
A Reactive Service Composition Architecture for
Pervasive Computing Environments

Dipanjan Chakraborty, Filip Perich, Anupam Joshi, Timothy Finin, Yelena
Yesha
Department of Computer Science and Electrical Engineering. University of Maryland, Balti­
more County

dchakr1 @cs.umbc.eclu,fperlc1 @cs.umbc.edu,joshl@cs.umbc.edu,finln @cs.umbc.edu,yeyesha@cs.umbc.ed

Abstract Development of customized services by integrating and executing existing ones
(refered to as service composition) has received a lot of attention in the last
few yem with respect to wired, infrastrutcure based web-services. With the
advancement in the wireless technology and pervasive computing, we eovison
that in the near future, we will have such information or services embedded in
various wireless devices in our vicinity. However, wired infrastructure-based
service discovery and composition architectures do not take into consideration
factors arising from the possible mobility of the service providers. In this
paper, we present Anamika: a distributed, de-centralized and fault-tolerant design
architecture for reactive service composition in pervasive environments.

1. Introduction
Service Composition can be defined as the process of creating customized

services from existing services by a process of dynamic discovery, integration
and execution of those services in a planned order to satisfy a request from a
client. Research in the area of service discovery [1, 15, 3, 8, 18]and service
composition [6, 17, 12, 16,4, 14]has focused on trying to leverage the wide
array of e-services available over the network to provide customized services to
e-customers, for example planning a business trip for a person. There has been
a sharp increase in these types of wired infrastructure-based services in the last
few years. Existing service composition systems [14, 6, 12]broadly address the
problems associated with composing various services that are available over the
fixed network infrastructure. They primarily rely on a centralized composition
engine to carry out the discovery, integration and composition of web-based
e-services.

However, with computing today becoming increasingly pervasive, we envis­
age that in the near future, mobile and embedded devices will also be capable

©

The original version of this chapter was revised: The copyright line was incorrect. This has been
corrected. The Erratum to this chapter is available at DOI: 10.1007/978-0-387-35618-1_37

C. G. Omidyar (ed.), Mobile and Wireless Communications
IFIP International Federation for Information Processing 2003

http://dx.doi.org/10.1007/978-0-387-35618-1_37

54 Dipanjan Chakraborty, Filip Perich et al

of providing customized information, services and computation platforms to
peers in their vicinity. People will need the cooperation of services available
in their resource-rich vicinity to satisfy their information needs.

Service Composition systems for the pervasive computing environments
need a different design approach than those developed for wired services. This
is because many of the assumptions of standard composition architectures of
wired services are no longer valid in such dynamic environments. Service
Composition architectures in wired infrastructure assumes the existence of a
centralized composition entity that carries out the discovery, integration and
execution of services distributed over the web. They also need a tighter coupling
with the varying network layer protocols.

We have designed a distributed architecture to perform service composition
in pervasive computing environments. Central to our system is the concept
of a distributed broker that can execute at any node in the environment. An
individual broker handles each composite service request, thus making the
design of the system immune to central point of failure. A broker may be
selected based on various parameters such as resource capability, geometric
topology of the nodes and proximity of the node to the services that are required
to compose a particular request. Current prototype of our system has been
implemented over Bluetooth.

Service discovery and composition is an important and active area of research
[5, lO]and has been studied widely in the context of web-services. Most of the
research in realizing service composition systems for web-based services have
a centralized architecture for service integration and execution management.
We are aware of systems like eFlow [6], CMI [17}, Ninja Service Composition
Architecture [12], Sheng's framework [4]on declarative web service compo­
sition based on state charts that broadly address various problems related to
service composition in the context of wired services. Due to lack of space, we
are unable to present details of these systems.

2. System Architecture and Design Principles
In this section, we describe a genera1layered architecture that enables service

composition in pervasive computing environments. Our architecture introduces
two distributed reactive techniques to carry out service composition in purely
ad-hoc environments. Our composition architecture primarily deals with the
discovery, integration and execution of the components of a composite request.
Figure 1 depicts the different layers and modules in the architecture. In the
rest of the paper, we shall refer to a client as a device from where the service
composition request originates. A broker is a device that coordinates the
different components to calculate the result.

