, the AFx3 packet marking for flows 
whose PCR was greater than 40 Kbps. Conformingly, we have set a more 
restrictive drop profile for the AFx3 drop level. The rationale behind 
this choice is that a flow with higher PCR is more critical, in terms 
of resource consumption, than a flow with small PCR. However, the 
described GRIP operation is not able to distinguish, during flow set-up, 
flows with different PCRs (signalling is implicit - no trafik specification 
parameters are notified to the router). By using an additional AFx drop 
level, we are able to differentiate flows during their probing phase. In 
particular, the router has been configured so that a (high PCR) flow 
that probes the network via an AFx3 packet will be blocked in advance 
with respect to a low peR flow. 

Since we used an infinite buffer size QoS is characterized by the delay 
experienced by data packets rather than packet loss as in [13]. The 
throughput/delay performance of the adopted admission control scheme 
is evaluated in figures 1 to 5, for various packet dropping algorithm 
configurations. 99-th delay percentiles have been considered as delay 
performance metric. 

Figure 1 shows the sensibility of the admission control scheme as the 
dropping profile changes. The max threshold is fixed to 95%, while the 
min ranges from 50% to 95%. For each threshold configuration, differ­
ent points are obtained by tuning the offered load from 20% to 90%. 
Better delay performance are achieved when the minimum and maxi­
mum thresholds are distant from each other. As a reference comparison, 
the figure re ports also results obtained by assuming that a standard -
parameter based1 - admission control mechanism is adopted. The fact 
that parameter-based admission control performs worse than a mecha­
nism based on run-time measures, when trafik is long range dependent, 
has been thoroughly discussed and motivated in [14]. 

The performance of different threshold settings has been evaluated 
also in figure 2. This figure differs from the previous one in two funda-

1 In a parameter-based admission control scheme, the admission control decision is computed 
on the basis of the link status (in the homogeneous case, number of already admitted calls) 
as weil as the known - or signalled -traflic source characteristics (peak, average, burst size, 
etc) 
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Figure 1. Offered load: 20% to 90%j 
source peR: '" 32 Kbps 
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Figure 9. Offered load: 30% to 
130%j source peR: 20 to 80 Kbpsj 
sources with peR greater than 40 
Kbps use AFx3 probes 
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Figure 2. Offered load: 650%j 
source peR: '" 32 Kbps 
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Figure 4. Offered load: 650%j 
source peR: 20 to 80 Kbpsj sources 
with peR greater than 40 Kbps use 
AFx3 probes 

mental aspects: firstly, the offered load has been set very high (650%); 
secondly, different throughput values have been obtained by suitably 
traslating the thresholds, while maintaining their relative distance con­
stant. Clearly a given setting performs better when, for a same carried 
load, the delay is lower. 

In figures 3 and 4, the same performance investigation is carried out 
considering sources with PCR in the range from 20 to 80 Kbps. The 
AFx3 PROBE marking has been adopted for sources whose PCR is 
greater than 40 kbps. Figure 3 reports results for various AFx2 drop­
ping profiles configured with the min and max thresholds indicated in 
the label. The AFx3 dropping profile has been kept fixed with param­
eters min = 50%, max = 95%. In figure 4 the AFx3 dropping profile 
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Figure 5. Compatison between AFx2 probing atld AFx3+AFx3 probil1g with 
spreaded PCR distlibutiol1 (20-80 Kbps) a.t1d very high offered load (650%) 

is obtained from the one of AFx2, by shifting back the min and max 
thresholds of 10%. Results are very different from the corresponding 
figure 2, and show that it is preferable to set the minimum threshold 
equal to the maximum one. The reason stays in the augmented trafik 
variance, due to the PCR variability, which wastes the improved accu­
racy of the measurement-based operation when separate thresholds are 
adopted. Instead, by setting tight thresholds, in very high load (650% 
in figure 4), the probability that a source with high peR gets accepted 
dramatically reduces, and thus the system achieves better performance. 

