
Teaching of Programming with a Programmer's
Theory of Programming

Juris Reinfelds
Klipsch School of EE & C.
New Mexico State University
Las Cruces, NM, USA
juris@nmsu.cdu

Abstract: We review the introductory programming courses of the widely accepted
Curricula '68, '78, '1991 and '2001. We note that a one-language,
imperative-paradigm approach still prevails, although multi-language
programming systems are already available. We discuss the Kernel Language
Approach, which provides a programmer's theory of programming that
permits a widening of introductory courses to multi-language, multi-thread
programming without loss of depth. We suggest two broad outlines for the
removal of the one-language constriction from introductory programming
courses. We observe that because of the introduction of dotNET and because
of student exposure to net-centric multimedia applications, text-based "Hello
World !"examples disappoint the expectations of today's students.

Key words: programming methodology, programming courses, curriculum, computer
science, software engineering, introductory courses,

1. INTRODUCTION

In order to make progress, we first divide and conquer and then we unify
[1]. In the sixties scientific programming was done in FORTRAN,
commercial data processing was done in COBOL and algorithms were
supposed to be programmed in an "algorithmic language" called ALGOL.
These three language ·groups did not speak to each other much, went to
separate conferences, did not read each other's publications. Soon each

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35619-8_15

© IFIP International Federation for Information Processing 2003
L. Cassel et al. (eds.), Informatics Curricula and Teaching Methods

http://dx.doi.org/10.1007/978-0-387-35619-8_15

42 Juris Reinfelds

developed its own style of programming and the notion of programming
paradigms was born.

Excessive originality was highly praised, especially in academia, which
adopted the algorithmic language branch, and created the important
functional, logical and object-oriented paradigms as well as an endless
stream of "new" programming languages. In 1969 [3] Jean Sammet
described 120 reasonably widely distributed programming languages in her
book. She maintained a yearly register of programming languages for the
first half of the seventies, where we can see how casually new programming
languages were proclaimed and how quickly they were forgotten.

As a new science trying to gain respect among older, well-established
sciences, computing needed a theory in a hurry. Mathematicians had elegant
theories of computability, developed when hand computations by
mathematicians were the only way to compute. Computer science adopted
them, gained respect and "forgot" that computer programmers work with a
very different set of concepts than hand-calculating mathematicians or
mathematicians who are interested in the foundations of computability.

2. PROGRAMMING IN THE CURRICULUM

ACM Curriculum' 68 [2] was the first widely accepted curriculum for
undergraduate Computer Science. It combined programming with problem
solving in a 3-credit-hour lecture-plus-laboratory course:

2.1 B1 -Introduction to Computing

" ... a single algorithmic language should be used for most of the course ...
It may be desirable to use a simple second language of quite a different
character for a problem or two to demonstrate the wide diversity of
computer languages available ... "

The suggested course material for B 1 was very extensive, so that the next
ACM Curriculum'78 [4] split it into two 3 credit-hour lecture-plus­
laboratory courses that "forgot" about the second language suggestion of B-1

2.2 CS-1 Computer Programming

" introduce problem solving methods and algorithm development.. .
... teach one high level programming language that is widely used ...
... teach how to design, code, debug and document programs ... "

Teaching of Programming with a Programmer's Theory ... 43

2.3 CS-2 Computer Programming II

" ... continue development of discipline in program design... . . .introduce
basic aspects of string processing, recursion and simple data structures ... "

Curriculum'78 also had a course on programming languages and their
implementation that was based on 1-2 of Curriculum'68:

2.4 CS-8 Organization of Programming Languages

" ... develop understanding of organization of programming languages and
their run-time behaviour ... "

The focus on one programming language created by Curriculum'68 and
reinforced by Curriculum'78 started a heated debate as to which language
should be the chosen one, a debate that continues today. A glance at the
program of the most recent ACM SIGCSE' 2002 conference [5] shows two
sessions on CS-1 and one session on CS-2 where the question "Which
language will give us the quickest and best understanding of
programming?" still dominates.