A Reactive Service Composition Architecture ... 55

Application Layer

Compo.ltlon Service Exeoutlon
Layer Layer

I .. I I Paull '".oovery ModUI_1

J oe
Cllluetooth SOP .:.,u,.uon I

Network Layer (RFCOM/PPP/TCPIIP. CDPD.
CDMA etc)

•

Figure 1. General Architecture for ad-hoc service composition

2.1 System Components
Network Layer:. The Network Layer forms the lowest layer in the ar­
chitecture and encapsulates networking protocols that provide wireless/ad-hoc
connectivity to peer devices in the vicinity. We assume the existence of a
suitable network layer that provides us with connectivity to the neighboring
devices.

Service Discovery Layer:. The service discovery layer is required for the
proper functioning of the composition platform. There is a direct dependence
of the success of the composition techniques on the underlying service dis­
covery mechanisms. This layer encompasses the protocol used to discover the
different services that are available in the vicinity of a mobile device. Our
design of the service discovery mechanism is primarily based on the principles
of Peer-to-peer service discovery, Dynamic caching of neighboring service de­
scriptions, Semantic description based service matching, service request rout­
ing and propagation control. We do not employ central lookup-server based
service discovery and maintenance. Each device has a Service Manager where
the local services register their information. Service Managers advertise their
services to neighboring nodes and these advertisements are cached. Services
are described using a semantically rich language DAML+OIL [13]which is
used in service matching also. On cache miss, the service request is forwarded
to neighboring nodes. We describe our protocol in detail in [7].

Service Composition Layer:. This layer is responsible for carrying out
the process of managing the discovery and integration of services to yield a

56 Dipanjan Chakraborty, Filip Perich et al

composite service. The process model of the composite service is supplied as
input to this layer. In our current implementation, we have used the 'compos­
iteprocess' definition of DAML-S to describe a process model. We describe
our two reactive techniques of composition in detail in next two subsections.

Service Execution Layer:. The Service Execution Layer is responsible
for carrying out the execution of the different services. Prior to this, the
service composition layer provides a feasible order in which the services can
be composed and also provides location and invocation information of the
service(s). This layer has a module called the "Fault Recovery Module", which
is responsible to guard against node failures and service unavailability. We
explain the fault-tolerant techniques in the next two subsections. The Service
Execution Layer and the Service Composition Layer are tightly coupled with
each other due to their dependence on each other.

Application Layer:. The application layer embodies any software layer that
utilizes our service composition platform. The application layer encompasses
different GUI facilities to display the result of a composed service and provides
the functionality to initiate a request for a composite service.

2.2 Dynamic Broker Selection Technique
This approach centers on a procedure of dynamically selecting a device to

be a broker for a single request in the environment. In the following section,
we describe three distinct features of the Dynamic Broker Selection Technique.

Broker Arbitration and Delegation:. When a request for service composi­
tion arrives at the service composition module in a mobile device it finalizes a
platform that is going to carry out the composition and monitor the execution.
Once the platform has been chosen, the device is informed of its responsibility.
The mobile device acting as the broker is responsible for the whole composi­
tion process for a certain request. The selection of the broker platform may be
dependent on several parameters: power of the platform (battery power left),
number of services in the immediate vicinity, stability of the platform, etc. The
brokerage arbitration might make the originator of the request to be the broker
for that particular composition.

Each request thus may be assigned a separate broker. This makes the
architecture immune to central point of failure and the judicious choice of
brokerage platform has the potential of distributing the load appropriately
within the different devices. This avoids the problem of swamping the central
composition entity by numerous requests.

A Reactive Service Composition Architecture ... 57

Service Integration and Execution:. The assigned broker's first job is to
discover the services from its vicinity. The broker progressively increases its
search "radius", a number of devices that it can reach by asking other devices
in its radio range to forward service request, to discover all of the different
services necessary for the composition. The broker returns failure when it fails
to discover all of the required services. Service discovery and integration is
followed by service execution. The information obtained during the service
discovery (service address, port, invocation protocol) is utilized to execute the
services.

Fault Recovery:. Faults in ad-hoc environment may occur due to a service
failure, due to a sudden unavailability of the selected broker platform, or
due to network partition. The standard solution to this problem is to make
the requester to initiate a new request for every composite service. This is
very inefficient and not applicable in our environment due the relatively high
occurrence probability of the above failures. The fault -tolerance module in the
architecture employs check pointing to guard against such faults. The broker
for a particular request sends back checkpoints and the state of the request
to the client of the request after a subtask is complete. The client keeps a
cache of this partial result obtained so far. If the broker platform fails, the
source node detects the unavailability of updates. The source of the request
then reconstructs the query that is still left unsolved by the broker. This request
is now treated as a different service composition request in the environment.
Thus, If a node currently acting as the broker of a request fails, then using the
same principle the architecture adapts itself to select other brokers dynamically.