Finally, the benefical effects coming from the use of a double level 
of probing, AFx2 and AFx3, is highlighted in figure 5. In this figure 
we consider a very high offered load and sources emitting at a peR in 
the range from 20 to 80 Kbps. The leftmost curve in figure 5 considers 
a scenario in which AFx2 packets are used for every probing attempt. 
Conversely, the rightmost curve has been obtained by using AFx3 probe­
packets for flows with peR greater than 40 Kbps. Results show the deal' 
superiority of this second approach. 

4. The packet forwardingj dropping API 

The discussion carried out in the previous sections has shown that, 
in the context of admission control support, new low-Ievel packet for­
wardingjdropping mechanisms should be implemented at the network 
routers. Hence, there is the need for node-level programming interfaces 
that allow to build these mechanisms on top of the hardware router 
im plementation. 

To this purpose, we have developed a modular architecture, devised to 
allow the implementation of different packet-level droppingjforwarding 
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__ queue __ 

Figure 6. Architecture implementation. Three basic elements and their intercon-
nection are shown: droppers, data processors, queues 

mechanisms. Our architecture is composed of the following basic build­
ing blocks (figure 6): queue; data-processor, and dropper. Each module 
exposes an API that provides supplementary services. For reasons of 
space, in what follows we'll omit details about the specific commands 
supported by each API (additional documentation is available at the 
POLLENS project site, http://www.itea-pollens.org), while we'll focus 
our description on the module capabilities. 

Queue module. Other than buffering packets, the queue provides 
asynchronous signals, Le. events, that notify the arrival/departure of 
packets. These signals are generated in response to the corresponding 
en-queue (de-queue) packet request of the router operating system. A 
system module may register to the en-queue (de-queue) entry point, and, 
at each packet arrival (departure), obtain for each event, supplementary 
information (such as packet size, specific header fields, up to the whole 
packet payload). 

Dropper. The dropper module provides dropping/forwarding deci­
sions for arrivingjdeparting packets. The architecture of the dropper 
is iIlustrated in figure 7. A dropper is bound to the en-queue (or de­
queue) entry point of a queue. When an en-queue (de-queue) signal is 
generated, this signal is passed to the dropper, which responds with an 
"action list". This can be as simple as a packet droppingjforwarding 
decision, or a complex list of actions (e.g. "forward the current packet, 
and drop the one at the head of the queue"). An action list is selected 
based on: 
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Figure 8. Data Processor architec-
ture 

• the default available action lists - every dropper has a built-in 
default action list. The minimal set of action lists is drop-packet 
and forward-packet; 

• the user selected action list. At module instantiation, or at run 
time, the user can select a different set of actions for the dropping 
and/or forwarding decisionj 

• state information based on measurements taken on the system, and 
provided by a data processor bound to the dropper - since the state 
information is, in general, multidimensional, such an information 
will be passed via a vector Phi, where Phi = phi l , phi2 , phi3, ., phin , 

with n arbitrary; 

• reference parameters - such as thresholds, probabilities, etc. 

Data processor. We have called data processor the module that man­
ages measurements and system states. A data processor uses the en­
queue and/or de-queue signals to collect a number of statistics: offered 
load (packets/seconds, bytes/second)j carried load; queue occupation. 
A supplementary task of the data processor is to filter the collected run­
ning statistics, where the filter parameters can be eventually modified 
during run-time operation. As shown in figure 6, note that more than 
one data processors can be instantiated on the same queue (for example, 
to provide measures at different time scales). Similarly, it can be use­
ful to connect one data processor to more than one queue, to correlate 
events coming from them, as weIl as relate measures. 