3. RECENT CURRICULA

IEEE-CS joined with ACM to create Computing Curricula 1991 [6]
which did not question the one-language approach and retained CS-1 and
CS-2 as "Introduction to Computing I and //", while CS-8 became
"Programming Languages" with emphasis on a feature by feature
comparison of major programming paradigms. The language implementation
part of CS-8 was dropped into a course on compilers.

The most recent Computing Curricula'2001 [7] acknowledged that a
consensus on "the chosen language" or even "the chosen paradigm" has not
been reached and is not likely. Instead, Curricula'2001 introduce a gaggle of
introductory courses entitled Imperative first, Object first, Functional first,
Breadth first, Algorithms first and Hardware first, that are otherwise very
similar to CS-1 and CS-2. The Programming Language course suggested by
Curricula'2001 retains the "comparison of language features" character of
CS-8.

Although we now have to solve problems with scope and size that were
unthinkable twenty years ago, nothing much has changed in the
programming curricula since 1968 and 1978. As Peter Van Roy remarks in
his paper in this conference [8]

44 Juris Reinfelds

" ... programming is taught as a craft in the context of a single paradigm ...
often explicitly limited to a particular language and toolset. Almost no
attempt is made to put these tools into a uniform framework."

4. A PROGRAMMER'S THEORY OF
PROGRAMMING

A programmer's theory of programming should explain programming in
terms of concepts that are already familiar to programmers. A theory of
programming should capture the essence of programming and place a
unifying foundation under programming languages.

The first programmer's theory of programming was developed by Edsger
W. Dijkstra [9]. Dijkstra introduced the notion of "guarded statements" and
captured the essence of imperative programming with a very small set of
well-chosen and precisely defined statements. Precise semantics were
defined using Boolean expressions as pre-conditions, post-conditions and
loop invariants. Dijkstra's theory was very useful for the creation of easily
understood programs for difficult algorithms [9], [10], [11].

5. THE MULTI-PARADIGM PROGRAMMING
LANGUAGEOZ

Is it possible to design a programming language that is equally
expressive, but much smaller and more elegant than the union of all
programming language features from all paradigms? The Oz programming
language [12] answers the question with a resounding yes.

Can such a language be implemented reliably and efficiently on multiple
platforms? The Mozart [12] system gives us an implementation of Oz, a
compiler, a runtime environment and program development tools that are
outstanding in every respect.

Without direct knowledge of how it actually happened, we can guess that
the designers of Oz first extracted the essence of each paradigm. Then they
devised a syntax and semantics that combine these essentials into one
precisely defined programming language. Finally they added some
"syntactic sugar" which are statements that increase the expressivity of the
programmer and the readability of the program.

One way to keep a combination of several things small is to look for
commonalities that were overlooked before. For example, in the heyday of
esoteric mainframes, each operating system was an independent creation

Teaching of Programming with a Programmer's Theory ... 45

influenced by the underlying hardware, but even more by the exuberant
creativity of its designers.

Then came UNIX that captured the essence of an operating system by
stating that everything that stores information is a file and everything that
manipulates information is a process. The hardware and software
implementation of files and processes were left to hardware and software
designers. Programmers could reason about operating system behaviour
without resorting to implementation arguments and the first multi-platform
system was born.

Oz bases the essence of programming languages on values and threads. A
value is either simple (e.g. integer, float, procedure ...) or structured (e.g.
array, record, list ...). A thread is an executing statement-sequence. A new,
concurrent thread, which runs in parallel with the thread that creates it, may
be created with the simple statement

thread <any statement sequence> end
Moz maintains a global name-space of unique internal names of variables

that permits a simple variable-scope-rule:

For all threads, remote as well as local, all variables that are in scope
when a thread-statement executes, remain available during execution of
the thread body, regardless of termination of the parent thread execution.

In other words, variable scopes do not change when a statement sequence
is executed in its own thread. The run-time system makes values available to
processes that need them in a transparent and efficient way.

By contrast, Java language designers placed the burden of remote-thread
variable resolution on Java programmers and Java run-time implementers
added to the programmer's burden the proper placement of "synchronized"
tags on selected methods.

