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Abstract: We have been developing tutors to help students learn programmjng concepts 
by solving problems. In this paper, we will discuss the use of problem-solving 
in Computer Science, the effectiveness of using problem-solving tutors to learn 
programming concepts, and the pedagogical relationship between solving 
problems and learning to write programs. We will also present the design and 
results from the evaluation of one of our tutors. 

1. PROBLEM-SOLVING AND COMPUTER 
SCIENCE 

Problem-based learning improves long-term retention [12], and is better 
than traditional instruction for improving the ability of students to solve real­
life problems. In Computer Science, various researchers have advocated the 
use of self-paced exercises [24], practice to build problem-solving skills 
[35], and the use of frequent, graded assignments in a course [9]. It is 
reported that "students universally want to see more examples both in class 
and in their textbooks" [38]. Solving problems facilitates active learning, 
whose place in Computer Science education has been established [26]. 

Textbooks are generally inadequate as sources of problems because of 
their limited, non-interactive nature. Even in disciplines such as Physics and 
Mathematics, where textbooks generally tend to include many more practice 
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problems than in Computer Science, faculty are increasingly turning to the 
use of technology to address this issue. Typically, programs are written to 
generate problems, and such programs are made available to students for 
practice, e.g., CAPA (16] for Physics, and CHARLIE [4] for electronics and 
control systems. Kashy [ 17] reports that the use of such programs has 
increased student performance by 10%, largely due to increased time spent 
on the task. 

Different types of problem-solving tutors have been developed for 
Computer Science topics that provide students with frequent, self-paced 
exercises: 
- Numerous systems demonstrate the solving of problems entered by the 

student - JFLAP [33] for Automata Theory and PSVFJGAIGS [27] for 
parameter passing mechanisms are two representative examples. 
Numerous algorithm animation and visualization systems (e.g., JHA VE 
[28], JAW AA [32]) generate data to animate algorithms. 
Some systems administer problems generated by the instructor. These 
include WebToTeach [2], APMS [18], WebCT (www.webct.com), and 
other such course administration systems. 
A few systems have been developed to generate problems for students to 
solve: PILOT [7] for graph algorithms, Gateway Labs for problems in 
mathematical foundations of Computer Science [3], and SAIL [8], which 
is a LaTeX-based scripting tool for problem generation. 

Few, if any systems have been developed to help students learn 
programming by solving problems, wherein the systems themselves generate 
problems for the students to solve. Two reasons for this may be: 
- Programming problems are not quantitative (vis-a-vis say, Physics or 

electronics). Instead, they depend on the structure of arbitrary programs, 
which are hard to generate automatically. 
Computer Science educators have traditionally considered the norm for 
student practice to be a small number of large programming exercises in 
a course, rather than a large number of small practice problems. 
However, education research indicates that focused practice (such as 
solving problems) is just as important for learning as contextualized and 
expansive projects (such as whole language approach in reading 
instruction) [25,14,10]. In other words, students must solve problems 
about specific programming constructs just as much as write 
comprehensive programs to build their programming and problem­
solving skills. 
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We have been developing problem-solving tutors, called problets, for 
selected programming concepts. These tutors are capable of generating 
problems, grading the student's solution, providing immediate and detailed 
feedback about the correct answer, logging the student's performance, and 
determining whether the student has learned the material. 
- Problem Generation: The problets generate an endless supply of 

problems on a specific topic, by randomly instantiating problem 
templates encoded into them in pseudo-BNF notation by either the 
problet designers or the instructor using the problet. 

- Problem Solving: The problets are capable of solving the problems they 
generate. The answers to the problems need not be encoded into the 
problets. 

- Providing feedback on User's Answers: The problets provide feedback 
at two levels: at the minimal level, they correct the user's answer; at the 
detailed level, they also explain the correct answer. 

- Grading User's Answers: The problets report whether the user's answer 
is correct, incorrect or partially correct. They keep score for the user, and 
are capable of terminating a session when the user has reached a preset 
level of proficiency in the topic. 

The effectiveness of using problem-solving tutors has been well 
documented in literature: 
- The)ield of Intelligent Tutoring Systems, which is the basis of our 

solution, has documented an improvement of one standard deviation 
through the use of tutors [ 1]. 

- The use of similar tutors has been shown to increase student performance 
by 10% in Physics [17] . 

- Our own work in building and testing tutors for Computer Science has 
shown that the average performance in a class improves by 100% after 
using the tutor [19], [20], and that the improvement is systemic [37]. 
The tutors are designed to promote active learning. They target 

application in Bloom's taxonomy of educational objectives [5], and are 
expected to supplement the traditional programming projects assigned in the 
course, which emphasize synthesis. Since research indicates that focused 
practice such as that provided by the tutors is just as important for learning 
as large-scale projects [25], so we expect the use of tutors to complement the 
traditional programming projects. 
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To date, we have developed, deployed and assessed tutors on several 
programming topics, including expression evaluation in C++ [19], pointers 
for indirect addressing in C++ [20], nested selection statements in C++ [36], 
static scope in Pascal [21,22] and parameter passing in programming 
languages [37]. We also plan to build a series of tutors for most of the 
imperative programming constructs covered in a typical Computer Science I 
course, and evaluate the effectiveness of using them to improve retention in 
the course. Our tutors may be used not only for practice solving problems, 
but also for assignments and tests. The tutors are delivered over the Web, so 
they can be accessed any time, anywhere. 