2.3 Distributed Brokering Technique

The key idea in this approach is to distribute the brokering of a particular
request to different entities in the system by determining their 'suitability' to
execute a part of the composite request.

Broker Arbitration:. This module performs almost the same set of actions
as described in the previous section. However, the key difference is that it
only tries to determine the broker for the first few services (say SI to Si) in
the whole composition. This layer tries to utilize the resources available in the
immediate vicinity instead of looking for the resources required to execute the
whole composition. Thus, a single broker only executes a part of the whole
composite process (based on the resources that it currently has available to it).

Service Integration and Execution:. The broker is responsible for com­
posing the services SI to Sn. The broker decides on a service search "radius".
The composition is carried out among services discovered within this radius.

58 Dipanjan Chakraborty, Filip Perich et al

I I I
r------ -------------

,
I 1 ________________________ ..L _____ •

Figure 2. System Components in Anamika Reactive Service Composition Architecture

Suppose a broker determines that it has services S 1 to Si available in its vicin­
ity(within radius r). It goes ahead and carries out the partial integration and
execution. It then informs the requester (source node) about the 'current state'
of the execution. Secondly, it uses the 'Broker Arbitration' Module to select
another broker which has the ability to carry out a subset or whole of the re­
maining composition. In this manner, the composition hops from one node to
another till the final result is obtained. Then the current broker returns the final
answer of the composition to the client.

3. Implementation and Experiments
In our initial implementation of the design architecture, we have developed

a reactive service composition system called Anamika. The individual com­
ponents of the Anamika system existing in participating mobile devices are
described in Figure 2. Current prototype of the architecture has been im­
plemented over Bluetooth [18]. Composition knowledge is described using
DAML-S[UJin terms of subset of individual services that might be able to
satisfy a composite request. Service discovery is done in a peer-to-peer manner
using semantic description of services using DAML-S and our light-weight rea­
soning engine present on participating devices. Anamika implements Dynamic
Broker Selection mechanism and decides the best platform to carry out the com­
position based on a combination of the processor power of the platform and
number of services that the platform has. The Network Manager implements
the API required for higher layers to reliably communicate to neighboring peers
over Bluetooth. We implemented the networking level API over RFCOMM
[18]protocol over ffiM's BlueDrekar transport driver [2]for Linux kemeI2.4.2-
2. Service Discovery Manager provides the functionality to local Composition
Manager to discover services in Bluetooth peers. The principles of our Service
Discovery Manager is described in detail in [7]. The Service Composition
Manager is the principal component that is responsible for service composition

A Reactive Service Composition Architecture ... 59

and management. Peer Service Composition Managers collaborate with each
other to implement different techniques of service composition. The Compo­
sition Knowledge base has been modeled in DAML-S. Due to lack of space,
we are unable to provide a greater detail of the implementation. However, it is
available in our technical report [9].

Experiments:. We carried out various experiments to validate the proper
functioning of the Anamika Reactive Service Composition system and test dif­
ferent features of the Dynamic Broker Selection Technique. In our experimental
setup, services reside on different laptops. These services are registered to the
local composition managers residing on the machines. Bluetooth modules pro­
vided by Ericsson and mM's BlueDrekar software stack [2]and transport driver
are used by the Network Manager to communicate between devices. Some of
the laptops also have 802.11 b connectivity to the Internet. Every Anamika sys­
tem displays a graphic user interface for clients to access composite services
formed by the services available in the vicinity. There is no central "Broker
service" in the system and all the participating systems are liable to be bro­
kers. We carried out experiments to test the proper functioning of the different
mechanisms for service composition and under different states of the ad-hoc
environment. However, due to space limitations, we are unable to provide
details of the experiments.