To accommodate declarative programming and to facilitate reasoning
about multi-thread programs, Oz uses assign-once-only (like final variables
of Java) variables as the primary variables. For programming with state, Oz
provides cells, which are assign-many-times variables.

6. THEKERNELLANGUAGEAPPROACH

Compared to its multi-paradigm, distributed and concurrent programming
scope, Oz is a surprisingly compact language. Nevertheless, Van Roy and
Haridi [13] went a step farther and defined a subset of Oz that captures the
essence of Oz in a remarkably small and elegant syntax and operational
semantics. Every statement of Oz can be reduced to statements of this
subset. Hence they named the subset "A Kernel Language of Oz". Since Oz

46 Juris Reinfelds

spans the major paradigms as well as multi-thread computing, we expect that
this Kernel Language will provide a basis for most programming languages
as discussed by Van Roy and Haridi [13], where they extend the Kernel
Language approach to the programming languages Erlang, Haskell, Java and
Prolog.

There is one more level of structure. The Kernel Language has a very
small declarative core that we may regard as the basic foundation of
programming. With small extensions of the core Van Roy and Haridi [13]
create Kernel Languages for the bases of other paradigms and for concurrent
and distributed computing.

7. IMPACT OF KERNEL LANGUAGE ON
INTRODUCTORY COMPUTER SCIENCE
TEACHING

From Curriculum'68 to Curricula'2002, three courses, CS-1, CS-2 and
ProgLangs have been allocated to the teaching of programming. CS-1 and
CS-2 were tied to one programming language. This has not changed to this
day.

Artificial boundaries of programming paradigms prevent students from
seeing programming as a unified whole. The first "chosen language"
FORTRAN was replaced by BASIC, which was replaced by Pascal, which
was replaced by C, which C++ tried to replace and which is being replaced
by Java. Curriculum'68 [2] had great foresight when it tried to tie its
Programming Languages course to

"... a survey of the significant features of existing programming
languages with particular emphasis on the underlying concepts abstracted
from these languages ... "

but without a programmer's theory of programming there was no
coherent set of underlying concepts and the course degenerated into a
descriptive comparison of programming language features [14].

There have been some attempts to overcome the one-language syndrome
of CS-1 and CS-2. None have survived mainly due to faculty reluctance to
master more than one programming language, program development
environment and compiler.

With National Science Foundation support in 1992 and 1993, we
developed a laboratory-based three-paradigm CS-1, CS-2 course sequence
[15], [16], with Prolog, Miranda and C representing the logical, functional
and imperative paradigms. Students enjoyed the course, but faculty, support
staff and teaching assistants did not. The mastering of three unrelated

Teaching of Programming with a Programmer's Theory ... 47

program development environments and compilers took too much time and
energy away from the programming focus of the courses.

With the multi-paradigm, multi-thread language Oz and a Kernel
Language with which we can define and discuss the essence of each
paradigm as well as concurrent and distributed computing in simple, yet
precise terms, we finally have the missing theory of programming with
which we can reorganize CS-1, CS-2 and ProgLangs to teach more material,
achieve better depth of understanding and reach more students than with the
current suggestions of Curricula'2002 which simply continue the approach
ofCurriculum'68 and '78.

Included below are two suggestions at the two ends of the student mind­
set spectrum of how we can improve CS-1, CS-2 and ProgLangs with the
help of the Kernel Language Approach.

8. INTRODUCTORY CURRICULUM FOR SERIOUS
STUDENTS

Serious students want a deep understanding of programming concepts as
soon as possible. Serious students are not comfortable with the use of black­
box components and large, opaque subprogram libraries. They are not happy
with having to click-select menu-items more or less at random to see "by
experiment" whether the item fits into the program. Instead they like to
reason about and clearly understand program statements and components
before they use them in their programs. This suggests the following three
courses

8.2 CS-1

Introduce the essence of imperative, object-oriented, functional, logical,
concurrent and distributed programming through a study of the Kernel
Language together with well chosen laboratory programming problems and
pre-programmed examples in Oz.