2. FROM SOLVING PROBLEMS TO WRITING 
PROGRAMS 

Learning to program involves both learning to design and write 
programs, and learning to read and understand programs. Whereas the focus 
of introductory Computer Science courses is in general the former, i.e., 
learning to design and write programs, the importance of the latter cannot be 
over-emphasized. Computer Science students must learn to read and 
understand programs because professional programmers must often 
cooperate with others to write programs, and may have to maintain software 
written by someone else. 

Learning to read and understand programs may contribute to a student's 
ability to, in turn, design and write programs: 
- Active Effect: Students generate mental models when reading programs, 

which may in turn help them visualize solutions when writing programs; 
- Passive Effect: Students have to read their own prograllls in order to 

debug/test them. Since debugging/testing is a part of the write-compile­
debug-test cycle of program development, any improvement in the ability 
to read and understand programs helps students write programs more 
efficiently. 

Solving problems to learn programming could involve either writing 
programs or analysing given programs. Since students already write 
programs as part of class assignments, the focus of our tutors is on analyzing 
given programs. The problems generated by our tutors engage the learners 
in one of two analytical activities: debugging the presented program, or 
predicting the output of the program. This helps students learn by examples, 
both good and bad. These activities promote the students' ability to read and 
analyze programs written by them as well as others. 
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The program comprehension model developed by Pennington [29,30] 
investigated the detailed mental representations formed by programmers 
studying programs written in the imperative style. It was derived from 
models of text comprehension developed and refined over the years 
[15,34,39]. Pennington's model of program comprehension includes the 
following two layers, which are progressively more abstract: 
- Program Model, which consists of knowledge of operations carried out 

in source code, and control flow - low level details that are localized and 
explicitly available in the program text. 

- Domain Model, which consists of knowledge of data flow and the goals 
that a program accomplishes - abstract details that are distributed and 
implicit in a program. It is difficult to understand programs when related 
data transformations are carried out in non-contiguous segments of code 
[23]. 

Pennington found that novice programmers built a strong program model, 
but a weak domain model after studying imperative programs written in 
FORTRAN, COBOL and Pascal [11], whereas expert programmers built a 
stronger domain model than novice programmers. Pennington argues that the 
performance of comprehension-demanding tasks is likely to play an 
important role in the formation of domain model, which is built slowly in the 
context of meaningful programming tasks. Program debugging and 
prediction of output are comprehension-demanding tasks presented by our 
tutors. Hence, our tutors may be said to promote the development of a 
stronger domain model among novice programmers. In general, our tutors 
address both problem domain (e.g., expression evaluation, code with syntax 
errors) and domain model (dangling pointers, scope issues, lost objects, 
memory-out-of-bounds, semantic errors, etc.). 

Theorists have identified three levels of learning [14,10,40], through 
which novice learners progress: emergent stage, when they are first exposed 
to the task; developing stage, when they recognize patterns and begin using 
appropriate tools; and transitional stage, when they carry out the tasks 
increasingly correctly, despite incomplete understanding and an initial lack 
of confidence. ·Our tutors can be used in all the above stages: with detailed 
feedback during the emergent stage, with minimal feedback during the 
developing stage, and without any feedback during the transitional stage. 
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3. EVALUATION OF PROBLETS 

Our tutor on C++ pointers presents C++ programs and asks the user to 
indicate whether the program contains any dangling pointers, lost objects, 
semantic errors (printing values of un-initialized variables), syntax errors, 
etc. We have evaluated this tutor in several sections of our Computer 
Science II course. In this section, we will present the results of these 
evaluations, addressing both cognitive and affective aspects of learning with 
the tutor. 

3.1 Cognitive Learning with the Problet 

Tutor in Isolation: In Fall 2000, we tested the tutor in two sections 
(N= 19 combined), by administering a pretest, followed by practice using the 
tutor, and a post-test. These were not controlled tests. The author was the 
instructor in both the sections. The pre-test and post-test scores were out of 
40. The results are presented in the Table below. 

Table 3. Tutor in Isolation 
(N=19) Pre-Test 
Average 12.21 
Std-Dev 6.70 

Post-Test 
26.74 
8.73 

Effect Size 
2. 16 

The Effect Size is calculated as (post-test score - pretest-score) I standard 
deviation on the pre-test. An effect size of 2.16 sigma indicates that the tutor 
facilitated learning among the students. The improvement is statistically 
significant (2-tailed p < 0.05). It compares favourably with the result that 
individual human tutors can bring students 2 sigma above normal classroom 
instruction [6). 