4. Conclusions

In this paper, we have introduced a novel design approach for service com­
position in pervasive computing environments. Our architecture for service
discovery and composition is distributed, decentralized and fault-tolerant to
service and network unavailability. Service Discovery is done in a peer-to-peer
mode rather than a centralized mode, and service descriptions are cached for
scalability. We introduce two reactive techniques, Dynamic Brokerage Selec­
tion mechanism and Distributed Brokerage technique to accomplish service
composition in dynamic environments. Our approach enables any device par­
ticipating in the composition to act as the broker, making the design immune
to single point of failure. We use a source-monitored fault-tolerance mecha­
nism using checkpoints and rollbacks to the last completed service. We have
also presented the Anamika system, an initial implementation of our design
architecture. Anamika has been implemented over Bluetooth using RFCOMM
as the network layer. Our future work includes implementing the "Distributed
Brokerage" mechanism in Anamika, perform assessment of the different mech­
anisms with respect to factors like mobility of the environment, availability rate
of the services.

60 Dipanjan Chakraborty, Filip Perich et al

References
[1] The Salutation Consortium Inc 1999. Salutation architecture specification (part 1), version

2.1 edition. World Wide Web, http://www. salutation.org.
[2] IBM alphaworks. BlueDrekar protocol driver. World Wide Web, http://www.

alphaworks.ibm.com/tech/bluedrekar.
[3] Ken Arnold, Ann Wollrath. Bryan O'Sullivan, Robert Scheifter, and Jim Waldo. The Jini

specification. Addison-Wesley, Reading, MA, USA, 1999.

[4] B. Benatallah, M. Dumas, Q. Sheng, and A. Ngu. Declarative composition and peer-to­
peer provisioning of dynamic web services. In 18th International Conference on Data
Engineering., February 2002.

[5] F. Casati, D. Georgakopoulos, and M. Shan editors. Special issue on e-services. VLDB
Journal,2001.

[6] F. Casati, S. Dnicki, L. Jin, V. Krishnamoorthy, and M. Shan. Adaptive and dynamic
service composition in eflow. Technical Report, HPL-200039, Software Technology
Laboratory, Palo Alto, CA, march 2000.

[7] Dipanjan Chakraborty, Anupam Joshi, Tim Finin, and Yelena Yesha. GSD: A novel group­
based service discovery protocol for MANETS. In 4th IEEE Coriference on Mobile and
Wireless Communications Networks (MWCN 2002). Stockholm. Sweden, September 2002.

[8] Dipanjan Chakraborty, Filip Perich, Sasikanth Avancha, and Anupam Joshi. Dreggie: A
smart service discovery technique for e-commerce applications. In 20th Symposium on
Reliable Distributed Systems, october 2001.

[9] Dipanjan Chakraborty, Filip Perich, Anupam Joshi, Timothy Finin, and Yelena Yesha.
A service composition architecture for pervasive computing environments. Technical
report, University of Maryland Baltimore County. USA, March 2002. TR-CS-02-02.

[10] G. Weikwn. Editor. Special issue on infrastructure for advanced e-services. IEEE Data
Engineering Bulletin, 24(1), March 2001.

[11] DARPA Agent Markup Language for Services. World Wide Web, http://www.ai .
sri.com/daml/services/daml-s.pdf.

[12] R.H. Katz, Eric. A. Brewer, andZ.M. Mao. Fault-tolerant, scalable, wide-areaintemet ser­
vice composition. Technical Report. UCB/CSD-I-1129. CS Division. EEeS Department.
UC. Berkeley, January 2001.

(13) DARPA Agent Markup Language and Ontology Inference Layer. http://www . daml.
org/2001/03/daml+oil.daml.

[14] David Mennie and Bernard Pagurek. An architecture to support dynamic composition of
service components. Systems and Computer Engineering. Carleton University, Canada.

[15] UPnP White Paper. World Wide Web, http://upnp.org/resources . htm.
[16) Chaitanya Pullela, Liang Xu, Dipanjan Chakraborty, and Anupam Joshi. Component

based architecture for mobile information access. In Workshop in conjunction with
International Conference on Parallel Processing (ICPP)., August 2000.

[17] H. Schuster, D. Georgakopoulos, A. Cichocki, and D. Baker. Modeling and compos­
ing service-based and reference process-based multi-enterprise processes. In Proc. Inti.
Conference on Advanced Information Systems Engineering, Sweden., June 2000.

[18] Bluetooth Specification. World Wide Web, http://www.bluetooth.com/
developerlspecification/Bluetooth_ll_Specifica%tioBook.pdf.

	A Reactive Service Composition Architecture for Pervasive Computing Environments

	1. Introduction
	2. System Architecture and Design Principles
	2.1 System Components
	2.2 Dynamic Broker Selection Technique
	2.3 Distributed Brokering Technique

	3. Implementation and Experiments
	4. Conclusions
	References