8.3 CS-2

Update the usual set of algorithms and data structures covered in
conventional CS-1 and CS-2 and illustrate them with problems and pre­
programmed examples. Show how to use Kernel Language programming
and reasoning skills to rapidly acquire conventional language (e.g. Java)
programming skills.

48 Juris Reinfelds

8.4 ProgLangs

Introduce students to different programming languages and paradigms
via net-centric multi-language multi-platform programming using dotNET or
a similar multi-language, multi-platform programming system.

9. INTRODUCTORY CURRICULUM FOR
NINTENDO GENERATION STUDENTS

In the April 2002 issue of CACM, Mark Guzdial and Elliot Soloway [17]
recognize that even in a down-turned economy many programming jobs go
unfilled while the dropout/failure rate in CS-1 courses is in the 15% - 30%
range. They quote a report [18] that found shockingly low performance on
simple problems even among 2nd year college students, surveying 4 schools
in 3 different countries.

Soloway & Guzdial note that engaging the students is critical to deep
learning. They observe that "Hello World!" and other text-based
programming problems do not engage today's students. They suggest that
multimedia programming will most likely engage the full attention and
energy of today' s Nintendo, MTV generation of students.

9.1 CS-1

Introduce programming concepts through practical web-page
construction in the laboratory. Explain each concept with the help of the
Kernel Language in a 'just-in-time" fashion.

9.2 CS-2

Introduce net-centric, multi-thread, multi-platform programming skills.
Explain concepts with Kernel Language. Motivate the use of CS-1, CS-2
covered data structures and algorithms by suitably chosen laboratory
excercises. Provide pre-programmed examples in Oz. Extend to multi­
language programming along the lines of Bertrand Meyer's two-language
Ticket Reservation System example [19].

9.3 ProgLangs

Use Kernel Language to teach what is common to all paradigms and how
the paradigms differ. Teach how to use Kernel Language Knowledge to

Teaching of Programming with a Programmer's Theory ... 49

rapidly acquire programming skills in a widely used programming language
e.g. Java.

10. THE DOTNET EFFECT

Mozart-Oz is a . well-designed, well-implemented multi-paradigm, multi­
thread and multi-platform programming system. At New Mexico State
University, our experience with teaching programming with Mozart-Oz and
the Kernel Language echoes the results reported by Van Roy [8]. Our
students have also commented that they finally understood what the Java or
C++ course had tried to teach them only after they were able to discuss these
programming concepts in terms of the Kernel Language in our Mozart-Oz
based programming course.

Before dotNET [20], one could ask whether our view of multi-paradigm
programming might be too rosy, too optimistic. One could ask if multi­
paradigm, multi-thread, multi-platform programming has a practical future.

Now that dotNET, initiated by Microsoft and supported by a consortium
of major companies including ffiM, Intel and HP, has shown that multi­
language, net-centric, multi-platform programming is indeed possible and
available, we urgently need a programmer's theory of programming with
which to manage all this new knowledge that the next generation of
programmers will need. One-language programming will be made
obsoleteby dotNET and its successors. Therefore the sooner we can find
new, more appropriate and effective ways to teach programming the better.

11. CONCLUSIONS

The Kernel Language approach provides a programmer's theory of
programming, which programmers can use to reason about programs using
terms and concepts that are already familiar to programmers.

The trend to multi-language, multi-paradigm, multi-thread, multi­
platform programming that was initiated by dotNET, requires urgent
redefinition of our one-language based CS-1, CS-2 introductory
programming course sequence.

Another reason for urgent revision of the introductory programming
course sequence is the student disenchantment with the text-based, "Hello
World" type programming problems and program examples of current
courses.

Therefore we should look very seriously and with some urgency at a
redesign of the CS and Software Engineering introductory course sequence

50 Juris Reinfelds

to make the courses more relevant for the programming requirements as well
as the student expectations of tomorrow.

12. ACKNOWLEDGEMENTS

The author is grateful to Peter Van Roy for two immensely intensive days
in December 1999 when Peter taught me the basics of Oz programming. The
author is grateful to Seif Haridi for the opportunity to spend a week at the
Swedish Institute for Computer Science to meet with experienced Mozart-Oz
programmers, especially Fredrick Holmgren who showed me how to do
agent based programming in Oz. The author acknowledges the Mozart
Consortium for the design of the programming language Oz that makes
programming a pleasure and for the Mozart system that implements Oz so
effectively and reliably.