The architecture of the data processor is shown in figure 8. While the 
role of the dropper is completely realized into the kernel space, i.e. it is 
a pure element that have been moved out by the modularization process 
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Figure 10. A closer look at the 
data processor and dropper implemen­
tations 

of the queue, the data processor provides the capability of exposing the 
collected and processed data up to the user space. In particular, it may 
be essential to expose suitable trafik measurements and filtered queue 
congestion state to external applications applications, man­
agement applications, etc). This can be done easily by binding a data 
processor to the en-queue/de-queue event, without connecting it to any 
dropper . In this case we distinguish this dass of data processors as the 
"passive" ones (since they do not take part into the decision process). 

4.1. Examples of traffie eontrol sehemes 
implementations 

Trafik management mechanisms can be implemented by suitably bind­
ing the described modules together2• 

A mechanism is implemented by first instantiating a mandatory queue 
module, and then binding eventual data processors and droppers. The 
dropping decision can be taken only fetching the dropper decision accu­
mulator, in case one dropper is bound to the en-queue (de-queue) event. 
In particular the event sequence is: i) the en-queue (de-queue) packet 
request has been received by the queue; ii) the packet is notified to the 
en-queue (de-queue) registered data processors; iii) the data processors 
elaborate the state vector Phi, and send it to the registered droppers 
(for each data processor); iv) the dropping decision is taken and enforced 
on the corresponding packet (i.e. the dropper is responsible to respond 

2While modularity allows reusing already developed modules, as weil as changing the forward­
ing behavior by simply composing modules in a different manner, the introduced flexibility 
has a price in terms of code optimization. A goal of the ongoing research activity is to 
understand the scalability limits of the proposed software platform. 
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to the fetch_decision request generated by the queue, which then takes 
the specific dropping/forwarding action). 

In order to illustrate the described operation, we now show how to 
implement the GRIP router described in section 2 with one data proces­
sor and two droppers (two instantiations of the same dropper template). 
We recall that the router measures AFx1 trafik, and drops AFx2 and 
AFx3 packets according to a piece wise linear dropping profile. Figure 
9 shows the proposed GRIP architecture. The data processor has the 
task of measuring the incoming trafik, before it is actually offered to 
the queue (part of this trafik might be lost during congestion). The 
dropping actions are taken by the en-queue/de-queue droppers accord­
ing to the Phi status information provided them. During congestion, 
they drop both AFx2 and AFx3 packets entering the queue, as weIl as 
AFx2 and AFx3 packets exiting the queue. 

The role of the Phi vector, in this specific case, is to select the right 
dropping function via the color parameter, and refresh the decision 
stored in the decision accumulator. As shown in figure 10, the trafik 
data collected and filtered by the data processor are sent to the dropping 
functions via the vector parameters, phi2 and phi3. We set phi3=phi2 
due to the simple fact that we want to discard the probe packets simply 
setting a more aggressive threshold in the AFx3 case (see section 3). 
FinaIly, note that AFx1 packets should never be dropped, and thus the 
dropper is fed with a constant state parameter fictitiously meaning that 
no congestion is encountered (e.g. phil=O). 

5. Conclusions 
In this paper, we have shown that the problem of provisioning a Diff­

Serv domain can be transformed into the problem of configuring packet 
discarding algorithms in core routers, in conjunction with the support of 
a distributed admission control function based on probing (GRIP). We 
have evaluated the performance of such an admission control function for 
various router configurations. An important result is the understanding 
that, when probes originating from different flows are mapped on differ­
ent drop levels, significant performance enhancements can be achieved. 

The application of packet dropping mechanisms to the new context 
of admission control requires the deployment of new packet-level trafik 
control functions, very different from the traditional approaches based 
on RED/RIO queues. To this purpose, we have proposed a packet for­
warding/dropping API, based on three components: queue, droppers, 
and data processors. 
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Further research issues include the understanding whether the over­
head, given by the introduction of the modularization process, will lead 
to scalability problems in the routers. Also, the integration of the de­
scribed functionalities in areal-time video-conference test-bed is object 
of work in progress, in the frame of the European project POLLENS. 
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