Tutor Versus Printed Workbook: In Spring 2001, we again tested the 
tutor in two sections (N=33 combined), using the pretest-practice-posttest 
protocol. We conducted a controlled test - between the tests, the control 
group practiced with printed workbooks, whereas the test group practiced 
with the tutor. The author was not the instructor in the sections. The pre-test 
and post-test scores were out of 40. The results are presented in the Table 
below. 
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Table 4. Tutor vs Printed Workbook 
(N=33) Pre-Test 
Tutor Users 
Average 13.00 
Std-Dev 6.61 
Workbook Users 
Average 15.24 
Std-Dev 7.10 

Post-Test 

23 .06 
10.12 

24.71 
10.54 
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Effect Size 

1.52 

1.33 

Practicing with the tutor appeared to be slightly better than practicing 
with the printed workbook. Both the improvements were statistically 
significant (2-tailed p < 0.05). 

Minimal Versus Detailed Feedback in the Tutor: In Fall 2001, we 
conducted a controlled test of the tutor in two sections (N=22). This time, we 
tested two versions of feedback for the tutor: minimal versus detailed. In 
minimal feedback, the tutor corrects the user's answer, but does not explain 
the correct answer. In detailed feedback, in addition, the tutor explains the 
correct answer. We used the same pre-test-practice-post-test protocol as 
before, with fixed times for each step. Incorrect answers were penalized. The 
author was not the instructor in either class. The pre-test and post-test scores 
were out of80. The results are presented in the Table below. 

Table 5. Minimal vs detailed feedback in the tutor 
Pre-Test Post-Test Effect Size 

Detailed Feedback (N=I4) 
Average 11 .57 27.29 1.99 
Std-Deviation 7.91 21.01 
Minimal Feedback (N=8) 
Average 8.25 17.38 1.63 
Std-Deviation 5.60 14.62 

The results seem to indicate that detailed feedback may be better than 
minimal feedback. For detailed feedback, the 2-tailed p < 0.05, indicating 
that the improvement is statistically significant, whereas p = 0.28 for 
minimal feedback, indicating that the improvement is not statistically 
significant. 

3.2 Affective Learning with the Problet 

Students filled out a feedback form after the controlled tests in Spring 
2001, in which they provided feedback about the instrument they had used 
for practice between pre-test and post-test (workbook for control group and 
tutor for test group, N=33). These feedback forms clearly indicate that the 
tutor facilitates affective learning. On a Likert scale of 1 (Strongly Agree) to 
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5 (Strongly Disagree), the average scores of the test and control groups on 
the questions of the feedback form are as shown in the table below. 

Table 6. Student feedback 
Feedback Question Tutor WorkBook 
(Test Group: Instrument= Tutor; Users Users 
Control Group: Instrument= Printed Workbook) 
I. It was easy to (learn to) use this instrument. 2.13 2.29 
2. The problems posed by the instrument were clear. 1.94 1.94 
3. The instrument listed interesting problems. 2.13 2.35 
4. The problems were repetitive and boring. 3.44 3.06 
5. The instrument provided useful feedback. 2.20 3.06 
6. The instrument helped me learn the material. 2.31 2.88 
7. Using this instrument was time-consuming. 3.88 3.12 
8. The instrument should be made available to all students 1.56 2.65 
9. If this instrument is made available, I will use it 1.93 2.65 
10. I would like to see such instruments on other topics. 1.44 2.59 

Question 1 indicates that the tutor was easy to learn if we use the control 
group's score as the basis, since presumably, students do not need to "learn" 
how to use a printed workbook designed like a typical textbook. The 
problems in the printed workbook were themselves generated by the tutor, 
and the results for Question 2 validate this. Questions 3 and 4 seem to 
indicate a slight Hawthorne effect in that students using the online tutor felt 
the problems were more interesting and less repetitive and boring, although 
the types of problems were the same for both the tutor and the printed 
workbook. Question 5 clearly indicates the superiority of the tutor, which 
provided detailed problem-specific feedback whereas the printed workbook 
just listed the correct answer for each problem. Questions 6 and 7 indicate 
that the tutor facilitated better affective learning than the printed workbook, 
which is encouraging. Questions 7 through 10 clearly indicate the students' 
preference for the tutor over the traditional printed workbook. 

4. FUTURE WORK 

It is clear from the improvement from pre-test to post-test scores, that 
students learn how to solve problems using our tutors. We would like to test 
whether this improvement in problem-solving ability translates to better 
ability to write programs. 

Pennington [29] found that a cross-referenced mental representation, 
containing a balanced mix of program and domain model is associated with 
better program comprehension. She also found that modification tasks 
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promoted the development of a cross-referenced mental representation. Our 
tutors currently do not ask the users to modify the programs, only to debug 
or predict their output. We may include program modification as another 
activity in our tutors in the future. 

Self-generated elaborations are better than text-supplied elaborations for 
learning [31]. In other words, if the user is provided with an environment in 
which the user can construct his/her own explanation for a program, the user 
will benefit more than if the tutor generates all the explanations. It would be 
an interesting exercise to incorporate this meta-cognitive reasoning into our 
tutors. Since the problem (code segment), solution and feedback are all 
textual in our problets, they favor verbal learners over visual learners in the 
Felder-Silverman Learning Style model [13]. We would like to address the 
needs of visual learners by incorporating program animation into our 
problets. 
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