13. REFERENCES

[1) Meyer, B., "The Power of a Unifying View", Software Development, June 2001.
[2] ACM Curriculum Committee, "Curriculum 68", CACM Vol. II, #3, p.l51-I97, (1968)
[3) Sammet, J. E., "Programming Languages: History & Fundamentals", Prentice Hall

(1969)
[4] ACM Curriculum Committee, "Curriculum'78", CACM Vol. 22, #3, p.l47-167, (1979)
[5] Knox, D., (Ed.), "Proceedings of the 33rd SIGCSE Technical Symposium on Computer

Science Education, Feb. 27- March 3, 2002, North Kentucky, ACM Press (2002)
[6] Tucker, A. B., Ed., "Computing Curricula I99I", http://www.acm.org/education/curr91/

homepage.html, IEEE Computer Society Press (199I)
[7] Computing Curricula 2001, CS Volume I, http://www.acm.org/sigcse/cc200l/
[8] Van Roy, P., Haridi, S., ''Teaching Programming Broadly and Deeply: the Kernel

Language Approach", (this volume), Kluwer Academic Publishers (2002)
[9] Dijkstra, E. W., "A Discipline of Programming", Prentice Hall (1976, I997)
[10] Gries, D., "The Science of Programming", Springer (I981)
[11] van de Snepscheut, J. L.A., "What Computing is All About", Springer (1993)
[I2] Mozart Consortium, http://www.mozart-oz.org
[13] Van Roy, P., Haridi, S., http://www.info.ucl.ac.be/people.PVR/book.html
[14] Wilson, L. B., Clark, R. G., "Comparative Programming Languages", Add. Wes. (1988)
[I5] Reinfelds, J., "A Three Paradigm Course for CS Majors", Proceedings, 26th ACM

SIGCSE Technical Symposium on Computer Science Education, p.223-227, (1995)
[16] Reinfelds, J., "1996 Lecture Notes for CS 272 (new)", 251 pages, Department of

Computer Science, New Mexico State University (1996, 1997).
(17] Guzdial, M., Soloway, E., "Teaching the Nintendo Generation to Program", CACM Vol.

45, #4, p.17-21, (2002).
[18] Me Cracken, M., et a!., "A multinational, multi-institutional study of assessment of

programming skills of first-year CS students", ACM SIGCSE Bul. 33, 4, p.l25-140
(2001)

Teaching of Programming with a Programmer's Theory ... 51

[19] Meyer, B., "A multi-language example using Eiffel#, C# and ASP+ in dotNET", http://
www.dotnet.eiffel.com, (2002).

[20] Meyer, B., "The Significance of dotNET', IEEE Computer, August 2001.

	Teaching of Programming with a Programmer'sTheory of Programming
	1. INTRODUCTION
	2. PROGRAMMING IN THE CURRICULUM
	2.1 B1 -Introduction to Computing
	2.2 CS-1 Computer Programming
	2.3 CS-2 Computer Programming II
	2.4 CS-8 Organization of Programming Languages

	3. RECENT CURRICULA
	4. A PROGRAMMER'S THEORY OFPROGRAMMING
	5. THE MULTI-PARADIGM PROGRAMMINGLANGUAGEOZ
	6. THEKERNELLANGUAGEAPPROACH
	7. IMPACT OF KERNEL LANGUAGE ONINTRODUCTORY COMPUTER SCIENCETEACHING
	8. INTRODUCTORY CURRICULUM FOR SERIOUSSTUDENTS
	8.2 CS-1
	8.3 CS-2
	8.4 ProgLangs

	9. INTRODUCTORY CURRICULUM FORNINTENDO GENERATION STUDENTS
	9.1 CS-1
	9.2 CS-2
	9.3 ProgLangs

	10. THE DOTNET EFFECT
	11. CONCLUSIONS
	12. ACKNOWLEDGEMENTS
	13. REFERENCES

